|
|
last edited 6 years ago by test int |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ||
Editor: crashcut
Time: 2008/01/30 07:39:19 GMT-8 |
||
Note: |
added:
From crashcut Wed Jan 30 07:39:19 -0800 2008
From: crashcut
Date: Wed, 30 Jan 2008 07:39:19 -0800
Subject:
Message-ID: <20080130073919-0800@axiom-wiki.newsynthesis.org>
\begin{reduce}
solve(c-b=-1/l*(1-(l*a+c1)^2)^(1/2)+1/l*(1-c1^2)^(1/2), c1)
\end{reduce}
Try Reduce calculations here. For example:
\begin{reduce} solve({z=x*a+2},{z,x}); int(sqrt(1-sin(x)*cos(x)),x); \end{reduce}
solve({z=x*a+2},{z,x}); | reduce |
int(sqrt(1-sin(x)*cos(x)),x); | reduce |
int(log(log(x)),x); | reduce |
axiomintegrate(log(log(x)),x)
(1) |
solve({c=-1/l*sqrt(1-(l*a+c1)^2)+c2, b=-1/l*sqrt(1-c1^2)+c2}, {c1, c2}) | reduce |
solve({c-b=-1/l*sqrt(1-(l*a+c1)^2)+1/l*sqrt(1-c1^2)}, {c1, c2}) | reduce |
solve({c-b=-1/l*(1-(l*a+c1)^2)^(1/2)+1/l*(1-c1^2)^(1/2)}, {c1, c2}) | reduce |
solve({c-b=-1/l*(1-(l*a+c1)^2)^(1/2)+1/l*(1-c1^2)^(1/2)}, {c1}) | reduce |
solve(c-b=-1/l*(1-(l*a+c1)^2)^(1/2)+1/l*(1-c1^2)^(1/2), c1) | reduce |