login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

This is the front page of the SandBox. You can try anything you like
here but keep in mind that other people are also using these pages to
learn and experiment with FriCAS and Reduce. Please be courteous to
others if you correct mistakes and try to explain what you are doing.

No Email Notices

Normally, if you edit any page on MathAction and click Save or if you add a comment to a page, a notice of the change is sent out to all subscribers on the axiom-developer email list, see the [Axiom Community]. Separate notices are also sent to those users who subscribe directly to MathAction.

Use Preview

If you click Preview instead of Save, you will get a chance to see the result of your calculations and LaTeX commands but no email notice is sent out and the result is not saved until you decide to click Save or not.

Use the SandBox

On this page or on any other page with a name beginning with SandBox such as SandBoxJohn2, SandBoxSimple, SandBoxEtc, clicking Save only sends email notices to users who subscribe directly to that specific SandBox page. Saving and adding comments does not create an email to the email list. You can safely use these pages for testing without disturbing anyone who might not care to know about your experiments.

SandBox Pages

You can also create new SandBox pages as needed just by editing this page and adding a link to the list of new page below. The link must include at least two uppercase letters and no spaces or alternatively it can be any phrase written inside [ ] brackets as long as it begins with SandBox. When you Save this page, the link to the new page will appear with a blue question mark ? beside it. Clicking on the blue question mark ? will ask you if you wish to create a new page.

[SandBox Aldor Category Theory]
based on "Prospects for Category Theory in Aldor" by Saul Youssef, 2004 http://atlas.bu.edu/~youssef/papers/math/aldor/aldor.pdf
[SandBox Aldor Foreign]
Using Aldor to call external C routines
[SandBox Aldor Generator]
Aldor defines a generator for type Vector
[SandBox Aldor Join and Meet]
Aldor has category constructor named Meet which appears to be analogous to (but opposite of) Join.
[SandBox Aldor Semantics]
exports and constants
[SandBox Aldor Sieve]
A prime number sieve in Aldor to count primes <= n.
[SandBox Aldor Testing]
Using Aldor to write Axiom library routines
[SandBox Arrays]
How fast is array access in Axiom?
[SandBox Axiom Syntax]
Syntax of if then else
[SandBox Boolean]
evaluating Boolean expressions and conditions
[SandBox Cast]
Meaning and use of pretend vs. strong typing
[SandBox Categorical Relativity]
Special relativity without the Lorentz group
[SandBox Category of Graphs]
Graph theory in Axiom
[SandBoxCL-WEB]
Tangle operation for literate programming implemented in Common Lisp
[SandBox Combinat]
A{ld,xi}o{r,m}Combinat
[SandBox Content MathML]
Content vs. presentation MathML

SandBoxCS224

[SandBox Direct Product]
A x B
[SandBox DistributedExpression]
expression in sum-of-products form
[SandBox Domains and Types]
What is the difference?
[SandboxTypeDefinitions]
What does the type means for you?
[FriCASEmacsMode]
Beginnings of an Emacs mode for Axiom based off of Jay's work and others
[SandBox Embeded PDF]
pdf format documents can be displayed inline
[SandBox EndPaper]
Algebra and Data Structure Hierarchy (lattice) diagrams
[SandBox Folding]
experiments with DHTML, javascript, etc.
[SandBox Functional Addition]
"adding" two functions
[SandBox Functions]
How do they work?
[SandBox Functors]
What are they? In Axiom functors are also called domain constructors.
[SandBox Gamma]
Numerical evaluation of the incomplete Gamma function
[SandBox GuessingSequence]
Guessing integer sequences
[SandBox InputForm]
How to output as inputForm
[SandBox Integration]
Examples of integration in Axiom and Reduce
[SandBox Kernel]
What is a "kernel"?

[SandBox kaveh]

[SandBox LaTeX]
LaTeX commands allowed in MathAction
[SandBox Lisp]
Using Lisp in Axiom
[SandBox Manip]
expression manipulations
[SandBox Manipulating Domains]
testing the domain of an expression
[SandBox Mapping]
A->B is a type in Axiom

[MathMLFormat]

[SandBox Matrix]
Examples of working with matrices in Axiom
[SandBox Maxima]
Testing the Maxima interface
[SandBox Monoid]
Rings and things
[SandBox Monoid Extend]
Martin Rubey's beautiful idea about using extend to add a category to a previously defined domain.
[SandBox Noncommutative Polynomials]
XPOLY and friends
[SandBox Numerical Integration]
Simpson method
[SandBox NNI]
NonNegative Integer without using SubDomain
[SandBox Pamphlet]
[Literate Programming] support on MathAction
[SandBoxPartialFraction]
Trigonometric expansion example
SandBoxPfaffian
Computing the Pfaffian of a square matrix
[SandBox Polymake]
an interface between Axiom and PolyMake
[SandBox Polynomials]
Axiom's polynomial domains are certainly rich and complex!
[SandBox ProblemSolving]
Test page for educational purposes
[SandBox Qubic]
Solving cubic polynomials
[SandBox Reduce And MathML]
Reduce can use MathML for both input and output
[SandBox Reflection in Aldor]
a reflection framework
[SandBoxRelativeVelocity]
Slides for IARD 2006: Addition of Relative Velocites is Associative
[SandBox Risch]
Find primitive of univariate functions
[SandBox Sage]
This is a test of Sage in MathAction
[SandBox Shortcoming]
Implementation of solve
[SandBox Solve]
Solving equations
[SandBox SPAD dependent types]
SPAD: parameter-dependent types in function definitions
[SandBox Statistics]
calculating statistics in Axiom
[SandBox SubDomain]
What is a SubDomain?
[SandBox Tail Recursion]
When does Axiom replace recursion with iteration?
[SandBox Text Files]
How to access text files in Axiom
[SandBox Trace Analysed]
Tracing can affect output of 1::EXPR INT or 1::FRAC INT
[SandBox Units and Dimensions]
Scientific units and dimensions
[SandBox Spad]
Domain construction
[SandBox Speed]
Compilation speed

[Sandbox Variables Evaluation]

[SandBox Zero]

[SandBox Axiom Strengths]

SandBoxJohn2
Experiments with matrices and various other stuff
SandBox2
Experiments
SandBox3
Experiments
SandBoxSymbolicInverseTrig
Experiments
SandBoxGraphviz
Experiments with GraphViz and StructuredTables
SandBoxDifferentialEquations
Differential Equations etc.
[SandBoxMatrixExample]
[SandBoxRotationMatrix]
Here you can create your own SandBox.
[SandBox9]
Experiments with JET Bundles
[SandBoxGnuDraw]
Miscellaneous
[SandBox11]
Miscellaneous

[[SandBox12TestIndetAndComplex]]

[SolvingDifferentialEquations]
Solving some nonlinear differential equations
[SandBox42]
Miscellaneous
[SandBox DoOps]
used to run Axiom without actually have to have it installed!

[SandBoxKMG]

[SandBoxDGE]

[SandBoxMLE]
Maximum likelihood estimation (statistics)
[SandBoxFisher]
Fisher's exact test for 2x2 tables (statistics)
[SandBoxNewtonsMethod]
Newton's method for numerically solving f(x)=0 (with examples of calling Axiom expressions and Spad functions from Lisp).
[SandBoxVeryLongLaTeX]
Test long lines
[SandBox Complementsdalgebrelineaire]
Francois Maltey
[SandBoxFriCAS]
page for testing friCAS
[SandBoxEcfact]
Aldor compiler problem?
[SandBoxMyReduce]
calling reduce with empty list
[SandBoxCategoryTerms]
Category theory terminology used in SPAD
[SandBoxRealSpace]
Some tests to mimic R^n
[SandBoxProp]
First order language over comparable types (tests for qel)
[SandBoxGeom1]
Cells and k-surfaces (preps for manifold<-charts)
[SandBoxPQTY]
Some tests for pqty buckingham pi (physical quantities)
[SandBoxTensorProduct3]
Tensor product of three different spaces: U#V#W
[SandBoxSurfaceComplex]
Some tests for k-cells and k-surfaces (Rudin/PMMA)
[SandBoxUnify]
Some unification tests
[SandBoxJacobiDiagFloat]
Jacobi diagonalization algorithm
[SandBoxJacobiDiagIntervalFloat]
Jacobi diagonalization algorithm (Interval Float)
[SandBoxPhysicalUnitSystem]
Physical unit systems (FreeAbelianGroup replaced)
[SandBoxHyperGeometric]
Book A=B
[SandBoxLinearProgramming]
Revised simplex method
[SandBoxDOPT]
Discrete optimal transport
[SandBoxJacobiDiag]
Jacobi diagonalisation
[SandBoxRootOfUnity]
Roots of unity, https://en.wikipedia.org/wiki/Root_of_unity
[SandBoxDFT]
Discrete Fourier Transform
[SandBoxSEXPM]
SExpression pattern matching (unifier)
[SandBoxSSPM]
SuperSimplePatternMatcher (http://www.cs.northwestern.edu/academics/courses/325/readings/pat-match.php)
[SandBoxFORMAN]
Interactive Computer Manipulation of Formal Sums (http://www.csd.uwo.ca/~watt/home/students/theses/NPatil2010-msc.pdf)
[SandBoxDFORM]
Differential forms (graded)
[SandBoxINFSUM]
Test SBCL 1.1 (table matching/lookup using unification)
[SandBoxTensorPower]
Demo Issues (n:PI ???)
[SandBoxTensorAlgebra]
Idea: use GradedAlgebra and TensorPower without n.
[SandBoxDemoFreeMonoid/-Module]
Combine monoid/module for algebra like impls.
[SandBoxDemoXFreeAlgebra]
Demo XDistributedPolynomial(B,R) (see above)
[SandBoxTensorAlgebra2]
Least effort solution using XFreeAlgebra
[SandBoxTensorAlgebra3]
Simplified; -GradedAlgebra; +Ring (any)
[DependentTypeTest1]
Cat A, Doms B,C,D.
[SymbolInteger]
Package to convert symbols _123 to integers 123 and vv.
[DependentTypeTest2]
CoChainCat, ZeroChainCat
[HyperG]
Some tests for ident hyperg funcs (Ref: A=B, Wilf & Co,)

[new]

[SandBox]

Click on the ? to create a new page. You should also edit this page to include a description and a new empty link for the next person.


Examples

Here is a simple Axiom command:

    \begin{axiom}
    integrate(1/(a+z^3), z=0..1,"noPole")
    \end{axiom}

fricas
(1) -> integrate(1/(a+z^3), z=0..1,"noPole")
\begin{equation} \label{eq1}\frac{-{{\sqrt{3}}\ {\log \left({{3 \ {{a}^{2}}\ {{\root{3}\of{{a}^{2}}}^{2}}}+{{\left(-{2 \ {{a}^{3}}}+{{a}^{2}}\right)}\ {\root{3}\of{{a}^{2}}}}+{{a}^{4}}-{2 \ {{a}^{3}}}}\right)}}+{2 \ {\sqrt{3}}\ {\log \left({{{\root{3}\of{{a}^{2}}}^{2}}+{2 \ a \ {\root{3}\of{{a}^{2}}}}+{{a}^{2}}}\right)}}+{{12}\ {\arctan \left({\frac{{2 \ {\sqrt{3}}\ {\root{3}\of{{a}^{2}}}}-{a \ {\sqrt{3}}}}{3 \ a}}\right)}}+{{\sqrt{3}}\ {\log \left({{a}^{4}}\right)}}-{2 \ {\sqrt{3}}\ {\log \left({{a}^{2}}\right)}}+{2 \ \pi}}{{12}\ {\sqrt{3}}\ {\root{3}\of{{a}^{2}}}}\end{equation}
Type: Union(f1: OrderedCompletion?(Expression(Integer)),...)

And here is a REDUCE command:

  \begin{reduce}
  load_package sfgamma;
  load_package defint;
  int(1/(a+z^3), z,0,1);
  \end{reduce}

load_package sfgamma;
load_package defint;
int(1/(a+z^3), z,0,1);
reduce
$$\displaylines{\qdd \frac{a^{\frac{1}{ 3}}\cdot \(6\cdot \sqrt{3}\cdot \atan \(\frac{2\cdot a^{\frac{2}{ 3}}\cdot \sqrt{3} - \sqrt{3}\cdot a}{ 3\cdot a} \) + \sqrt{3}\cdot \pi +3\cdot \ln \(\frac{3\cdot a^{\frac{2}{ 3}} +3\cdot a^{\frac{1}{ 3}} +a +1}{ a +1} \) \) }{ 18\cdot a} \cr} $$


Common Mistakes

Please review the list of Common Mistakes and the list of MathAction Problems if you are have never used MathAction before. If you are learning to use Axiom and think that someone must have solved some particular problem before you, check this list of Common [Axiom Problems]?.

fricas
solve(a*x+b,x)
\begin{equation*} \label{eq2}\left[{x = -{\frac{b}{a}}}\right]?\end{equation*}
Type: List(Equation(Fraction(Polynomial(Integer))))

exploring --Bill Page, Thu, 24 Apr 2008 07:00:25 -0700 reply
SandBoxNonAssociativeAlgebra

lexical scope --Bill Page, Sun, 11 May 2008 06:43:30 -0700 reply
Testing lexical scoping rules in SandBoxLexicalScope.

examples of overloading in SPAD --Bill Page, Fri, 16 May 2008 09:40:58 -0700 reply
SandBoxOverloading

Combinatorial Sum --Bill Page, Fri, 16 May 2008 13:38:20 -0700 reply
SandBoxSum (like Product)

Symbolic computations --Bill Page, Thu, 22 May 2008 12:58:29 -0700 reply
SandBoxSymbolic

add inheritance issue --Bill Page, Sun, 25 May 2008 11:26:13 -0700 reply
For example: SandBoxLeftFreeModule

Added Preview and Cancel to comment form --page, Tue, 27 May 2008 15:08:43 -0700 reply
This is a test of the Preview and Cancel buttons:
fricas
integrate(sin x, x)
\begin{equation} \label{eq3}-{\cos \left({x}\right)}\end{equation}
Type: Union(Expression(Integer),...)

software archeology discovers another --Bill Page, Fri, 30 May 2008 21:01:37 -0700 reply
SandBoxSubsetCategory?

try iso-experiment/combinat --Bill Page, Tue, 03 Jun 2008 13:24:13 -0700 reply
SandBoxCombinat

Equation, Inequation, and Inequality --Bill Page, Mon, 09 Jun 2008 18:28:56 -0700 reply
SandBoxEquation? SandBoxInequation SandBoxInequality?

test aldor code --Bill Page, Wed, 18 Jun 2008 03:43:05 -0700 reply
SandBoxAdjacencyMatrix

gnuplottex --Bill Page, Tue, 24 Jun 2008 22:42:51 -0700 reply
SandBoxGnuPlotTex

implementing Integer from Cardinal (unsigned) numbers --Bill Page, Mon, 21 Jul 2008 06:34:23 -0700 reply
SandBoxDefineInteger

Attributes and categories --Bill Page, Fri, 25 Jul 2008 13:36:54 -0700 reply
SandBoxCommutativeCategory

Literal and Symbol in SPAD --Bill Page, Sun, 27 Jul 2008 02:09:57 -0700 reply
SandBoxLiteral

a category of partially ordered sets --Bill Page, Wed, 06 Aug 2008 17:26:50 -0700 reply
SandBoxPartiallyOrderedSet

in response to an exchange of emails with Gabriel Dos Reis concerning the validity of automatic translations of x >= y into not x < y, etc.

Document function selection process in the interpreter --Bill Page, Wed, 13 Aug 2008 18:10:26 -0700 reply
SandBox/interp/i-funsel.boot

Tensor Product of Polynomials --Bill Page, Sun, 24 Aug 2008 06:36:20 -0700 reply
SandBoxTensorProductPolynomial

Reflection --Bill Page, Mon, 08 Sep 2008 06:09:27 -0700 reply
spad
)abbrev package REFL Reflect
Reflect(T:Type): with
    constructor? : Symbol -> Boolean
  == add
    constructor?(p:Symbol):Boolean == car(devaluate(T)$Lisp)$SExpression = convert(p)$SExpression
spad
   Compiling FriCAS source code from file 
      /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/2684009892188271010-25px004.spad
      using old system compiler.
   REFL abbreviates package Reflect 
------------------------------------------------------------------------
   initializing NRLIB REFL for Reflect 
   compiling into NRLIB REFL 
   compiling exported constructor? : Symbol -> Boolean
Time: 0 SEC.
(time taken in buildFunctor: 0)
;;; *** |Reflect| REDEFINED
;;; *** |Reflect| REDEFINED Time: 0 SEC.
Cumulative Statistics for Constructor Reflect Time: 0 seconds
finalizing NRLIB REFL Processing Reflect for Browser database: --->-->Reflect(constructor): Not documented!!!! --->-->Reflect((constructor? ((Boolean) (Symbol)))): Not documented!!!! --->-->Reflect(): Missing Description ; compiling file "/var/aw/var/LatexWiki/REFL.NRLIB/REFL.lsp" (written 29 SEP 2023 09:32:18 AM):
; wrote /var/aw/var/LatexWiki/REFL.NRLIB/REFL.fasl ; compilation finished in 0:00:00.016 ------------------------------------------------------------------------ Reflect is now explicitly exposed in frame initial Reflect will be automatically loaded when needed from /var/aw/var/LatexWiki/REFL.NRLIB/REFL

fricas
T1:=Integer
\begin{equation} \label{eq4}\hbox{\axiomType{Integer}\ }\end{equation}
Type: Type
fricas
T2:=Polynomial Fraction T1
\begin{equation} \label{eq5}\hbox{\axiomType{Polynomial}\ } (\hbox{\axiomType{Fraction}\ } (\hbox{\axiomType{Integer}\ }))\end{equation}
Type: Type
fricas
T3:=Complex T2
\begin{equation} \label{eq6}\hbox{\axiomType{Complex}\ } (\hbox{\axiomType{Polynomial}\ } (\hbox{\axiomType{Fraction}\ } (\hbox{\axiomType{Integer}\ })))\end{equation}
Type: Type
fricas
constructor?('Polynomial)$Reflect(T1)
\begin{equation} \label{eq7} \mbox{\rm false} \end{equation}
Type: Boolean
fricas
constructor?('Polynomial)$Reflect(T2)
\begin{equation} \label{eq8} \mbox{\rm true} \end{equation}
Type: Boolean
fricas
constructor?('Polynomial)$Reflect(T3)
\begin{equation} \label{eq9} \mbox{\rm false} \end{equation}
Type: Boolean
fricas
constructor?('Complex)$Reflect(T3)
\begin{equation} \label{eq10} \mbox{\rm true} \end{equation}
Type: Boolean

Francois Maltey --Bill Page, Tue, 18 Nov 2008 19:11:35 -0800 reply
SandBoxConditionalFunctions

NonZeroInteger? --Bill Page, Tue, 02 Dec 2008 21:35:49 -0800 reply
SandBoxNonZeroInteger is an attempt to define the domain of Integers without 0.

Martin's "generator" mini-tutorial --Bill Page, Sat, 28 Feb 2009 09:00:14 -0800 reply
SandboxDelay

Ralf Hemmecke's example for hidden overloading --Bill Page, Mon, 23 Mar 2009 07:22:32 -0700 reply
SandBoxHiddenOverloading

prototype for tensor products --Bill Page, Tue, 12 May 2009 12:49:48 -0700 reply
SandBoxTensorProduct by Franz Lehner

Riemann Surface --Bill Page, Sat, 20 Jun 2009 13:15:37 -0700 reply
SandBoxComplexManifold

Differential Algebra --Bill Page, Wed, 29 Jul 2009 09:07:26 -0700 reply
SandBoxDifferentialPolynomial

Grassmann Algebra --Bill Page, Thu, 10 Sep 2009 09:05:28 -0700 reply
SandBoxGrassmannIsometry - All mappings that preserve a given metric are given in terms of the decomposition of a general multivector.

Free Product --Bill Page, Fri, 18 Sep 2009 03:20:41 -0700 reply
SandBoxFreeProduct

This domain implements the free product of monoids (or groups) It is the coproduct in the category of monoids (groups). FreeProduct(A,B) is the monoid (group) whose elements are the reduced words in A and B, under the operation of concatenation followed by reduction:

  • Remove identity elements (of either A or B)
  • Replace a1a2 by its product in A and b1b2 by its product in B

Ref: http://en.wikipedia.org/wiki/Free_product

FunctionWithCache? --Bill Page, Tue, 27 Oct 2009 14:51:49 -0700 reply
Franz Lehner provided the following example of caching the output of a function: SandBoxRemember

Hash Functions --Bill Page, Wed, 04 Nov 2009 00:11:08 -0800 reply
MortonCode (also called z-order) is a method of combining multidimensional "coordinates" into a one-dimensional coordinate or "code" that attempts to preserve locality, i.e. minimize the average Euclidean distance between coordinate locations associated with adjacent codes. Morton codes are computationally less expensive to convert to and from coordinate values than Hilbert codes.

Groebner Basis and Polynomial Ideals --Bill Page, Tue, 08 Feb 2011 14:48:48 -0800 reply
SandBoxGroebnerBasis examples from Ideals, Varieties, and Algorithms Third Edition, 2007

Frobenius Algebra --Bill Page, Fri, 11 Feb 2011 17:12:43 -0800 reply
FrobeniusAlgebraVectorSpacesAndPolynomialIdeals Classifying low dimensional Frobenius algebras

Compiling SPAD code from a string --Bill Page, Mon, 07 Mar 2011 15:59:46 -0800 reply
SandBoxSTRING2SPAD demonstrates how to call the [SPAD]? compiler from the interpreter.

Sandbox with some simple Algebra [SimplifyingAlgebraicExpressions]?

Observer algebra --Bill Page, Thu, 26 Apr 2012 14:44:52 -0700 reply
SandBoxObserverAsIdempotent

Mathematica or sympy --Bill Page, Sat, 20 Apr 2013 01:35:47 +0000 reply
FriCAS
fricas
g:=1/(x*(1-a*(1-x)))
\begin{equation} \label{eq11}\frac{1}{{a \ {{x}^{2}}}+{{\left(- a + 1 \right)}\ x}}\end{equation}
Type: Fraction(Polynomial(Integer))
fricas
integrate(g,x)
\begin{equation} \label{eq12}\frac{{\log \left({{a \ x}- a + 1}\right)}-{\log \left({x}\right)}}{a - 1}\end{equation}
Type: Union(Expression(Integer),...)

Sympy \begin{equation} \label{eq13} \frac{- \log{\left (2 x \right )} + \log{\left (\frac{- a^{2} + 2 a x \left(a - 1\right) - a \left(a - 1\right) + 3 a - 2}{a \left(a - 1\right)} \right )}}{ a - 1} \end{equation}

Mathematica \begin{equation} \label{eq14} \frac{\log (a (x-1)+1)-\log (x)}{a-1} \end{equation}

Thomas Baruchel --Bill page, Sat, 22 Nov 2014 14:30:34 +0000 reply
fricas
)set output algebra on
 
fricas
)set output tex off
r1:=(16*x^14-125*x^10+150*x^6+375*x^2)/(256*x^16+480*x^12+1025*x^8+750*x^4 +625)
14 10 6 2 16 x - 125 x + 150 x + 375 x (13) ------------------------------------------ 16 12 8 4 256 x + 480 x + 1025 x + 750 x + 625
Type: Fraction(Polynomial(Integer))
fricas
r2:=integrate(r1,x=0..1);
Type: Union(f1: OrderedCompletion?(Expression(Integer)),...)
fricas
numeric r2
(15) 0.1239829394_403554557
Type: Float
fricas
unparse(simplify(r2)::InputForm)
(16) "(74536*5^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^ (1/2)*atan(((1155*5^(1/2)+2200)*62^(1/2))/((106*5^(1/2)+248)*55^(1/2)*15125^( 1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)*((((-1093842200)*5^( 1/2)+(-2445921555))*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2 )+29421))^(1/2)+((790913912*5^(1/2)+1768578272)*15125^(1/2)+(108750662900*5^( 1/2)+243179512400)))/((790913912*5^(1/2)+1768578272)*15125^(1/2)))^(1/2)+((10 6*5^(1/2)+248)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+294 21))^(1/2)+((-55)*5^(1/2)+(-220))*55^(1/2)*62^(1/2))))+((1647576*5^(1/2)+3680 320)*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)*atan(((1155 *5^(1/2)+(-2200))*62^(1/2))/((106*5^(1/2)+(-248))*55^(1/2)*15125^(1/4)*((1314 4*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*((((-1093842200)*5^(1/2)+ 2445921555)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-2 9421)))^(1/2)+((790913912*5^(1/2)+(-1768578272))*15125^(1/2)+(108750662900*5^ (1/2)+(-243179512400))))/((790913912*5^(1/2)+(-1768578272))*15125^(1/2)))^(1/ 2)+((106*5^(1/2)+(-248))*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(1314 4*5^(1/2)+(-29421)))^(1/2)+((-55)*5^(1/2)+220)*55^(1/2)*62^(1/2))))+((1647576 *5^(1/2)+3680320)*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2 )*atan(((1155*5^(1/2)+(-2200))*62^(1/2))/((106*5^(1/2)+(-248))*55^(1/2)*15125 ^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*(((109384220 0*5^(1/2)+(-2445921555))*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(1314 4*5^(1/2)+(-29421)))^(1/2)+((790913912*5^(1/2)+(-1768578272))*15125^(1/2)+(10 8750662900*5^(1/2)+(-243179512400))))/((790913912*5^(1/2)+(-1768578272))*1512 5^(1/2)))^(1/2)+((106*5^(1/2)+(-248))*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+(- 30752))/(13144*5^(1/2)+(-29421)))^(1/2)+(55*5^(1/2)+(-220))*55^(1/2)*62^(1/2) )))+(74536*5^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421) ))^(1/2)*atan(((1155*5^(1/2)+2200)*62^(1/2))/((106*5^(1/2)+248)*55^(1/2)*1512 5^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)*(((1093842200*5^( 1/2)+2445921555)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+2 9421))^(1/2)+((790913912*5^(1/2)+1768578272)*15125^(1/2)+(108750662900*5^(1/2 )+243179512400)))/((790913912*5^(1/2)+1768578272)*15125^(1/2)))^(1/2)+((106*5 ^(1/2)+248)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421) )^(1/2)+(55*5^(1/2)+220)*55^(1/2)*62^(1/2))))+(((-4081)*5^(1/2)+(-9548))*55^( 1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*log(( ((455093240054286639322000*5^(1/2)+1017619420862054625862720)*62^(1/2)*(15125 ^(1/4))^3+(62575320507464412906775000*5^(1/2)+139922670368532511056124000)*62 ^(1/2)*15125^(1/4))*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((651 98873537082933855182800*5^(1/2)+145789113285365230329827200)*15125^(1/2)+(559 9205937001766221691328000*5^(1/2)+12520205095158077515215138000)))/(13144*5^( 1/2)+29421))+((4081*5^(1/2)+9548)*55^(1/2)*62^(1/2)*((13144*5^(1/2)+30752)/(1 3144*5^(1/2)+29421))^(1/2)*log((((455093240054286639322000*5^(1/2)+(-10176194 20862054625862720))*62^(1/2)*(15125^(1/4))^3+(62575320507464412906775000*5^(1 /2)+(-139922670368532511056124000))*62^(1/2)*15125^(1/4))*((13144*5^(1/2)+(-3 0752))/(13144*5^(1/2)+(-29421)))^(1/2)+((65198873537082933855182800*5^(1/2)+( -145789113285365230329827200))*15125^(1/2)+(5599205937001766221691328000*5^(1 /2)+(-12520205095158077515215138000))))/(13144*5^(1/2)+(-29421)))+(((-4081)*5 ^(1/2)+(-9548))*55^(1/2)*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421 ))^(1/2)*log(((((-455093240054286639322000)*5^(1/2)+1017619420862054625862720 )*62^(1/2)*(15125^(1/4))^3+((-62575320507464412906775000)*5^(1/2)+13992267036 8532511056124000)*62^(1/2)*15125^(1/4))*((13144*5^(1/2)+(-30752))/(13144*5^(1 /2)+(-29421)))^(1/2)+((65198873537082933855182800*5^(1/2)+(-14578911328536523 0329827200))*15125^(1/2)+(5599205937001766221691328000*5^(1/2)+(-125202050951 58077515215138000))))/(13144*5^(1/2)+(-29421)))+((4081*5^(1/2)+9548)*55^(1/2) *62^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*log(((((- 455093240054286639322000)*5^(1/2)+(-1017619420862054625862720))*62^(1/2)*(151 25^(1/4))^3+((-62575320507464412906775000)*5^(1/2)+(-139922670368532511056124 000))*62^(1/2)*15125^(1/4))*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/ 2)+((65198873537082933855182800*5^(1/2)+145789113285365230329827200)*15125^(1 /2)+(5599205937001766221691328000*5^(1/2)+12520205095158077515215138000)))/(1 3144*5^(1/2)+29421))+(((-1647576)*5^(1/2)+(-3680320))*62^(1/2)*((13144*5^(1/2 )+30752)/(13144*5^(1/2)+29421))^(1/2)*atan(((231*5^(1/2)+(-440))*62^(1/2))/(( 106*5^(1/2)+(-248))*55^(1/2)*15125^(1/4)*(11/(2*15125^(1/2)))^(1/2)*((13144*5 ^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)+((-11)*5^(1/2)+44)*55^(1/2)* 62^(1/2)))+(((-1647576)*5^(1/2)+(-3680320))*62^(1/2)*((13144*5^(1/2)+30752)/( 13144*5^(1/2)+29421))^(1/2)*atan(((231*5^(1/2)+(-440))*62^(1/2))/((106*5^(1/2 )+(-248))*55^(1/2)*15125^(1/4)*(11/(2*15125^(1/2)))^(1/2)*((13144*5^(1/2)+(-3 0752))/(13144*5^(1/2)+(-29421)))^(1/2)+(11*5^(1/2)+(-44))*55^(1/2)*62^(1/2))) +((-74536)*5^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421) ))^(1/2)*atan(((231*5^(1/2)+440)*62^(1/2))/((106*5^(1/2)+248)*55^(1/2)*15125^ (1/4)*(11/(2*15125^(1/2)))^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421) )^(1/2)+((-11)*5^(1/2)+(-44))*55^(1/2)*62^(1/2)))+((-74536)*5^(1/2)*62^(1/2)* ((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*atan(((231*5^(1/2)+ 440)*62^(1/2))/((106*5^(1/2)+248)*55^(1/2)*15125^(1/4)*(11/(2*15125^(1/2)))^( 1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+(11*5^(1/2)+44)*55^( 1/2)*62^(1/2)))+(11660*5^(1/2)+27280)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+(- 30752))/(13144*5^(1/2)+(-29421)))^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2) +29421))^(1/2)))))))))))))/((179564*5^(1/2)+420112)*55^(1/2)*15125^(1/4)*((13 144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*((13144*5^(1/2)+30752)/ (13144*5^(1/2)+29421))^(1/2))"
Type: String
fricas
r3:=integrate(r1,x);
Type: Union(Expression(Integer),...)
fricas
unparse(simplify(r3)::InputForm)
(18) "((85184*x^8+79860*x^4+133100)*5^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13 144*5^(1/2)+(-29421)))^(1/2)*atan(((1155*5^(1/2)+2200)*62^(1/2))/((106*5^(1/2 )+248)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/ 2)*((((-1093842200)*x*5^(1/2)+(-2445921555)*x)*62^(1/2)*15125^(1/4)*((13144*5 ^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((790913912*x^2*5^(1/2)+1768578272 *x^2)*15125^(1/2)+(108750662900*5^(1/2)+243179512400)))/((790913912*5^(1/2)+1 768578272)*15125^(1/2)))^(1/2)+((106*x*5^(1/2)+248*x)*55^(1/2)*15125^(1/4)*(( 13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((-55)*5^(1/2)+(-220))*55^( 1/2)*62^(1/2))))+(((1882944*x^8+1765260*x^4+2942100)*5^(1/2)+(4206080*x^8+394 3200*x^4+6572000))*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/ 2)*atan(((1155*5^(1/2)+(-2200))*62^(1/2))/((106*5^(1/2)+(-248))*55^(1/2)*1512 5^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*((((-109384 2200)*x*5^(1/2)+2445921555*x)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/ (13144*5^(1/2)+(-29421)))^(1/2)+((790913912*x^2*5^(1/2)+(-1768578272)*x^2)*15 125^(1/2)+(108750662900*5^(1/2)+(-243179512400))))/((790913912*5^(1/2)+(-1768 578272))*15125^(1/2)))^(1/2)+((106*x*5^(1/2)+(-248)*x)*55^(1/2)*15125^(1/4)*( (13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)+((-55)*5^(1/2)+220)* 55^(1/2)*62^(1/2))))+(((1882944*x^8+1765260*x^4+2942100)*5^(1/2)+(4206080*x^8 +3943200*x^4+6572000))*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421)) ^(1/2)*atan(((1155*5^(1/2)+(-2200))*62^(1/2))/((106*5^(1/2)+(-248))*55^(1/2)* 15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*(((1093 842200*x*5^(1/2)+(-2445921555)*x)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-3075 2))/(13144*5^(1/2)+(-29421)))^(1/2)+((790913912*x^2*5^(1/2)+(-1768578272)*x^2 )*15125^(1/2)+(108750662900*5^(1/2)+(-243179512400))))/((790913912*5^(1/2)+(- 1768578272))*15125^(1/2)))^(1/2)+((106*x*5^(1/2)+(-248)*x)*55^(1/2)*15125^(1/ 4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)+(55*5^(1/2)+(-22 0))*55^(1/2)*62^(1/2))))+((85184*x^8+79860*x^4+133100)*5^(1/2)*62^(1/2)*((131 44*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*atan(((1155*5^(1/2)+2200 )*62^(1/2))/((106*5^(1/2)+248)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(1 3144*5^(1/2)+29421))^(1/2)*(((1093842200*x*5^(1/2)+2445921555*x)*62^(1/2)*151 25^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((790913912*x^2* 5^(1/2)+1768578272*x^2)*15125^(1/2)+(108750662900*5^(1/2)+243179512400)))/((7 90913912*5^(1/2)+1768578272)*15125^(1/2)))^(1/2)+((106*x*5^(1/2)+248*x)*55^(1 /2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+(55*5^(1/ 2)+220)*55^(1/2)*62^(1/2))))+((((-9328)*x^8+(-8745)*x^4+(-14575))*5^(1/2)+((- 21824)*x^8+(-20460)*x^4+(-34100)))*55^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752) )/(13144*5^(1/2)+(-29421)))^(1/2)*log((1093842200*x*5^(1/2)+2445921555*x)*62^ (1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((79091 3912*x^2*5^(1/2)+1768578272*x^2)*15125^(1/2)+(108750662900*5^(1/2)+2431795124 00)))+(((9328*x^8+8745*x^4+14575)*5^(1/2)+(21824*x^8+20460*x^4+34100))*55^(1/ 2)*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)*log((10938422 00*x*5^(1/2)+(-2445921555)*x)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/ (13144*5^(1/2)+(-29421)))^(1/2)+((790913912*x^2*5^(1/2)+(-1768578272)*x^2)*15 125^(1/2)+(108750662900*5^(1/2)+(-243179512400))))+((((-9328)*x^8+(-8745)*x^4 +(-14575))*5^(1/2)+((-21824)*x^8+(-20460)*x^4+(-34100)))*55^(1/2)*62^(1/2)*(( 13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)*log(((-1093842200)*x*5^(1/2 )+2445921555*x)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2) +(-29421)))^(1/2)+((790913912*x^2*5^(1/2)+(-1768578272)*x^2)*15125^(1/2)+(108 750662900*5^(1/2)+(-243179512400))))+(((9328*x^8+8745*x^4+14575)*5^(1/2)+(218 24*x^8+20460*x^4+34100))*55^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5 ^(1/2)+(-29421)))^(1/2)*log(((-1093842200)*x*5^(1/2)+(-2445921555)*x)*62^(1/2 )*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((790913912 *x^2*5^(1/2)+1768578272*x^2)*15125^(1/2)+(108750662900*5^(1/2)+243179512400)) )+((5830*x^7+40810*x^3)*5^(1/2)+(13640*x^7+95480*x^3))*55^(1/2)*15125^(1/4)*( (13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*((13144*5^(1/2)+3075 2)/(13144*5^(1/2)+29421))^(1/2)))))))))/(((205216*x^8+192390*x^4+320650)*5^(1 /2)+(480128*x^8+450120*x^4+750200))*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30 752))/(13144*5^(1/2)+(-29421)))^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+2 9421))^(1/2))"
Type: String
fricas
r4:=D(r3,x);
Type: Expression(Integer)
fricas
--simplify(r1-r4)
--normalize(r1-r4)
r5:=eval(r1-r4,x=10);
Type: Expression(Integer)
fricas
numeric r5
(21) - 0.8167478186_7186562196 E -7
Type: Float

LaTeX output formatting --Bill page, Mon, 29 Dec 2014 19:38:46 +0000 reply
fricas
)set output algebra on
sin(x^b)
b (22) sin(x )
Type: Expression(Integer)
fricas
D(%,x)
b - 1 b (23) b x cos(x )
Type: Expression(Integer)
fricas
D(%,x)
2 b - 1 2 b 2 b - 2 b (24) - b (x ) sin(x ) + (b - b)x cos(x )
Type: Expression(Integer)
fricas
)set output algebra off
 
fricas
)set output tex on

fricas
guessRec([1,1,0,1,- 1,2,- 1,5,- 4,29,- 13,854,- 685])
\begin{equation*} \label{eq15}\left[{\left[{{{f \left({n}\right)}\mbox{\rm :}}{{{f \left({n + 2}\right)}+{f \left({n + 1}\right)}-{{f \left({n}\right)}^{2}}}= 0}}, \:{{f \left({0}\right)}= 1}, \:{{f \left({1}\right)}= 1}\right]?}\right]\end{equation*}
Type: List(Expression(Integer))

fricas
integral(x^2, x)
\begin{equation} \label{eq16}\int^{ \displaystyle x}{{{\%G}^{2}}\ {d \%G}}\end{equation}
Type: Expression(Integer)
fricas
integrate(x^2, x)
\begin{equation} \label{eq17}{\frac{1}{3}}\ {{x}^{3}}\end{equation}
Type: Polynomial(Fraction(Integer))

fricas
integrate(log(m*x+b),x)
\begin{equation} \label{eq18}\frac{{{\left({m \ x}+ b \right)}\ {\log \left({{m \ x}+ b}\right)}}-{m \ x}}{m}\end{equation}
Type: Union(Expression(Integer),...)

fricas
integrate(log(m*x+b) * exp(-(log(x) - mu)^2 / (2*sigma^2)) / (X*sigma*sqrt(2*pi)), x)
\begin{equation} \label{eq19}\int^{ \displaystyle x}{{\frac{{\log \left({{\%G \ m}+ b}\right)}\ {{e}^{\frac{-{{\log \left({\%G}\right)}^{2}}+{2 \ mu \ {\log \left({\%G}\right)}}-{{mu}^{2}}}{2 \ {{sigma}^{2}}}}}}{X \ sigma \ {\sqrt{2 \ pi}}}}\ {d \%G}}\end{equation}
Type: Union(Expression(Integer),...)

fricas
integrate(log(b) * exp(-(log(x) - mu)^2 / (2*sigma^2)) / (X*sigma*sqrt(2*pi)), x)
\begin{equation} \label{eq20}\frac{{{e}^{\frac{{{sigma}^{2}}+{2 \ mu}}{2}}}\ {\log \left({b}\right)}\ {\sqrt{\pi}}\ {\erf \left({{\left({\log \left({x}\right)}-{{sigma}^{2}}- mu \right)}\ {\sqrt{\frac{1}{2 \ {{sigma}^{2}}}}}}\right)}}{2 \ X \ sigma \ {\sqrt{\frac{1}{2 \ {{sigma}^{2}}}}}\ {\sqrt{2 \ pi}}}\end{equation}
Type: Union(Expression(Integer),...)


Some or all expressions may not have rendered properly, because Latex returned the following error:
This is pdfTeX, Version 3.141592653-2.6-1.40.24 (TeX Live 2022/Debian) (preloaded format=latex)
 restricted \write18 enabled.
entering extended mode
 I can't find file `6950987131061960059-16.0px.tex'.
<*> 6950987131061960059-16.0px.tex

(Press Enter to retry, or Control-D to exit) Please type another input file name Emergency stop. <*> 6950987131061960059-16.0px.tex

No pages of output. Transcript written on texput.log.




  Subject: (replying)   Be Bold !!
  ( 17 subscribers )  
Please rate this page: