|
|
last edited 6 years ago by test int |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ||
Editor: crashcut
Time: 2008/01/31 07:57:43 GMT-8 |
||
Note: |
added:
From crashcut Thu Jan 31 07:57:39 -0800 2008
From: crashcut
Date: Thu, 31 Jan 2008 07:57:39 -0800
Subject:
Message-ID: <20080131075739-0800@axiom-wiki.newsynthesis.org>
\begin{reduce}
solve({y=-1/l*(1-(l*x+(-3*l^2-l+8)^(1/2)/4-0.5*l)^2)^(1/2) -(-3*l^2-l+8)^(1/2)/(4*l)+2*l}, {y});
\end{reduce}
Try Reduce calculations here. For example:
\begin{reduce} solve({z=x*a+2},{z,x}); int(sqrt(1-sin(x)*cos(x)),x); \end{reduce}
1: solve({z=x*a+2},{z,x}); | reduce |
int(sqrt(1-sin(x)*cos(x)),x); | reduce |
int(log(log(x)),x); | reduce |
integrate(log(log(x)),x)
(1) |
solve({y=-1/l*(1-(l*x+(-3*l^2-l+8)^(1/2)/4-0.5*l)^2)^(1/2) -(-3*l^2-l+8)^(1/2)/(4*l)+2*l}, {y}); | reduce |