removed:
-
-From crashcut Wed Jan 30 10:28:27 -0800 2008
-From: crashcut
-Date: Wed, 30 Jan 2008 10:28:27 -0800
-Subject:
-Message-ID: <20080130102827-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve({c=-1/m*(1-(m*a+c1)^2)^(1/2)+c2, b=-1/m*(1-c1^2)^(1/2)+c2}, {c1,c2});
-\end{reduce}
-
-From crashcut Thu Jan 31 02:40:56 -0800 2008
-From: crashcut
-Date: Thu, 31 Jan 2008 02:40:56 -0800
-Subject:
-Message-ID: <20080131024056-0800@axiom-wiki.newsynthesis.org>
-
-solve({y=-1/l*(1-(l*x+c1)^2)^(1/2)+c2, c1=((-3*l^2-l+8)^(1/2)/4-l, c2=-3((-3*l^2-l+8)^(1/2)+7*l)/12*l}, {y});
-
-
-From crashcut Thu Jan 31 02:41:31 -0800 2008
-From: crashcut
-Date: Thu, 31 Jan 2008 02:41:31 -0800
-Subject:
-Message-ID: <20080131024131-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve({y=-1/l*(1-(l*x+c1)^2)^(1/2)+c2, c1=((-3*l^2-l+8)^(1/2)/4-l, c2=-3((-3*l^2-l+8)^(1/2)+7*l)/12*l}, {y});
-\end{reduce}
-
-From crashcut Thu Jan 31 02:43:01 -0800 2008
-From: crashcut
-Date: Thu, 31 Jan 2008 02:43:01 -0800
-Subject:
-Message-ID: <20080131024301-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve({y=-1/l*(1-(l*x+c1)^2)^(1/2)+c2, c1=(-3*l^2-l+8)^(1/2)/4-l, c2=-3((-3*l^2-l+8)^(1/2)+7*l)/12*l}, {y});
-\end{reduce}
-
-From crashcut Thu Jan 31 02:47:39 -0800 2008
-From: crashcut
-Date: Thu, 31 Jan 2008 02:47:39 -0800
-Subject:
-Message-ID: <20080131024739-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve({y=-1/l*(1-(l*x+c1)^2)^(1/2)+c2, c1=(-3*l^2-l+8)^(1/2)/4-l, c2=-3*((-3*l^2-l+8)^(1/2)+7*l)/12*l}, {y});
-\end{reduce}
-
-From crashcut Thu Jan 31 02:48:31 -0800 2008
-From: crashcut
-Date: Thu, 31 Jan 2008 02:48:31 -0800
-Subject:
-Message-ID: <20080131024831-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve({y=-1/l*(1-(l*x+c1)^2)^(1/2)+c2, c1=(-3*l^2-l+8)^(1/2)/4-l, c2=-3*((-3*l^2-l+8)^(1/2)+7*l)/(12*l)}, {y});
-\end{reduce}
-
-From crashcut Thu Jan 31 02:49:20 -0800 2008
-From: crashcut
-Date: Thu, 31 Jan 2008 02:49:20 -0800
-Subject:
-Message-ID: <20080131024920-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve({y=-1/l*(1-(l*x+c1)^2)^(1/2)+c2, c1=(-3*l^2-l+8)^(1/2)/4-l, c2=3*((-3*l^2-l+8)^(1/2)+7*l)/(12*l)}, {y});
-\end{reduce}
-
-From crashcut Thu Jan 31 02:51:21 -0800 2008
-From: crashcut
-Date: Thu, 31 Jan 2008 02:51:21 -0800
-Subject:
-Message-ID: <20080131025121-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve({y=-1/l*(1-(l*x+c1)^2)^(1/2)+c2, c1=(-3*l^2-l+8)^(1/2)/4-l, c2=-3((-3*l^2-l+8)^(1/2)+7*l)/12*l}, {y});
-\end{reduce}
-
-From crashcut Thu Jan 31 02:51:57 -0800 2008
-From: crashcut
-Date: Thu, 31 Jan 2008 02:51:57 -0800
-Subject:
-Message-ID: <20080131025157-0800@axiom-wiki.newsynthesis.org>
-
-\begin{reduce}
-solve({y=-1/l*(1-(l*x+(-3*l^2-l+8)^(1/2)/4-l)^2)^(1/2)-3*((-3*l^2-l+8)^(1/2)+7*l)/(12*l)}, {y});
-\end{reduce}
Try Reduce calculations here. For example:
\begin{reduce}
solve({z=x*a+2},{z,x});
int(sqrt(1-sin(x)*cos(x)),x);
\end{reduce}
solve({z=x*a+2},{z,x}); | reduce |
int(sqrt(1-sin(x)*cos(x)),x); | reduce |
int(log(log(x)),x); | reduce |
axiom
integrate(log(log(x)),x)
Type: Union(Expression Integer,...)