|
|
last edited 6 years ago by test int |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ||
Editor: crashcut
Time: 2008/01/30 07:32:17 GMT-8 |
||
Note: |
removed:
-From crashcut Wed Jan 30 07:05:47 -0800 2008
-From: crashcut
-Date: Wed, 30 Jan 2008 07:05:47 -0800
-Subject:
-Message-ID: <20080130070547-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve({c-y=-1/l*(1-(a*l+x)^2)^(1/2), b-y=-1/l*(1-x^2)^(1/2)}, {x,c})
-\end{reduce}
-
-From crashcut Wed Jan 30 07:06:43 -0800 2008
-From: crashcut
-Date: Wed, 30 Jan 2008 07:06:43 -0800
-Subject:
-Message-ID: <20080130070643-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve({c-y=-1/l*(1-(a*l+x)^2)^(1/2), b-y=-1/l*(1-x^2)^(1/2)}, {x,c});
-\end{reduce}
Try Reduce calculations here. For example:
\begin{reduce} solve({z=x*a+2},{z,x}); int(sqrt(1-sin(x)*cos(x)),x); \end{reduce}
solve({z=x*a+2},{z,x}); | reduce |
int(sqrt(1-sin(x)*cos(x)),x); | reduce |
int(log(log(x)),x); | reduce |
axiomintegrate(log(log(x)),x)
(1) |