removed:
-
-
-
-
-From crashcut Wed Jan 30 07:33:30 -0800 2008
-From: crashcut
-Date: Wed, 30 Jan 2008 07:33:30 -0800
-Subject:
-Message-ID: <20080130073330-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve({c=-1/l*sqrt(1-(l*a+c1)^2)+c2, b=-1/l*sqrt(1-c1^2)+c2}, {c1, c2})
-\end{reduce}
-
-From crashcut Wed Jan 30 07:36:12 -0800 2008
-From: crashcut
-Date: Wed, 30 Jan 2008 07:36:12 -0800
-Subject:
-Message-ID: <20080130073612-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve({c-b=-1/l*sqrt(1-(l*a+c1)^2)+1/l*sqrt(1-c1^2)}, {c1, c2})
-\end{reduce}
-
-From crashcut Wed Jan 30 07:37:36 -0800 2008
-From: crashcut
-Date: Wed, 30 Jan 2008 07:37:36 -0800
-Subject:
-Message-ID: <20080130073736-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve({c-b=-1/l*(1-(l*a+c1)^2)^(1/2)+1/l*(1-c1^2)^(1/2)}, {c1, c2})
-\end{reduce}
-
-From crashcut Wed Jan 30 07:38:16 -0800 2008
-From: crashcut
-Date: Wed, 30 Jan 2008 07:38:16 -0800
-Subject:
-Message-ID: <20080130073816-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve({c-b=-1/l*(1-(l*a+c1)^2)^(1/2)+1/l*(1-c1^2)^(1/2)}, {c1})
-\end{reduce}
-
-From crashcut Wed Jan 30 07:39:19 -0800 2008
-From: crashcut
-Date: Wed, 30 Jan 2008 07:39:19 -0800
-Subject:
-Message-ID: <20080130073919-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve(c-b=-1/l*(1-(l*a+c1)^2)^(1/2)+1/l*(1-c1^2)^(1/2), c1)
-\end{reduce}
-
-From crashcut Wed Jan 30 07:39:46 -0800 2008
-From: crashcut
-Date: Wed, 30 Jan 2008 07:39:46 -0800
-Subject:
-Message-ID: <20080130073946-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve(c-b=-1/l*(1-(l*a+c1)^2)^(1/2)+1/l*(1-c1^2)^(1/2), c1);
-\end{reduce}
-
-From crashcut Wed Jan 30 07:41:15 -0800 2008
-From: crashcut
-Date: Wed, 30 Jan 2008 07:41:15 -0800
-Subject:
-Message-ID: <20080130074115-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve({c=-1/l*(1-(l*a+c1)^2)^(1/2)=c2, b=-1/l*(1-c1^2)^(1/2)+c2}, {c1,c2});
-\end{reduce}
-
-From crashcut Wed Jan 30 07:41:38 -0800 2008
-From: crashcut
-Date: Wed, 30 Jan 2008 07:41:38 -0800
-Subject:
-Message-ID: <20080130074138-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve({c=-1/l*(1-(l*a+c1)^2)^(1/2)+c2, b=-1/l*(1-c1^2)^(1/2)+c2}, {c1,c2});
-\end{reduce}
-
Try Reduce calculations here. For example:
\begin{reduce}
solve({z=x*a+2},{z,x});
int(sqrt(1-sin(x)*cos(x)),x);
\end{reduce}
solve({z=x*a+2},{z,x}); | reduce |
int(sqrt(1-sin(x)*cos(x)),x); | reduce |
int(log(log(x)),x); | reduce |
axiom
integrate(log(log(x)),x)
Type: Union(Expression Integer,...)
solve({c=-1/m*(1-(m*a+c1)^2)^(1/2)+c2, b=-1/m*(1-c1^2)^(1/2)+c2}, {c1,c2}); | reduce |