|
|
last edited 6 years ago by test int |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ||
Editor: crashcut
Time: 2008/01/30 10:28:31 GMT-8 |
||
Note: |
added:
From crashcut Wed Jan 30 10:28:27 -0800 2008
From: crashcut
Date: Wed, 30 Jan 2008 10:28:27 -0800
Subject:
Message-ID: <20080130102827-0800@axiom-wiki.newsynthesis.org>
\begin{reduce}
solve({c=-1/m*(1-(m*a+c1)^2)^(1/2)+c2, b=-1/m*(1-c1^2)^(1/2)+c2}, {c1,c2});
\end{reduce}
Try Reduce calculations here. For example:
\begin{reduce} solve({z=x*a+2},{z,x}); int(sqrt(1-sin(x)*cos(x)),x); \end{reduce}
solve({z=x*a+2},{z,x}); | reduce |
int(sqrt(1-sin(x)*cos(x)),x); | reduce |
int(log(log(x)),x); | reduce |
axiomintegrate(log(log(x)),x)
(1) |
solve({c=-1/l*sqrt(1-(l*a+c1)^2)+c2, b=-1/l*sqrt(1-c1^2)+c2}, {c1, c2}) | reduce |
solve({c-b=-1/l*sqrt(1-(l*a+c1)^2)+1/l*sqrt(1-c1^2)}, {c1, c2}) | reduce |
solve({c-b=-1/l*(1-(l*a+c1)^2)^(1/2)+1/l*(1-c1^2)^(1/2)}, {c1, c2}) | reduce |
solve({c-b=-1/l*(1-(l*a+c1)^2)^(1/2)+1/l*(1-c1^2)^(1/2)}, {c1}) | reduce |
solve(c-b=-1/l*(1-(l*a+c1)^2)^(1/2)+1/l*(1-c1^2)^(1/2), c1) | reduce |
solve({c=-1/l*(1-(l*a+c1)^2)^(1/2)=c2, b=-1/l*(1-c1^2)^(1/2)+c2}, {c1,c2}); 2 2 2 - sqrt( - a *l - 2*a*c1*l - c1 + 1) ***** c=---------------------------------------- invalid as scalar l ***** Continuing with parsing only ... | reduce |