login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxReduce revision 16 of 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Editor: crashcut
Time: 2008/01/30 07:39:19 GMT-8
Note:

added:

From crashcut Wed Jan 30 07:39:19 -0800 2008
From: crashcut
Date: Wed, 30 Jan 2008 07:39:19 -0800
Subject: 
Message-ID: <20080130073919-0800@axiom-wiki.newsynthesis.org>

\begin{reduce}
solve(c-b=-1/l*(1-(l*a+c1)^2)^(1/2)+1/l*(1-c1^2)^(1/2), c1)
\end{reduce}

Try Reduce calculations here. For example:

  \begin{reduce}
  solve({z=x*a+2},{z,x});
  int(sqrt(1-sin(x)*cos(x)),x);
  \end{reduce}

solve({z=x*a+2},{z,x});
reduce
LatexWiki Image 
int(sqrt(1-sin(x)*cos(x)),x);
reduce
LatexWiki Image 

example from my daughter's college calc --pbwagner, Mon, 10 Sep 2007 12:58:25 -0500 reply
int(log(log(x)),x);
reduce
LatexWiki Image 

axiom
integrate(log(log(x)),x)
LatexWiki Image(1)
Type: Union(Expression Integer,...)

solve({c=-1/l*sqrt(1-(l*a+c1)^2)+c2, b=-1/l*sqrt(1-c1^2)+c2}, {c1, c2})
reduce

solve({c-b=-1/l*sqrt(1-(l*a+c1)^2)+1/l*sqrt(1-c1^2)}, {c1, c2})
reduce

solve({c-b=-1/l*(1-(l*a+c1)^2)^(1/2)+1/l*(1-c1^2)^(1/2)}, {c1, c2})
reduce

solve({c-b=-1/l*(1-(l*a+c1)^2)^(1/2)+1/l*(1-c1^2)^(1/2)}, {c1})
reduce

solve(c-b=-1/l*(1-(l*a+c1)^2)^(1/2)+1/l*(1-c1^2)^(1/2), c1)
reduce