login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for LinearOperator revision 51 of 63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Editor: Bill Page
Time: 2013/04/01 20:08:54 GMT+0
Note: Rep & I == vs :=

changed:
-    Rep == Record(domain:NNI, codomain:NNI)                -- Rep == L
    Rep ==> Record(domain:NNI, codomain:NNI)                -- Rep == L

changed:
-    Rep == FreeMonoid L
    Rep ==> FreeMonoid L

changed:
-    I == per coerce [1,1,kroneckerDelta()$T]
    I := per coerce [1,1,kroneckerDelta()$T]

Introduction

Bi-graded linear operators (transformations) over n-dimensional vector spaces on a commutative ring K. Members of this domain are morphisms K^n \to K^m. Products, permutations and composition (grafting) of morphisms are implemented. Operators are represented internally as tensors.

Operator composition and products can be visualized by directed graphs (read from top to bottom) such as:

      n = 3     inputs
      m = 0     outputs


\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-0.92)(4.82,0.92)
\psbezier[linewidth=0.04](2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9)
\psline[linewidth=0.04cm](2.4,0.3)(2.4,-0.1)
\psbezier[linewidth=0.04](2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1)
\psline[linewidth=0.04cm](3.0,-0.1)(3.0,0.9)
\psbezier[linewidth=0.04](4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9)
\psline[linewidth=0.04cm](4.6,0.3)(4.6,-0.1)
\psbezier[linewidth=0.04](4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1)
\psline[linewidth=0.04cm](4.0,-0.1)(4.0,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(3.4948437,0.205){=}
\psline[linewidth=0.04cm](0.6,-0.7)(0.6,0.9)
\psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1)
\psline[linewidth=0.04cm](0.0,-0.1)(0.0,0.9)
\psline[linewidth=0.04cm](1.2,-0.1)(1.2,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(1.6948438,0.205){=}
\end{pspicture} 
}
 

External vertices in this graph represent vectors, and tensors. Internal nodes and arcs (edges) represent linear operators. Horizontal juxtaposition (i.e. a horizontal cross-section) represents tensor product. Vertical juxtaposition represents operator composition.

See examples and documentation below

I would like you to make brief comments in the form at the bottom of this web page. For more detailed but related comments click discussion on the top menu.

Regards, Bill Page.

Source Code

We try to start the right way by defining the concept of a monoidal category.

Ref: http://en.wikipedia.org/wiki/PROP_(category_theory)

spad
)abbrev category MONAL Monoidal
Monoidal(R:AbelianSemiGroup):Category == Ring with
    dom: % -> R
      ++ domain
    cod: % -> R
      ++ co-domain
    _/: (%,%) -> %
      ++ vertical composition f/g
    apply:(%,%) -> %
      ++ horizontal product f g = f*g
spad
   Compiling FriCAS source code from file 
      /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/2074022068168685528-25px001.spad
      using old system compiler.
   MONAL abbreviates category Monoidal 
------------------------------------------------------------------------
   initializing NRLIB MONAL for Monoidal 
   compiling into NRLIB MONAL 
;;; *** |Monoidal| REDEFINED Time: 0 SEC.
finalizing NRLIB MONAL Processing Monoidal for Browser database: --->-->Monoidal(constructor): Not documented!!!! --------(dom (R %))--------- --------(cod (R %))--------- --------(/ (% % %))--------- --->-->Monoidal((/ (% % %))): Improper first word in comments: vertical "vertical composition \\spad{f/g}" --------(apply (% % %))--------- --->-->Monoidal((apply (% % %))): Improper first word in comments: horizontal "horizontal product \\spad{f} \\spad{g} = \\spad{f*g}" --->-->Monoidal(): Missing Description ; compiling file "/var/aw/var/LatexWiki/MONAL.NRLIB/MONAL.lsp" (written 03 APR 2013 11:52:56 PM):
; /var/aw/var/LatexWiki/MONAL.NRLIB/MONAL.fasl written ; compilation finished in 0:00:00.006 ------------------------------------------------------------------------ Monoidal is now explicitly exposed in frame initial Monoidal will be automatically loaded when needed from /var/aw/var/LatexWiki/MONAL.NRLIB/MONAL

The initial object in this category is the domain Prop (Products and Permutations). The Prop domain represents everything that is "constant" about all the domains in this category. It can be defined as an endo-functor with only the information available about the category itself.

spad
)abbrev domain PROP Prop
Prop(L:Monoidal NNI): Exports == Implementation where
  NNI ==> NonNegativeInteger
Exports ==> Monoidal NNI with coerce: L -> %
Implementation ==> add Rep ==> Record(domain:NNI, codomain:NNI) -- Rep == L rep(x:%):Rep == x pretend Rep per(x:Rep):% == x pretend %
coerce(f:%):OutputForm == dom(f)::OutputForm / cod(f)::OutputForm
coerce(f:L):% == per [dom f, cod f] -- coerce(f:L):% == per f
dom(x:%):NNI == rep(x).domain -- dom(x:%):NNI == dom rep x cod(x:%):NNI == rep(x).codomain -- cod(x:%):NNI == cod rep x 0:% == per [0,0] -- 0:% == per 0 1:% == per [0,0] -- 1:% == per 1 -- evaluation (f:% / g:%):% == per [dom f, cod g] -- (f:% / g:%):% == per (rep f / rep g) -- product apply(f:%,g:%):% == per [dom f + dom g, cod f + cod g] -- apply(f:%,g:%):% == per apply(rep f,rep g) (f:% * g:%):% == per [dom f + dom g, cod f + cod g] --(f:% * g:%):% == per (rep f * rep g) -- sum (f:% + g:%):% == per [dom f, cod f] --(f:% + g:%):% == per (rep f + rep g)
spad
   Compiling FriCAS source code from file 
      /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/3186492205692341477-25px002.spad
      using old system compiler.
   PROP abbreviates domain Prop 
------------------------------------------------------------------------
   initializing NRLIB PROP for Prop 
   compiling into NRLIB PROP 
   processing macro definition Rep ==> Record(domain: NonNegativeInteger,codomain: NonNegativeInteger) 
   compiling local rep : $ -> Record(domain: NonNegativeInteger,codomain: NonNegativeInteger)
      PROP;rep is replaced by x 
Time: 0.01 SEC.
compiling local per : Record(domain: NonNegativeInteger,codomain: NonNegativeInteger) -> $ PROP;per is replaced by x Time: 0 SEC.
compiling exported coerce : $ -> OutputForm Time: 0 SEC.
compiling exported coerce : L -> $ Time: 0 SEC.
compiling exported dom : $ -> NonNegativeInteger Time: 0 SEC.
compiling exported cod : $ -> NonNegativeInteger Time: 0 SEC.
compiling exported Zero : () -> $ Time: 0 SEC.
compiling exported One : () -> $ Time: 0 SEC.
compiling exported / : ($,$) -> $ Time: 0.01 SEC.
compiling exported apply : ($,$) -> $ Time: 0 SEC.
compiling exported * : ($,$) -> $ Time: 0 SEC.
compiling exported + : ($,$) -> $ Time: 0 SEC.
(time taken in buildFunctor: 0)
;;; *** |Prop| REDEFINED
;;; *** |Prop| REDEFINED Time: 0 SEC.
Cumulative Statistics for Constructor Prop Time: 0.02 seconds
finalizing NRLIB PROP Processing Prop for Browser database: --->-->Prop(constructor): Not documented!!!! --->-->Prop((coerce (% L))): Not documented!!!! --->-->Prop(): Missing Description ; compiling file "/var/aw/var/LatexWiki/PROP.NRLIB/PROP.lsp" (written 03 APR 2013 11:52:56 PM):
; /var/aw/var/LatexWiki/PROP.NRLIB/PROP.fasl written ; compilation finished in 0:00:00.031 ------------------------------------------------------------------------ Prop is now explicitly exposed in frame initial Prop will be automatically loaded when needed from /var/aw/var/LatexWiki/PROP.NRLIB/PROP

The LinearOperator? domain is Moniodal over NonNegativeInteger?. The objects of this domain are all tensor powers of a vector space of fixed dimension. The arrows are linear operators that map from one object (tensor power) to another.

Ref: http://en.wikipedia.org/wiki/Category_of_vector_spaces

  • all members of this domain have the same dimension

axiom
)lib CARTEN MONAL PROP
CartesianTensor is now explicitly exposed in frame initial CartesianTensor will be automatically loaded when needed from /var/aw/var/LatexWiki/CARTEN.NRLIB/CARTEN Monoidal is already explicitly exposed in frame initial Monoidal will be automatically loaded when needed from /var/aw/var/LatexWiki/MONAL.NRLIB/MONAL Prop is already explicitly exposed in frame initial Prop will be automatically loaded when needed from /var/aw/var/LatexWiki/PROP.NRLIB/PROP

spad
)abbrev domain LOP LinearOperator
LinearOperator(gener:OrderedFinite,K:Field): Exports == Implementation where
  NNI ==> NonNegativeInteger
  NAT ==> PositiveInteger
Exports ==> Join(Ring, VectorSpace K, Monoidal NNI, RetractableTo K) with arity: % -> Prop % basisOut: () -> List % basisIn: () -> List % map: (K->K,%) -> % if K has Evalable(K) then Evalable(K) eval: % -> % ravel: % -> List K unravel: (Prop %,List K) -> % coerce:(x:List NAT) -> % ++ identity for composition and permutations of its products coerce:(x:List None) -> % ++ [] = 1 elt: (%,%) -> % elt: (%,NAT) -> % elt: (%,NAT,NAT) -> % elt: (%,NAT,NAT,NAT) -> % _/: (Tuple %,Tuple %) -> % _/: (Tuple %,%) -> % _/: (%,Tuple %) -> % ++ yet another syntax for product ev: NAT -> % ++ (2,0)-tensor for evaluation co: NAT -> % ++ (0,2)-tensor for co-evaluation
Implementation ==> add import List NNI
dim:NNI := size()$gener T := CartesianTensor(1,dim,K) L := Record(domain:NNI, codomain:NNI, data:T) RR := Record(gen:L,exp:NNI) -- FreeMonoid provides unevaluated products Rep ==> FreeMonoid L rep(x:%):Rep == x pretend Rep per(x:Rep):% == x pretend %
dimension():CardinalNumber == coerce dim
-- Prop (arity) dom(f:%):NNI == r:NNI := 0 for y in factors(rep f) repeat r:=r+(y.gen.domain)*(y.exp) return r cod(f:%):NNI == r:NNI := 0 for y in factors(rep f) repeat r:=r+(y.gen.codomain)*(y.exp) return r
prod(f:L,g:L):L == r:T := product(f.data,g.data) -- dom(f) + cod(f) + dom(g) + cod(g) p:List Integer := concat _ [[i for i in 1..(f.domain)], _ [(f.domain)+(f.codomain)+i for i in 1..(g.domain)], _ [(f.domain)+i for i in 1..(f.codomain)], _ [(f.domain)+(g.domain)+(f.codomain)+i for i in 1..(g.codomain)]] -- dom(f) + dom(g) + cod(f) + cod(g) --output("prod p = ",p::OutputForm)$OutputPackage [(f.domain)+(g.domain),(f.codomain)+(g.codomain),reindex(r,p)]
dats(fs:List RR):L == r:L := [0,0,1$T] for y in fs repeat t:L:=y.gen for n in 1..y.exp repeat r:=prod(r,t) return r
dat(f:%):L == dats factors rep f
arity(f:%):Prop % == f::Prop %
eval(f:%):% == per coerce dat(f)
retractIfCan(f:%):Union(K,"failed") == dom(f)=0 and cod(f)=0 => retract(dat(f).data)$T return "failed" retract(f:%):K == dom(f)=0 and cod(f)=0 => retract(dat(f).data)$T error "failed"
-- basis basisOut():List % == [per coerce [0,1,entries(row(1,i)$SquareMatrix(dim,K))::T] for i in 1..dim] basisIn():List % == [per coerce [1,0,entries(row(1,i)$SquareMatrix(dim,K))::T] for i in 1..dim] ev(n:NAT):% == reduce(_+,[ dx^n * dx^n for dx in basisIn()])$List(%) co(n:NAT):% == reduce(_+,[ Dx^n * Dx^n for Dx in basisOut()])$List(%)
-- manipulation map(f:K->K, g:%):% == per coerce [dom g,cod g,unravel(map(f,ravel dat(g).data))$T] if K has Evalable(K) then eval(g:%,f:List Equation K):% == map((x:K):K+->eval(x,f),g) ravel(g:%):List K == ravel dat(g).data unravel(p:Prop %,r:List K):% == dim^(dom(p)+cod(p)) ~= #r => error "failed" per coerce [dom(p),cod(p),unravel(r)$T]
-- sum (f:% + g:%):% == dat(f).data=0 => g dat(g).data=0 => f dom(f) ~= dom(g) or cod(f) ~= cod(g) => error "arity" per coerce [dom f,cod f,dat(f).data+dat(g).data]
(f:% - g:%):% == dat(f).data=0 => g dat(g).data=0 => f dom(f) ~= dom(f) or cod(g) ~= cod(g) => error "arity" per coerce [dom f, cod f,dat(f).data-dat(g).data]
_-(f:%):% == per coerce [dom f, cod f,-dat(f).data]
-- identity for sum (trivial zero map) 0 == per coerce [0,0,0] zero?(f:%):Boolean == dat(f).data = 0 * dat(f).data -- identity for product 1:% == per 1 one?(f:%):Boolean == one? rep f -- identity for composition I := per coerce [1,1,kroneckerDelta()$T] (x:% = y:%):Boolean == rep eval x = rep eval y
-- permutations and identities coerce(p:List NAT):% == r:=I^#p #p = 1 and p.1 = 1 => return r p1:List Integer:=[i for i in 1..#p] p2:List Integer:=[#p+i for i in p] p3:=concat(p1,p2) --output("coerce p3 = ",p3::OutputForm)$OutputPackage per coerce [#p,#p,reindex(dat(r).data,p3)] coerce(p:List None):% == per coerce [0,0,1] coerce(x:K):% == 1*x
-- tensor product elt(f:%,g:%):% == f * g elt(f:%,g:NAT):% == f * I^g elt(f:%,g1:NAT,g2:NAT):% == f * [g1 @ NAT,g2 @ NAT]::List NAT::% elt(f:%,g1:NAT,g2:NAT,g3:NAT):% == f * [g1 @ NAT,g2 @ NAT,g3 @ NAT]::List NAT::% apply(f:%,g:%):% == f * g (f:% * g:%):% == per (rep f * rep g)
leadI(x:Rep):NNI == r:=hclf(x,rep(I)^size(x)) size(r)=0 => 0 nthExpon(r,1)
trailI(x:Rep):NNI == r:=hcrf(x,rep(I)^size(x)) size(r)=0 => 0 nthExpon(r,1)
-- composition: -- f/g : A^n -> A^p = f:A^n -> A^m / g:A^m -> A^p (ff:% / gg:%):% == g:=gg; f:=ff -- partial application from the left n:=subtractIfCan(cod ff,dom gg) if n case NNI and n>0 then -- apply g on f from the left, pass extra f outputs on the right print(hconcat([message("arity warning: "), _ over(arity(ff)::OutputForm, _ arity(gg)::OutputForm*(arity(I)::OutputForm)^n::OutputForm) ]))$OutputForm g:=gg*I^n m:=subtractIfCan(dom gg, cod ff) -- apply g on f from the left, add extra g inputs on the left if m case NNI and m>0 then print(hconcat([message("arity warning: "), _ over((arity(I)::OutputForm)^m::OutputForm*arity(ff)::OutputForm, _ arity(gg)::OutputForm)]))$OutputForm f:=I^m*ff
-- parallelize composition f/g = (f1/g1)*(f2/g2) if cod(f)>0 then i:Integer:=1 j:Integer:=1 n:NNI:=1 m:NNI:=1 f1 := per coerce nthFactor(rep f,1) g1 := per coerce nthFactor(rep g,1) while cod(f1)~=dom(g1) repeat if cod(f1) < dom(g1) then if n < nthExpon(rep f,i) then n:=n+1 else n:=1 i:=i+1 f1 := f1 * per coerce nthFactor(rep f,i) else if cod(f1) > dom(g1) then if m < nthExpon(rep g,j) then m:=m+1 else n:=1 j:=j+1 g1 := g1 * per coerce nthFactor(rep g,j) f2 := per overlap(rep f1, rep f).rm g2 := per overlap(rep g1,rep g).rm f := f1 g := g1 else f2 := per 1 g2 := per 1
-- remove leading and trailing identities nf := leadI rep f f := per overlap(rep(I)^nf,rep f).rm ng := leadI rep g g := per overlap(rep(I)^ng,rep g).rm fn := trailI rep f f := per overlap(rep f,rep(I)^fn).lm gn := trailI rep g g := per overlap(rep g,rep(I)^gn).lm
-- parallel factors guarantees that these are just identities if nf>0 and ng>0 then return I*(f2/g2) if fn>0 and gn>0 then output("Should not happen: trailing [fn,gn] = ",[fn,gn]::OutputForm)$OutputPackage return (f/g)*I
-- Exercise for Reader: -- Prove the following contraction and permutation is correct by -- considering all 9 cases for (nf=0 or ng=0) and (fn=0 or gn=0). -- output("leading [nl,nf,ng] = ",[nl,nf,ng]::OutputForm)$OutputPackage -- output("trailing [ln,fn,gn] = ",[ln,fn,gn]::OutputForm)$OutputPackage r:T := contract(cod(f)-ng-gn, dat(f).data,dom(f)+ng+1, dat(g).data,nf+1) p:List Integer:=concat [ _ [dom(f)+gn+i for i in 1..nf], _ [i for i in 1..dom(f)], _ [dom(f)+nf+ng+i for i in 1..fn], _ [dom(f)+i for i in 1..ng], _ [dom(f)+nf+ng+fn+gn+i for i in 1..cod(g)], _ [dom(f)+ng+i for i in 1..gn] ] --print(p::OutputForm)$OutputForm r:=reindex(r,p)
if f2=1 and g2=1 then return per coerce [nf+dom(f)+fn,ng+cod(g)+gn,r] return per coerce [nf+dom(f)+fn,ng+cod(g)+gn,r] * (f2/g2)
-- another notation for composition of products (t:Tuple % / x:%):% == t / construct([x])$PrimitiveArray(%)::Tuple(%) (x:% / t:Tuple %):% == construct([x])$PrimitiveArray(%)::Tuple(%) / t (f:Tuple % / g:Tuple %):% == fs:List % := [select(f,i) for i in 0..length(f)-1] gs:List % := [select(g,i) for i in 0..length(g)-1] fr:=reduce(elt@(%,%)->%,fs,1) gr:=reduce(elt@(%,%)->%,gs,1) fr / gr
(x:K * y:%):% == per coerce [dom y, cod y,x*dat(y).data] (x:% * y:K):% == per coerce [dom x,cod x,dat(x).data*y] (x:Integer * y:%):% == per coerce [dom y,cod y,x*dat(y).data]
-- display operators using basis show(x:%):OutputForm == dom(x)=0 and cod(x)=0 => return (dat(x).data)::OutputForm if size()$gener > 0 then gens:List OutputForm:=[index(i::PositiveInteger)$gener::OutputForm for i in 1..dim] else -- default to numeric indices gens:List OutputForm:=[i::OutputForm for i in 1..dim] -- input basis inps:List OutputForm := [] for i in 1..dom(x) repeat empty? inps => inps:=gens inps:=concat [[(inps.k * gens.j) for j in 1..dim] for k in 1..#inps] -- output basis outs:List OutputForm := [] for i in 1..cod(x) repeat empty? outs => outs:=gens outs:=concat [[(outs.k * gens.j) for j in 1..dim] for k in 1..#outs] -- combine input (superscripts) and/or output(subscripts) to form basis symbols bases:List OutputForm if #inps > 0 and #outs > 0 then bases:=concat([[ scripts(message("|"),[i,j]) for i in outs] for j in inps]) else if #inps > 0 then bases:=[super(message("|"),i) for i in inps] else if #outs > 0 then bases:=[sub(message("|"),j) for j in outs] else bases:List OutputForm:= [] -- merge bases with data to form term list terms:=[(k=1 => base;k::OutputForm*base) for base in bases for k in ravel dat(x).data | k~=0] empty? terms => return 0::OutputForm -- combine the terms return reduce(_+,terms)
coerce(x:%):OutputForm == r:OutputForm := empty() for y in factors(rep x) repeat if y.exp = 1 then if size rep x = 1 then r := show per coerce y.gen else r:=r*paren(list show per coerce y.gen) else r:=r*paren(list show per coerce y.gen)^(y.exp::OutputForm) return r
spad
   Compiling FriCAS source code from file 
      /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/905110569189869980-25px004.spad
      using old system compiler.
   LOP abbreviates domain LinearOperator 
------------------------------------------------------------------------
   initializing NRLIB LOP for LinearOperator 
   compiling into NRLIB LOP 
   importing List NonNegativeInteger
   processing macro definition Rep ==> FreeMonoid L 
   compiling local rep : $ -> FreeMonoid L
      LOP;rep is replaced by x 
Time: 0.02 SEC.
compiling local per : FreeMonoid L -> $ LOP;per is replaced by x Time: 0 SEC.
compiling exported dimension : () -> CardinalNumber Time: 0 SEC.
compiling exported dom : $ -> NonNegativeInteger Time: 0.01 SEC.
compiling exported cod : $ -> NonNegativeInteger Time: 0 SEC.
compiling local prod : (L,L) -> L Time: 0.01 SEC.
compiling local dats : List RR -> L Time: 0 SEC.
compiling local dat : $ -> L Time: 0.01 SEC.
compiling exported arity : $ -> Prop $ Time: 0 SEC.
compiling exported eval : $ -> $ Time: 0 SEC.
compiling exported retractIfCan : $ -> Union(K,failed) Time: 0 SEC.
compiling exported retract : $ -> K Time: 0 SEC.
compiling exported basisOut : () -> List $ Time: 0.02 SEC.
compiling exported basisIn : () -> List $ Time: 0 SEC.
compiling exported ev : PositiveInteger -> $ Time: 0.03 SEC.
compiling exported co : PositiveInteger -> $ Time: 0 SEC.
compiling exported map : (K -> K,$) -> $ Time: 0.01 SEC.
****** Domain: K already in scope augmenting K: (Evalable K) compiling exported eval : ($,List Equation K) -> $ Time: 0 SEC.
compiling exported ravel : $ -> List K Time: 0 SEC.
compiling exported unravel : (Prop $,List K) -> $ Time: 0.01 SEC.
compiling exported + : ($,$) -> $ Time: 0.01 SEC.
compiling exported - : ($,$) -> $ Time: 0.01 SEC.
compiling exported - : $ -> $ Time: 0 SEC.
compiling exported Zero : () -> $ Time: 0.01 SEC.
compiling exported zero? : $ -> Boolean Time: 0 SEC.
compiling exported One : () -> $ Time: 0 SEC.
compiling exported one? : $ -> Boolean Time: 0 SEC.
compiling exported = : ($,$) -> Boolean Time: 0 SEC.
compiling exported coerce : List PositiveInteger -> $ Time: 0.03 SEC.
compiling exported coerce : List None -> $ Time: 0.01 SEC.
compiling exported coerce : K -> $ Time: 0 SEC.
compiling exported elt : ($,$) -> $ Time: 0 SEC.
compiling exported elt : ($,PositiveInteger) -> $ Time: 0 SEC.
compiling exported elt : ($,PositiveInteger,PositiveInteger) -> $ Time: 0 SEC.
compiling exported elt : ($,PositiveInteger,PositiveInteger,PositiveInteger) -> $ Time: 0 SEC.
compiling exported apply : ($,$) -> $ Time: 0 SEC.
compiling exported * : ($,$) -> $ Time: 0 SEC.
compiling local leadI : FreeMonoid L -> NonNegativeInteger Time: 0.02 SEC.
compiling local trailI : FreeMonoid L -> NonNegativeInteger Time: 0.01 SEC.
compiling exported / : ($,$) -> $ Time: 3.84 SEC.
compiling exported / : (Tuple $,$) -> $ Time: 0 SEC.
compiling exported / : ($,Tuple $) -> $ Time: 0.01 SEC.
compiling exported / : (Tuple $,Tuple $) -> $ Time: 0 SEC.
compiling exported * : (K,$) -> $ Time: 0 SEC.
compiling exported * : ($,K) -> $ Time: 0.01 SEC.
compiling exported * : (Integer,$) -> $ Time: 0 SEC.
compiling local show : $ -> OutputForm Time: 0.03 SEC.
compiling exported coerce : $ -> OutputForm Time: 0.01 SEC.
****** Domain: K already in scope augmenting K: (Evalable K) (time taken in buildFunctor: 0)
;;; *** |LinearOperator| REDEFINED
;;; *** |LinearOperator| REDEFINED Time: 0 SEC.
Warnings: [1] /: i has no value [2] /: j has no value
Cumulative Statistics for Constructor LinearOperator Time: 4.12 seconds
finalizing NRLIB LOP Processing LinearOperator for Browser database: --->-->LinearOperator(constructor): Not documented!!!! --->-->LinearOperator((arity ((Prop %) %))): Not documented!!!! --->-->LinearOperator((basisOut ((List %)))): Not documented!!!! --->-->LinearOperator((basisIn ((List %)))): Not documented!!!! --->-->LinearOperator((map (% (Mapping K K) %))): Not documented!!!! --->-->LinearOperator((eval (% %))): Not documented!!!! --->-->LinearOperator((ravel ((List K) %))): Not documented!!!! --->-->LinearOperator((unravel (% (Prop %) (List K)))): Not documented!!!! --------(coerce (% (List (PositiveInteger))))--------- --->-->LinearOperator((coerce (% (List (PositiveInteger))))): Improper first word in comments: identity "identity for composition and permutations of its products" --------(coerce (% (List (None))))--------- --->-->LinearOperator((coerce (% (List (None))))): Improper first word in comments: [] "[] = 1" --->-->LinearOperator((elt (% % %))): Not documented!!!! --->-->LinearOperator((elt (% % (PositiveInteger)))): Not documented!!!! --->-->LinearOperator((elt (% % (PositiveInteger) (PositiveInteger)))): Not documented!!!! --->-->LinearOperator((elt (% % (PositiveInteger) (PositiveInteger) (PositiveInteger)))): Not documented!!!! --->-->LinearOperator((/ (% (Tuple %) (Tuple %)))): Not documented!!!! --->-->LinearOperator((/ (% (Tuple %) %))): Not documented!!!! --------(/ (% % (Tuple %)))--------- --->-->LinearOperator((/ (% % (Tuple %)))): Improper first word in comments: yet "yet another syntax for product" --------(ev (% (PositiveInteger)))--------- --->-->LinearOperator((ev (% (PositiveInteger)))): Improper first word in comments: "(2,{}0)-tensor for evaluation" --------(co (% (PositiveInteger)))--------- --->-->LinearOperator((co (% (PositiveInteger)))): Improper first word in comments: "(0,{}2)-tensor for co-evaluation" --->-->LinearOperator(): Missing Description ; compiling file "/var/aw/var/LatexWiki/LOP.NRLIB/LOP.lsp" (written 03 APR 2013 11:53:00 PM):
; /var/aw/var/LatexWiki/LOP.NRLIB/LOP.fasl written ; compilation finished in 0:00:00.357 ------------------------------------------------------------------------ LinearOperator is now explicitly exposed in frame initial LinearOperator will be automatically loaded when needed from /var/aw/var/LatexWiki/LOP.NRLIB/LOP

Getting Started

Consult the source code above for more details.

Convenient Notation

axiom
-- summation
macro Σ(f,i,b) == reduce(+,[f*b.i for i in 1..#b])
Type: Void
axiom
-- list comprehension
macro Ξ(f,i)==[f for i in 1..retract(dimension()$L)]
Type: Void

Basis

axiom
Q := EXPR INT

\label{eq1}\hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ })(1)
Type: Type
axiom
L := LOP(OVAR ['x,'y],Q)

\label{eq2}\hbox{\axiomType{LinearOperator}\ } (\hbox{\axiomType{OrderedVariableList}\ } ([ x , y ]) , \hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }))(2)
Type: Type
axiom
dim:Integer:=retract dimension()$L

\label{eq3}2(3)
Type: Integer
axiom
Dx:=basisOut()$L

\label{eq4}\left[{|_{x}}, \:{|_{y}}\right](4)
Type: List(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))
axiom
dx:=basisIn()$L

\label{eq5}\left[{|_{\ }^{x}}, \:{|_{\ }^{y}}\right](5)
Type: List(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))
axiom
matrix Ξ(Ξ( eval(dx.i * Dx.j), i),j)

\label{eq6}\left[ 
\begin{array}{cc}
{|_{x}^{x}}&{|_{x}^{y}}
\
{|_{y}^{x}}&{|_{y}^{y}}
(6)
Type: Matrix(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))
axiom
matrix Ξ(Ξ( Dx.i / dx.j, i),j)

\label{eq7}\left[ 
\begin{array}{cc}
1 & 0 
\
0 & 1 
(7)
Type: Matrix(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))

Tests

axiom
A:L := Σ( Σ( script(a,[[j],[i]]), i,Dx), j,dx)

\label{eq8}{{a_{1}^{1}}\ {|_{x}^{x}}}+{{a_{1}^{2}}\ {|_{y}^{x}}}+{{a_{2}^{1}}\ {|_{x}^{y}}}+{{a_{2}^{2}}\ {|_{y}^{y}}}(8)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
-- scalar
3*A

\label{eq9}{3 \ {a_{1}^{1}}\ {|_{x}^{x}}}+{3 \ {a_{1}^{2}}\ {|_{y}^{x}}}+{3 \ {a_{2}^{1}}\ {|_{x}^{y}}}+{3 \ {a_{2}^{2}}\ {|_{y}^{y}}}(9)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
A/3

\label{eq10}{{{a_{1}^{1}}\over 3}\ {|_{x}^{x}}}+{{{a_{1}^{2}}\over 3}\ {|_{y}^{x}}}+{{{a_{2}^{1}}\over 3}\ {|_{x}^{y}}}+{{{a_{2}^{2}}\over 3}\ {|_{y}^{y}}}(10)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
-- identity
I:L := [1]

\label{eq11}{|_{x}^{x}}+{|_{y}^{y}}(11)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
H:L:=[1,2]

\label{eq12}{|_{x \  x}^{x \  x}}+{|_{x \  y}^{x \  y}}+{|_{y \  x}^{y \  x}}+{|_{y \  y}^{y \  y}}(12)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
test( I*I = H )

\label{eq13} \mbox{\rm true} (13)
Type: Boolean
axiom
-- twist
X:L := [2,1]

\label{eq14}{|_{x \  x}^{x \  x}}+{|_{y \  x}^{x \  y}}+{|_{x \  y}^{y \  x}}+{|_{y \  y}^{y \  y}}(14)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
test(X/X=H)

\label{eq15} \mbox{\rm true} (15)
Type: Boolean
axiom
-- printing
I*X*X*I

\label{eq16}\ {\left({{|_{x}^{x}}+{|_{y}^{y}}}\right)}\ {{\left({{|_{x \  x}^{x \  x}}+{|_{y \  x}^{x \  y}}+{|_{x \  y}^{y \  x}}+{|_{y \  y}^{y \  y}}}\right)}^{2}}\ {\left({{|_{x}^{x}}+{|_{y}^{y}}}\right)}(16)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
-- trace
U:L:=ev(1)

\label{eq17}{|_{\ }^{x \  x}}+{|_{\ }^{y \  y}}(17)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
Ω:L:=co(1)

\label{eq18}{|_{x \  x}}+{|_{y \  y}}(18)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
Ω/U

\label{eq19}2(19)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
test
  ( I Ω  ) /
  (  U I ) = I

\label{eq20} \mbox{\rm true} (20)
Type: Boolean
axiom
test
  (  Ω I ) /
  ( I U  ) = I

\label{eq21} \mbox{\rm true} (21)
Type: Boolean

Various special cases of composition

axiom
-- case 1
test( X/X = [1,2] )

\label{eq22} \mbox{\rm true} (22)
Type: Boolean
axiom
test( (I*X)/(I*X) = [1,2,3] )

\label{eq23} \mbox{\rm true} (23)
Type: Boolean
axiom
test( (I*X*I)/(I*X*I) = [1,2,3,4] )

\label{eq24} \mbox{\rm true} (24)
Type: Boolean
axiom
-- case 2
test( (X*I*I)/(X*X) = [1,2,4,3] )

\label{eq25} \mbox{\rm true} (25)
Type: Boolean
axiom
-- case 3
test( (X*X)/(X*I*I) = [1,2,4,3] )

\label{eq26} \mbox{\rm true} (26)
Type: Boolean
axiom
-- case 4
test ( (I*I*X)/(X*X) = [2,1,3,4] )

\label{eq27} \mbox{\rm true} (27)
Type: Boolean
axiom
-- case 5
test( (I*X*I)/(X*X) = [3,1,4,2] )

\label{eq28} \mbox{\rm true} (28)
Type: Boolean
axiom
-- case 6
test( (I*I*X)/(X*I*I)=[2,1,4,3] )

\label{eq29} \mbox{\rm true} (29)
Type: Boolean
axiom
test( (I*X)/(X*I) = [3,1,2] )

\label{eq30} \mbox{\rm true} (30)
Type: Boolean
axiom
test( (I*X*I)/(X*I*I)=[3,1,2,4] )

\label{eq31} \mbox{\rm true} (31)
Type: Boolean
axiom
-- case 7
test( (X*X)/(I*I*X) = [2,1,3,4] )

\label{eq32} \mbox{\rm true} (32)
Type: Boolean
axiom
-- case 8
test( (X*I)/(I*X) = [2,3,1] )

\label{eq33} \mbox{\rm true} (33)
Type: Boolean
axiom
-- case 9
test( (X*X)/(I*X*I) = [2,4,1,3] )

\label{eq34} \mbox{\rm true} (34)
Type: Boolean

Construction

axiom
A1:L := Σ(superscript(a1,[i]),i,dx)

\label{eq35}{{a 1^{1}}\ {|_{\ }^{x}}}+{{a 1^{2}}\ {|_{\ }^{y}}}(35)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity A1

\label{eq36}1 \over 0(36)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))
axiom
A2:L := Σ(superscript(a2,[i]),i,dx)

\label{eq37}{{a 2^{1}}\ {|_{\ }^{x}}}+{{a 2^{2}}\ {|_{\ }^{y}}}(37)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
A:L := A1*I+I*A2

\label{eq38}\begin{array}{@{}l}
\displaystyle
{{\left({a 2^{1}}+{a 1^{1}}\right)}\ {|_{x}^{x \  x}}}+{{a 2^{2}}\ {|_{x}^{x \  y}}}+{{a 1^{1}}\ {|_{y}^{x \  y}}}+{{a 1^{2}}\ {|_{x}^{y \  x}}}+ 
\
\
\displaystyle
{{a 2^{1}}\ {|_{y}^{y \  x}}}+{{\left({a 2^{2}}+{a 1^{2}}\right)}\ {|_{y}^{y \  y}}}
(38)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity A

\label{eq39}2 \over 1(39)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))
axiom
B1:L := Σ(subscript(b1,[i]),i,Dx)

\label{eq40}{{b 1_{1}}\ {|_{x}}}+{{b 1_{2}}\ {|_{y}}}(40)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity B1

\label{eq41}0 \over 1(41)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))
axiom
B2:L := Σ(subscript(b2,[i]),i,Dx)

\label{eq42}{{b 2_{1}}\ {|_{x}}}+{{b 2_{2}}\ {|_{y}}}(42)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
B:L := B1*I+I*B2

\label{eq43}\begin{array}{@{}l}
\displaystyle
{{\left({b 2_{1}}+{b 1_{1}}\right)}\ {|_{x \  x}^{x}}}+{{b 2_{2}}\ {|_{x \  y}^{x}}}+{{b 1_{2}}\ {|_{y \  x}^{x}}}+{{b 1_{1}}\ {|_{x \  y}^{y}}}+ 
\
\
\displaystyle
{{b 2_{1}}\ {|_{y \  x}^{y}}}+{{\left({b 2_{2}}+{b 1_{2}}\right)}\ {|_{y \  y}^{y}}}
(43)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity B

\label{eq44}1 \over 2(44)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))
axiom
BB:L := Σ(Σ(subscript(b,[i,j]),i,Dx),j,Dx)

\label{eq45}{{b_{1, \: 1}}\ {|_{x \  x}}}+{{b_{1, \: 2}}\ {|_{x \  y}}}+{{b_{2, \: 1}}\ {|_{y \  x}}}+{{b_{2, \: 2}}\ {|_{y \  y}}}(45)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
W:L := Σ(Σ(Σ(script(w,[[k],[i,j]]),k,Dx),i,dx),j,dx)

\label{eq46}\begin{array}{@{}l}
\displaystyle
{{w_{1}^{1, \: 1}}\ {|_{x}^{x \  x}}}+{{w_{2}^{1, \: 1}}\ {|_{y}^{x \  x}}}+{{w_{1}^{1, \: 2}}\ {|_{x}^{x \  y}}}+{{w_{2}^{1, \: 2}}\ {|_{y}^{x \  y}}}+ 
\
\
\displaystyle
{{w_{1}^{2, \: 1}}\ {|_{x}^{y \  x}}}+{{w_{2}^{2, \: 1}}\ {|_{y}^{y \  x}}}+{{w_{1}^{2, \: 2}}\ {|_{x}^{y \  y}}}+{{w_{2}^{2, \: 2}}\ {|_{y}^{y \  y}}}
(46)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))

Composition (evaluation)


g/f : A^n \to A^{m+p} = f:A^n \to A^m <em> g:A^n \to A^p
 
axiom
AB2 := A2 / B2; AB2::OutputForm = A2::OutputForm / B2::OutputForm

\label{eq47}\begin{array}{@{}l}
\displaystyle
{{{a 2^{1}}\ {b 2_{1}}\ {|_{x}^{x}}}+{{a 2^{1}}\ {b 2_{2}}\ {|_{y}^{x}}}+{{a 2^{2}}\ {b 2_{1}}\ {|_{x}^{y}}}+{{a 2^{2}}\ {b 2_{2}}\ {|_{y}^{y}}}}= 
\
\
\displaystyle
{{{{a 2^{1}}\ {|_{\ }^{x}}}+{{a 2^{2}}\ {|_{\ }^{y}}}}\over{{{b 2_{1}}\ {|_{x}}}+{{b 2_{2}}\ {|_{y}}}}}
(47)
Type: Equation(OutputForm?)
axiom
arity(AB2)::OutputForm = arity(A2)::OutputForm / arity(B2)::OutputForm

\label{eq48}{1 \over 1}={{1 \over 0}\over{0 \over 1}}(48)
Type: Equation(OutputForm?)
axiom
BA1 := B1 / A1; BA1::OutputForm = B1::OutputForm / A1::OutputForm

\label{eq49}{{{a 1^{2}}\ {b 1_{2}}}+{{a 1^{1}}\ {b 1_{1}}}}={{{{b 1_{1}}\ {|_{x}}}+{{b 1_{2}}\ {|_{y}}}}\over{{{a 1^{1}}\ {|_{\ }^{x}}}+{{a 1^{2}}\ {|_{\ }^{y}}}}}(49)
Type: Equation(OutputForm?)
axiom
arity(BA1)::OutputForm = arity(B1)::OutputForm / arity(A1)::OutputForm

\label{eq50}{0 \over 0}={{0 \over 1}\over{1 \over 0}}(50)
Type: Equation(OutputForm?)
axiom
AB1 := A1 / B1; AB1::OutputForm = A1::OutputForm / B1::OutputForm

\label{eq51}\begin{array}{@{}l}
\displaystyle
{{{a 1^{1}}\ {b 1_{1}}\ {|_{x}^{x}}}+{{a 1^{1}}\ {b 1_{2}}\ {|_{y}^{x}}}+{{a 1^{2}}\ {b 1_{1}}\ {|_{x}^{y}}}+{{a 1^{2}}\ {b 1_{2}}\ {|_{y}^{y}}}}= 
\
\
\displaystyle
{{{{a 1^{1}}\ {|_{\ }^{x}}}+{{a 1^{2}}\ {|_{\ }^{y}}}}\over{{{b 1_{1}}\ {|_{x}}}+{{b 1_{2}}\ {|_{y}}}}}
(51)
Type: Equation(OutputForm?)
axiom
arity(AB1)::OutputForm = arity(A1)::OutputForm / arity(B1)::OutputForm

\label{eq52}{1 \over 1}={{1 \over 0}\over{0 \over 1}}(52)
Type: Equation(OutputForm?)

Partial Evaluation

axiom
BBA1 := B/A1
1 - 2 arity warning: ------ 1 1 1 - (-) 0 1

\label{eq53}\begin{array}{@{}l}
\displaystyle
{{\left({{a 1^{1}}\ {b 2_{1}}}+{{a 1^{2}}\ {b 1_{2}}}+{{a 1^{1}}\ {b 1_{1}}}\right)}\ {|_{x}^{x}}}+{{a 1^{1}}\ {b 2_{2}}\ {|_{y}^{x}}}+ 
\
\
\displaystyle
{{a 1^{2}}\ {b 2_{1}}\ {|_{x}^{y}}}+{{\left({{a 1^{2}}\ {b 2_{2}}}+{{a 1^{2}}\ {b 1_{2}}}+{{a 1^{1}}\ {b 1_{1}}}\right)}\ {|_{y}^{y}}}
(53)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
BBA2 := B/B1
1 - 2 arity warning: ------ 0 1 2 - (-) 1 1

\label{eq54}\begin{array}{@{}l}
\displaystyle
{{\left({{b 1_{1}}\ {b 2_{1}}}+{{b 1_{1}}^{2}}\right)}\ {|_{x \  x \  x}^{x}}}+{{b 1_{1}}\ {b 2_{2}}\ {|_{x \  x \  y}^{x}}}+ 
\
\
\displaystyle
{{b 1_{1}}\ {b 1_{2}}\ {|_{x \  y \  x}^{x}}}+{{\left({{b 1_{2}}\ {b 2_{1}}}+{{b 1_{1}}\ {b 1_{2}}}\right)}\ {|_{y \  x \  x}^{x}}}+ 
\
\
\displaystyle
{{b 1_{2}}\ {b 2_{2}}\ {|_{y \  x \  y}^{x}}}+{{{b 1_{2}}^{2}}\ {|_{y \  y \  x}^{x}}}+{{{b 1_{1}}^{2}}\ {|_{x \  x \  y}^{y}}}+ 
\
\
\displaystyle
{{b 1_{1}}\ {b 2_{1}}\ {|_{x \  y \  x}^{y}}}+{{\left({{b 1_{1}}\ {b 2_{2}}}+{{b 1_{1}}\ {b 1_{2}}}\right)}\ {|_{x \  y \  y}^{y}}}+ 
\
\
\displaystyle
{{b 1_{1}}\ {b 1_{2}}\ {|_{y \  x \  y}^{y}}}+{{b 1_{2}}\ {b 2_{1}}\ {|_{y \  y \  x}^{y}}}+{{\left({{b 1_{2}}\ {b 2_{2}}}+{{b 1_{2}}^{2}}\right)}\ {|_{y \  y \  y}^{y}}}
(54)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
BBA3 := A1/A
1 2 1 (-) - 1 0 arity warning: ------ 2 - 1

\label{eq55}\begin{array}{@{}l}
\displaystyle
\ {\left({
\begin{array}{@{}l}
\displaystyle
{{\left({a 2^{1}}+{a 1^{1}}\right)}\ {|_{x}^{x \  x}}}+{{a 2^{2}}\ {|_{x}^{x \  y}}}+{{a 1^{1}}\ {|_{y}^{x \  y}}}+ 
\
\
\displaystyle
{{a 1^{2}}\ {|_{x}^{y \  x}}}+{{a 2^{1}}\ {|_{y}^{y \  x}}}+{{\left({a 2^{2}}+{a 1^{2}}\right)}\ {|_{y}^{y \  y}}}
(55)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
BBA4 := B1/A
1 1 0 (-) - 1 1 arity warning: ------ 2 - 1

\label{eq56}\begin{array}{@{}l}
\displaystyle
{{\left({{a 2^{2}}\ {b 1_{2}}}+{{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 1_{1}}}\right)}\ {|_{x}^{x}}}+{{a 1^{1}}\ {b 1_{2}}\ {|_{y}^{x}}}+{{a 1^{2}}\ {b 1_{1}}\ {|_{x}^{y}}}+ 
\
\
\displaystyle
{{\left({{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 1_{2}}}+{{a 2^{1}}\ {b 1_{1}}}\right)}\ {|_{y}^{y}}}
(56)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))

Powers

axiom
AB3:=(AB1*AB1)*AB1;
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity(AB3)

\label{eq57}3 \over 3(57)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))
axiom
test(AB3=AB1*(AB1*AB1))

\label{eq58} \mbox{\rm true} (58)
Type: Boolean
axiom
test(AB3=AB1^3)

\label{eq59} \mbox{\rm true} (59)
Type: Boolean
axiom
one? (AB3^0)

\label{eq60} \mbox{\rm true} (60)
Type: Boolean

Sums


f+g : A^n \to A^m = f:A^n \to A^m + g:A^n \to A^m
 
axiom
A12s := A1 + A2; A12s::OutputForm = A1::OutputForm + A2::OutputForm

\label{eq61}\begin{array}{@{}l}
\displaystyle
{{{\left({a 2^{1}}+{a 1^{1}}\right)}\ {|_{\ }^{x}}}+{{\left({a 2^{2}}+{a 1^{2}}\right)}\ {|_{\ }^{y}}}}= 
\
\
\displaystyle
{{{a 1^{1}}\ {|_{\ }^{x}}}+{{a 1^{2}}\ {|_{\ }^{y}}}+{{a 2^{1}}\ {|_{\ }^{x}}}+{{a 2^{2}}\ {|_{\ }^{y}}}}
(61)
Type: Equation(OutputForm?)
axiom
arity(A12s)::OutputForm = arity(A1)::OutputForm + arity(A2)::OutputForm

\label{eq62}{1 \over 0}={{1 \over 0}+{1 \over 0}}(62)
Type: Equation(OutputForm?)
axiom
B12s := B1 + B2; B12s::OutputForm = B1::OutputForm + B2::OutputForm

\label{eq63}\begin{array}{@{}l}
\displaystyle
{{{\left({b 2_{1}}+{b 1_{1}}\right)}\ {|_{x}}}+{{\left({b 2_{2}}+{b 1_{2}}\right)}\ {|_{y}}}}= 
\
\
\displaystyle
{{{b 1_{1}}\ {|_{x}}}+{{b 1_{2}}\ {|_{y}}}+{{b 2_{1}}\ {|_{x}}}+{{b 2_{2}}\ {|_{y}}}}
(63)
Type: Equation(OutputForm?)
axiom
arity(B12s)::OutputForm = arity(B1)::OutputForm + arity(B2)::OutputForm

\label{eq64}{0 \over 1}={{0 \over 1}+{0 \over 1}}(64)
Type: Equation(OutputForm?)
axiom
-B12s

\label{eq65}{{\left(-{b 2_{1}}-{b 1_{1}}\right)}\ {|_{x}}}+{{\left(-{b 2_{2}}-{b 1_{2}}\right)}\ {|_{y}}}(65)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
zero? (A12s - A12s)

\label{eq66} \mbox{\rm true} (66)
Type: Boolean

Multiplication

axiom
A3s:=(A1+A1)+A1

\label{eq67}{3 \ {a 1^{1}}\ {|_{\ }^{x}}}+{3 \ {a 1^{2}}\ {|_{\ }^{y}}}(67)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity(A3s)

\label{eq68}1 \over 0(68)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))
axiom
test(A3s=A1+(A1+A1))

\label{eq69} \mbox{\rm true} (69)
Type: Boolean
axiom
test(A3s=A1*3)

\label{eq70} \mbox{\rm true} (70)
Type: Boolean
axiom
zero? (0*A3s)

\label{eq71} \mbox{\rm true} (71)
Type: Boolean

axiom
B3s:=(B1+B1)+B1

\label{eq72}{3 \ {b 1_{1}}\ {|_{x}}}+{3 \ {b 1_{2}}\ {|_{y}}}(72)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity(B3s)

\label{eq73}0 \over 1(73)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))
axiom
test(B3s=B1+(B1+B1))

\label{eq74} \mbox{\rm true} (74)
Type: Boolean
axiom
test(B3s=B1*3)

\label{eq75} \mbox{\rm true} (75)
Type: Boolean

Product

axiom
AB11:=A1*B1

\label{eq76}\ {\left({{{a 1^{1}}\ {|_{\ }^{x}}}+{{a 1^{2}}\ {|_{\ }^{y}}}}\right)}\ {\left({{{b 1_{1}}\ {|_{x}}}+{{b 1_{2}}\ {|_{y}}}}\right)}(76)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity(AB11)

\label{eq77}1 \over 1(77)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))
axiom
BA11:= B1*A1

\label{eq78}\ {\left({{{b 1_{1}}\ {|_{x}}}+{{b 1_{2}}\ {|_{y}}}}\right)}\ {\left({{{a 1^{1}}\ {|_{\ }^{x}}}+{{a 1^{2}}\ {|_{\ }^{y}}}}\right)}(78)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity(BA11)

\label{eq79}1 \over 1(79)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))
axiom
AB := A*B

\label{eq80}\begin{array}{@{}l}
\displaystyle
\ {\left({
\begin{array}{@{}l}
\displaystyle
{{\left({a 2^{1}}+{a 1^{1}}\right)}\ {|_{x}^{x \  x}}}+{{a 2^{2}}\ {|_{x}^{x \  y}}}+{{a 1^{1}}\ {|_{y}^{x \  y}}}+ 
\
\
\displaystyle
{{a 1^{2}}\ {|_{x}^{y \  x}}}+{{a 2^{1}}\ {|_{y}^{y \  x}}}+{{\left({a 2^{2}}+{a 1^{2}}\right)}\ {|_{y}^{y \  y}}}
(80)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity(AB)

\label{eq81}3 \over 3(81)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))
axiom
BA := B*A

\label{eq82}\begin{array}{@{}l}
\displaystyle
\ {\left({
\begin{array}{@{}l}
\displaystyle
{{\left({b 2_{1}}+{b 1_{1}}\right)}\ {|_{x \  x}^{x}}}+{{b 2_{2}}\ {|_{x \  y}^{x}}}+{{b 1_{2}}\ {|_{y \  x}^{x}}}+ 
\
\
\displaystyle
{{b 1_{1}}\ {|_{x \  y}^{y}}}+{{b 2_{1}}\ {|_{y \  x}^{y}}}+{{\left({b 2_{2}}+{b 1_{2}}\right)}\ {|_{y \  y}^{y}}}
(82)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity(BA)

\label{eq83}3 \over 3(83)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))
axiom
WB1:=W*B1

\label{eq84}\begin{array}{@{}l}
\displaystyle
\ {\left({
\begin{array}{@{}l}
\displaystyle
{{w_{1}^{1, \: 1}}\ {|_{x}^{x \  x}}}+{{w_{2}^{1, \: 1}}\ {|_{y}^{x \  x}}}+{{w_{1}^{1, \: 2}}\ {|_{x}^{x \  y}}}+ 
\
\
\displaystyle
{{w_{2}^{1, \: 2}}\ {|_{y}^{x \  y}}}+{{w_{1}^{2, \: 1}}\ {|_{x}^{y \  x}}}+{{w_{2}^{2, \: 1}}\ {|_{y}^{y \  x}}}+ 
\
\
\displaystyle
{{w_{1}^{2, \: 2}}\ {|_{x}^{y \  y}}}+{{w_{2}^{2, \: 2}}\ {|_{y}^{y \  y}}}
(84)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity(WB1)

\label{eq85}2 \over 2(85)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))
axiom
test((A*A)*A=A*(A*A))

\label{eq86} \mbox{\rm true} (86)
Type: Boolean
axiom
test((B*B)*B=B*(B*B))

\label{eq87} \mbox{\rm true} (87)
Type: Boolean
axiom
test((A*B)*A=A*(B*A))

\label{eq88} \mbox{\rm true} (88)
Type: Boolean

Permutations

axiom
-- braid
B3:=(I*X)/(X*I)

\label{eq89}\begin{array}{@{}l}
\displaystyle
{|_{x \  x \  x}^{x \  x \  x}}+{|_{y \  x \  x}^{x \  x \  y}}+{|_{x \  x \  y}^{x \  y \  x}}+{|_{y \  x \  y}^{x \  y \  y}}+ 
\
\
\displaystyle
{|_{x \  y \  x}^{y \  x \  x}}+{|_{y \  y \  x}^{y \  x \  y}}+{|_{x \  y \  y}^{y \  y \  x}}+{|_{y \  y \  y}^{y \  y \  y}}
(89)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
test(B3/B3/B3 = I*I*I)

\label{eq90} \mbox{\rm true} (90)
Type: Boolean
axiom
-- parallel
test((X*X)/(X*X)=H*H)

\label{eq91} \mbox{\rm true} (91)
Type: Boolean

Manipulations

axiom
ravel AB

\label{eq92}\begin{array}{@{}l}
\displaystyle
\left[{{{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 2_{1}}}+{{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 1_{1}}}}, \:{{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 2_{2}}}, \: \right.
\
\
\displaystyle
\left.{{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 1_{2}}}, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \:{{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 1_{1}}}, \: \right.
\
\
\displaystyle
\left.{{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 2_{1}}}, \:{{{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 2_{2}}}+{{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 1_{2}}}}, \: 0, \: 0, \: 0, \: 0, \right.
\
\
\displaystyle
\left.\:{{{a 2^{2}}\ {b 2_{1}}}+{{a 2^{2}}\ {b 1_{1}}}}, \:{{a 2^{2}}\ {b 2_{2}}}, \:{{a 2^{2}}\ {b 1_{2}}}, \: 0, \:{{{a 1^{1}}\ {b 2_{1}}}+{{a 1^{1}}\ {b 1_{1}}}}, \: \right.
\
\
\displaystyle
\left.{{a 1^{1}}\ {b 2_{2}}}, \:{{a 1^{1}}\ {b 1_{2}}}, \: 0, \: 0, \:{{a 2^{2}}\ {b 1_{1}}}, \:{{a 2^{2}}\ {b 2_{1}}}, \:{{{a 2^{2}}\ {b 2_{2}}}+{{a 2^{2}}\ {b 1_{2}}}}, \: 0, \right.
\
\
\displaystyle
\left.\:{{a 1^{1}}\ {b 1_{1}}}, \:{{a 1^{1}}\ {b 2_{1}}}, \:{{{a 1^{1}}\ {b 2_{2}}}+{{a 1^{1}}\ {b 1_{2}}}}, \:{{{a 1^{2}}\ {b 2_{1}}}+{{a 1^{2}}\ {b 1_{1}}}}, \: \right.
\
\
\displaystyle
\left.{{a 1^{2}}\ {b 2_{2}}}, \:{{a 1^{2}}\ {b 1_{2}}}, \: 0, \:{{{a 2^{1}}\ {b 2_{1}}}+{{a 2^{1}}\ {b 1_{1}}}}, \:{{a 2^{1}}\ {b 2_{2}}}, \:{{a 2^{1}}\ {b 1_{2}}}, \: 0, \: 0, \right.
\
\
\displaystyle
\left.\:{{a 1^{2}}\ {b 1_{1}}}, \:{{a 1^{2}}\ {b 2_{1}}}, \:{{{a 1^{2}}\ {b 2_{2}}}+{{a 1^{2}}\ {b 1_{2}}}}, \: 0, \:{{a 2^{1}}\ {b 1_{1}}}, \:{{a 2^{1}}\ {b 2_{1}}}, \: \right.
\
\
\displaystyle
\left.{{{a 2^{1}}\ {b 2_{2}}}+{{a 2^{1}}\ {b 1_{2}}}}, \: 0, \: 0, \: 0, \: 0, \: \right.
\
\
\displaystyle
\left.{{{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 2_{1}}}+{{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 1_{1}}}}, \:{{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 2_{2}}}, \: \right.
\
\
\displaystyle
\left.{{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 1_{2}}}, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \:{{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 1_{1}}}, \: \right.
\
\
\displaystyle
\left.{{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 2_{1}}}, \:{{{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 2_{2}}}+{{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 1_{2}}}}\right] 
(92)
Type: List(Expression(Integer))
axiom
test(unravel(arity AB,ravel AB)$L=AB)

\label{eq93} \mbox{\rm true} (93)
Type: Boolean
axiom
map(x+->x+1,AB)$L

\label{eq94}\begin{array}{@{}l}
\displaystyle
{{\left({{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 2_{1}}}+{{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 1_{1}}}+ 1 \right)}\ {|_{x \  x \  x}^{x \  x \  x}}}+ 
\
\
\displaystyle
{{\left({{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 2_{2}}}+ 1 \right)}\ {|_{x \  x \  y}^{x \  x \  x}}}+ 
\
\
\displaystyle
{{\left({{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 1_{2}}}+ 1 \right)}\ {|_{x \  y \  x}^{x \  x \  x}}}+{|_{x \  y \  y}^{x \  x \  x}}+ 
\
\
\displaystyle
{|_{y \  x \  x}^{x \  x \  x}}+{|_{y \  x \  y}^{x \  x \  x}}+{|_{y \  y \  x}^{x \  x \  x}}+{|_{y \  y \  y}^{x \  x \  x}}+ 
\
\
\displaystyle
{|_{x \  x \  x}^{x \  x \  y}}+{{\left({{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 1_{1}}}+ 1 \right)}\ {|_{x \  x \  y}^{x \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 2_{1}}}+ 1 \right)}\ {|_{x \  y \  x}^{x \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 2_{2}}}+{{\left({a 2^{1}}+{a 1^{1}}\right)}\ {b 1_{2}}}+ 1 \right)}\ {|_{x \  y \  y}^{x \  x \  y}}}+ 
\
\
\displaystyle
{|_{y \  x \  x}^{x \  x \  y}}+{|_{y \  x \  y}^{x \  x \  y}}+{|_{y \  y \  x}^{x \  x \  y}}+{|_{y \  y \  y}^{x \  x \  y}}+ 
\
\
\displaystyle
{{\left({{a 2^{2}}\ {b 2_{1}}}+{{a 2^{2}}\ {b 1_{1}}}+ 1 \right)}\ {|_{x \  x \  x}^{x \  y \  x}}}+ 
\
\
\displaystyle
{{\left({{a 2^{2}}\ {b 2_{2}}}+ 1 \right)}\ {|_{x \  x \  y}^{x \  y \  x}}}+{{\left({{a 2^{2}}\ {b 1_{2}}}+ 1 \right)}\ {|_{x \  y \  x}^{x \  y \  x}}}+ 
\
\
\displaystyle
{|_{x \  y \  y}^{x \  y \  x}}+{{\left({{a 1^{1}}\ {b 2_{1}}}+{{a 1^{1}}\ {b 1_{1}}}+ 1 \right)}\ {|_{y \  x \  x}^{x \  y \  x}}}+ 
\
\
\displaystyle
{{\left({{a 1^{1}}\ {b 2_{2}}}+ 1 \right)}\ {|_{y \  x \  y}^{x \  y \  x}}}+{{\left({{a 1^{1}}\ {b 1_{2}}}+ 1 \right)}\ {|_{y \  y \  x}^{x \  y \  x}}}+ 
\
\
\displaystyle
{|_{y \  y \  y}^{x \  y \  x}}+{|_{x \  x \  x}^{x \  y \  y}}+{{\left({{a 2^{2}}\ {b 1_{1}}}+ 1 \right)}\ {|_{x \  x \  y}^{x \  y \  y}}}+ 
\
\
\displaystyle
{{\left({{a 2^{2}}\ {b 2_{1}}}+ 1 \right)}\ {|_{x \  y \  x}^{x \  y \  y}}}+ 
\
\
\displaystyle
{{\left({{a 2^{2}}\ {b 2_{2}}}+{{a 2^{2}}\ {b 1_{2}}}+ 1 \right)}\ {|_{x \  y \  y}^{x \  y \  y}}}+{|_{y \  x \  x}^{x \  y \  y}}+ 
\
\
\displaystyle
{{\left({{a 1^{1}}\ {b 1_{1}}}+ 1 \right)}\ {|_{y \  x \  y}^{x \  y \  y}}}+{{\left({{a 1^{1}}\ {b 2_{1}}}+ 1 \right)}\ {|_{y \  y \  x}^{x \  y \  y}}}+ 
\
\
\displaystyle
{{\left({{a 1^{1}}\ {b 2_{2}}}+{{a 1^{1}}\ {b 1_{2}}}+ 1 \right)}\ {|_{y \  y \  y}^{x \  y \  y}}}+ 
\
\
\displaystyle
{{\left({{a 1^{2}}\ {b 2_{1}}}+{{a 1^{2}}\ {b 1_{1}}}+ 1 \right)}\ {|_{x \  x \  x}^{y \  x \  x}}}+ 
\
\
\displaystyle
{{\left({{a 1^{2}}\ {b 2_{2}}}+ 1 \right)}\ {|_{x \  x \  y}^{y \  x \  x}}}+{{\left({{a 1^{2}}\ {b 1_{2}}}+ 1 \right)}\ {|_{x \  y \  x}^{y \  x \  x}}}+ 
\
\
\displaystyle
{|_{x \  y \  y}^{y \  x \  x}}+{{\left({{a 2^{1}}\ {b 2_{1}}}+{{a 2^{1}}\ {b 1_{1}}}+ 1 \right)}\ {|_{y \  x \  x}^{y \  x \  x}}}+ 
\
\
\displaystyle
{{\left({{a 2^{1}}\ {b 2_{2}}}+ 1 \right)}\ {|_{y \  x \  y}^{y \  x \  x}}}+{{\left({{a 2^{1}}\ {b 1_{2}}}+ 1 \right)}\ {|_{y \  y \  x}^{y \  x \  x}}}+ 
\
\
\displaystyle
{|_{y \  y \  y}^{y \  x \  x}}+{|_{x \  x \  x}^{y \  x \  y}}+{{\left({{a 1^{2}}\ {b 1_{1}}}+ 1 \right)}\ {|_{x \  x \  y}^{y \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{a 1^{2}}\ {b 2_{1}}}+ 1 \right)}\ {|_{x \  y \  x}^{y \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{a 1^{2}}\ {b 2_{2}}}+{{a 1^{2}}\ {b 1_{2}}}+ 1 \right)}\ {|_{x \  y \  y}^{y \  x \  y}}}+{|_{y \  x \  x}^{y \  x \  y}}+ 
\
\
\displaystyle
{{\left({{a 2^{1}}\ {b 1_{1}}}+ 1 \right)}\ {|_{y \  x \  y}^{y \  x \  y}}}+{{\left({{a 2^{1}}\ {b 2_{1}}}+ 1 \right)}\ {|_{y \  y \  x}^{y \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{a 2^{1}}\ {b 2_{2}}}+{{a 2^{1}}\ {b 1_{2}}}+ 1 \right)}\ {|_{y \  y \  y}^{y \  x \  y}}}+{|_{x \  x \  x}^{y \  y \  x}}+ 
\
\
\displaystyle
{|_{x \  x \  y}^{y \  y \  x}}+{|_{x \  y \  x}^{y \  y \  x}}+{|_{x \  y \  y}^{y \  y \  x}}+ 
\
\
\displaystyle
{{\left({{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 2_{1}}}+{{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 1_{1}}}+ 1 \right)}\ {|_{y \  x \  x}^{y \  y \  x}}}+ 
\
\
\displaystyle
{{\left({{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 2_{2}}}+ 1 \right)}\ {|_{y \  x \  y}^{y \  y \  x}}}+ 
\
\
\displaystyle
{{\left({{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 1_{2}}}+ 1 \right)}\ {|_{y \  y \  x}^{y \  y \  x}}}+{|_{y \  y \  y}^{y \  y \  x}}+ 
\
\
\displaystyle
{|_{x \  x \  x}^{y \  y \  y}}+{|_{x \  x \  y}^{y \  y \  y}}+{|_{x \  y \  x}^{y \  y \  y}}+{|_{x \  y \  y}^{y \  y \  y}}+ 
\
\
\displaystyle
{|_{y \  x \  x}^{y \  y \  y}}+{{\left({{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 1_{1}}}+ 1 \right)}\ {|_{y \  x \  y}^{y \  y \  y}}}+ 
\
\
\displaystyle
{{\left({{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 2_{1}}}+ 1 \right)}\ {|_{y \  y \  x}^{y \  y \  y}}}+ 
\
\
\displaystyle
{{\left({{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 2_{2}}}+{{\left({a 2^{2}}+{a 1^{2}}\right)}\ {b 1_{2}}}+ 1 \right)}\ {|_{y \  y \  y}^{y \  y \  y}}}
(94)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
[superscript(a1,[i])=i for i in 1..dim]::List EQ Q

\label{eq95}\left[{{a 1^{1}}= 1}, \:{{a 1^{2}}= 2}\right](95)
Type: List(Equation(Expression(Integer)))
axiom
eval(A,[superscript(a1,[i])=i for i in 1..dim]::List EQ Q)

\label{eq96}\begin{array}{@{}l}
\displaystyle
{{\left({a 2^{1}}+ 1 \right)}\ {|_{x}^{x \  x}}}+{{a 2^{2}}\ {|_{x}^{x \  y}}}+{|_{y}^{x \  y}}+{2 \ {|_{x}^{y \  x}}}+{{a 2^{1}}\ {|_{y}^{y \  x}}}+ 
\
\
\displaystyle
{{\left({a 2^{2}}+ 2 \right)}\ {|_{y}^{y \  y}}}
(96)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))

Examples

Another kind of diagram:

Y = Y U U

Algebra

axiom
Y:=Σ(Σ(Σ(script(y,[[k],[i,j]]),j,dx),i,dx),k,Dx)

\label{eq97}\begin{array}{@{}l}
\displaystyle
{{y_{1}^{1, \: 1}}\ {|_{x}^{x \  x}}}+{{y_{2}^{1, \: 1}}\ {|_{y}^{x \  x}}}+{{y_{1}^{2, \: 1}}\ {|_{x}^{x \  y}}}+{{y_{2}^{2, \: 1}}\ {|_{y}^{x \  y}}}+ 
\
\
\displaystyle
{{y_{1}^{1, \: 2}}\ {|_{x}^{y \  x}}}+{{y_{2}^{1, \: 2}}\ {|_{y}^{y \  x}}}+{{y_{1}^{2, \: 2}}\ {|_{x}^{y \  y}}}+{{y_{2}^{2, \: 2}}\ {|_{y}^{y \  y}}}
(97)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity Y

\label{eq98}2 \over 1(98)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))

Commutator

axiom
Y -   X /
      Y

\label{eq99}\begin{array}{@{}l}
\displaystyle
{{\left({y_{1}^{2, \: 1}}-{y_{1}^{1, \: 2}}\right)}\ {|_{x}^{x \  y}}}+{{\left({y_{2}^{2, \: 1}}-{y_{2}^{1, \: 2}}\right)}\ {|_{y}^{x \  y}}}+ 
\
\
\displaystyle
{{\left(-{y_{1}^{2, \: 1}}+{y_{1}^{1, \: 2}}\right)}\ {|_{x}^{y \  x}}}+{{\left(-{y_{2}^{2, \: 1}}+{y_{2}^{1, \: 2}}\right)}\ {|_{y}^{y \  x}}}
(99)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))

Pairing

axiom
U:=Σ(Σ(script(u,[[],[i,j]]),j,dx),i,dx)

\label{eq100}{{u^{1, \: 1}}\ {|_{\ }^{x \  x}}}+{{u^{2, \: 1}}\ {|_{\ }^{x \  y}}}+{{u^{1, \: 2}}\ {|_{\ }^{y \  x}}}+{{u^{2, \: 2}}\ {|_{\ }^{y \  y}}}(100)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity U

\label{eq101}2 \over 0(101)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))

3-point function

axiom
YU := Y I
  /    U

\label{eq102}\begin{array}{@{}l}
\displaystyle
{{\left({{u^{1, \: 2}}\ {y_{2}^{1, \: 1}}}+{{u^{1, \: 1}}\ {y_{1}^{1, \: 1}}}\right)}\ {|_{\ }^{x \  x \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{1, \: 1}}}+{{u^{2, \: 1}}\ {y_{1}^{1, \: 1}}}\right)}\ {|_{\ }^{x \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{1, \: 2}}\ {y_{2}^{2, \: 1}}}+{{u^{1, \: 1}}\ {y_{1}^{2, \: 1}}}\right)}\ {|_{\ }^{x \  y \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{2, \: 1}}}+{{u^{2, \: 1}}\ {y_{1}^{2, \: 1}}}\right)}\ {|_{\ }^{x \  y \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{1, \: 2}}\ {y_{2}^{1, \: 2}}}+{{u^{1, \: 1}}\ {y_{1}^{1, \: 2}}}\right)}\ {|_{\ }^{y \  x \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{1, \: 2}}}+{{u^{2, \: 1}}\ {y_{1}^{1, \: 2}}}\right)}\ {|_{\ }^{y \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{1, \: 2}}\ {y_{2}^{2, \: 2}}}+{{u^{1, \: 1}}\ {y_{1}^{2, \: 2}}}\right)}\ {|_{\ }^{y \  y \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{2, \: 2}}}+{{u^{2, \: 1}}\ {y_{1}^{2, \: 2}}}\right)}\ {|_{\ }^{y \  y \  y}}}
(102)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
YU := Y.I
  /    U

\label{eq103}\begin{array}{@{}l}
\displaystyle
{{\left({{u^{1, \: 2}}\ {y_{2}^{1, \: 1}}}+{{u^{1, \: 1}}\ {y_{1}^{1, \: 1}}}\right)}\ {|_{\ }^{x \  x \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{1, \: 1}}}+{{u^{2, \: 1}}\ {y_{1}^{1, \: 1}}}\right)}\ {|_{\ }^{x \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{1, \: 2}}\ {y_{2}^{2, \: 1}}}+{{u^{1, \: 1}}\ {y_{1}^{2, \: 1}}}\right)}\ {|_{\ }^{x \  y \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{2, \: 1}}}+{{u^{2, \: 1}}\ {y_{1}^{2, \: 1}}}\right)}\ {|_{\ }^{x \  y \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{1, \: 2}}\ {y_{2}^{1, \: 2}}}+{{u^{1, \: 1}}\ {y_{1}^{1, \: 2}}}\right)}\ {|_{\ }^{y \  x \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{1, \: 2}}}+{{u^{2, \: 1}}\ {y_{1}^{1, \: 2}}}\right)}\ {|_{\ }^{y \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{1, \: 2}}\ {y_{2}^{2, \: 2}}}+{{u^{1, \: 1}}\ {y_{1}^{2, \: 2}}}\right)}\ {|_{\ }^{y \  y \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{2, \: 2}}}+{{u^{2, \: 1}}\ {y_{1}^{2, \: 2}}}\right)}\ {|_{\ }^{y \  y \  y}}}
(103)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity YU

\label{eq104}3 \over 0(104)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))

axiom
YU:L := (Y,I) / U

\label{eq105}\begin{array}{@{}l}
\displaystyle
{{\left({{u^{1, \: 2}}\ {y_{2}^{1, \: 1}}}+{{u^{1, \: 1}}\ {y_{1}^{1, \: 1}}}\right)}\ {|_{\ }^{x \  x \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{1, \: 1}}}+{{u^{2, \: 1}}\ {y_{1}^{1, \: 1}}}\right)}\ {|_{\ }^{x \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{1, \: 2}}\ {y_{2}^{2, \: 1}}}+{{u^{1, \: 1}}\ {y_{1}^{2, \: 1}}}\right)}\ {|_{\ }^{x \  y \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{2, \: 1}}}+{{u^{2, \: 1}}\ {y_{1}^{2, \: 1}}}\right)}\ {|_{\ }^{x \  y \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{1, \: 2}}\ {y_{2}^{1, \: 2}}}+{{u^{1, \: 1}}\ {y_{1}^{1, \: 2}}}\right)}\ {|_{\ }^{y \  x \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{1, \: 2}}}+{{u^{2, \: 1}}\ {y_{1}^{1, \: 2}}}\right)}\ {|_{\ }^{y \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{1, \: 2}}\ {y_{2}^{2, \: 2}}}+{{u^{1, \: 1}}\ {y_{1}^{2, \: 2}}}\right)}\ {|_{\ }^{y \  y \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{2, \: 2}}}+{{u^{2, \: 1}}\ {y_{1}^{2, \: 2}}}\right)}\ {|_{\ }^{y \  y \  y}}}
(105)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
UY:L := (I,Y) / U

\label{eq106}\begin{array}{@{}l}
\displaystyle
{{\left({{u^{2, \: 1}}\ {y_{2}^{1, \: 1}}}+{{u^{1, \: 1}}\ {y_{1}^{1, \: 1}}}\right)}\ {|_{\ }^{x \  x \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 1}}\ {y_{2}^{2, \: 1}}}+{{u^{1, \: 1}}\ {y_{1}^{2, \: 1}}}\right)}\ {|_{\ }^{x \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 1}}\ {y_{2}^{1, \: 2}}}+{{u^{1, \: 1}}\ {y_{1}^{1, \: 2}}}\right)}\ {|_{\ }^{x \  y \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 1}}\ {y_{2}^{2, \: 2}}}+{{u^{1, \: 1}}\ {y_{1}^{2, \: 2}}}\right)}\ {|_{\ }^{x \  y \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{1, \: 1}}}+{{u^{1, \: 2}}\ {y_{1}^{1, \: 1}}}\right)}\ {|_{\ }^{y \  x \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{2, \: 1}}}+{{u^{1, \: 2}}\ {y_{1}^{2, \: 1}}}\right)}\ {|_{\ }^{y \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{1, \: 2}}}+{{u^{1, \: 2}}\ {y_{1}^{1, \: 2}}}\right)}\ {|_{\ }^{y \  y \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{2, \: 2}}}+{{u^{1, \: 2}}\ {y_{1}^{2, \: 2}}}\right)}\ {|_{\ }^{y \  y \  y}}}
(106)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))

Oddities (should work on the right)

axiom
YU := Y [1]
  /    U
There are no exposed library operations named Y but there are 2 unexposed operations with that name. Use HyperDoc Browse or issue )display op Y to learn more about the available operations.
Cannot find a definition or applicable library operation named Y with argument type(s) List(PositiveInteger)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. YU := Y.[1] / U
There are no exposed library operations named Y but there are 2 unexposed operations with that name. Use HyperDoc Browse or issue )display op Y to learn more about the available operations.
Cannot find a definition or applicable library operation named Y with argument type(s) List(PositiveInteger)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

Ok on the left

axiom
UY := [1].Y
  /      U

\label{eq107}\begin{array}{@{}l}
\displaystyle
{{\left({{u^{2, \: 1}}\ {y_{2}^{1, \: 1}}}+{{u^{1, \: 1}}\ {y_{1}^{1, \: 1}}}\right)}\ {|_{\ }^{x \  x \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 1}}\ {y_{2}^{2, \: 1}}}+{{u^{1, \: 1}}\ {y_{1}^{2, \: 1}}}\right)}\ {|_{\ }^{x \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 1}}\ {y_{2}^{1, \: 2}}}+{{u^{1, \: 1}}\ {y_{1}^{1, \: 2}}}\right)}\ {|_{\ }^{x \  y \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 1}}\ {y_{2}^{2, \: 2}}}+{{u^{1, \: 1}}\ {y_{1}^{2, \: 2}}}\right)}\ {|_{\ }^{x \  y \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{1, \: 1}}}+{{u^{1, \: 2}}\ {y_{1}^{1, \: 1}}}\right)}\ {|_{\ }^{y \  x \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{2, \: 1}}}+{{u^{1, \: 2}}\ {y_{1}^{2, \: 1}}}\right)}\ {|_{\ }^{y \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{1, \: 2}}}+{{u^{1, \: 2}}\ {y_{1}^{1, \: 2}}}\right)}\ {|_{\ }^{y \  y \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{2, \: 2}}}+{{u^{1, \: 2}}\ {y_{1}^{2, \: 2}}}\right)}\ {|_{\ }^{y \  y \  y}}}
(107)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
UY := [1] Y
  /      U

\label{eq108}\begin{array}{@{}l}
\displaystyle
{{\left({{u^{2, \: 1}}\ {y_{2}^{1, \: 1}}}+{{u^{1, \: 1}}\ {y_{1}^{1, \: 1}}}\right)}\ {|_{\ }^{x \  x \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 1}}\ {y_{2}^{2, \: 1}}}+{{u^{1, \: 1}}\ {y_{1}^{2, \: 1}}}\right)}\ {|_{\ }^{x \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 1}}\ {y_{2}^{1, \: 2}}}+{{u^{1, \: 1}}\ {y_{1}^{1, \: 2}}}\right)}\ {|_{\ }^{x \  y \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 1}}\ {y_{2}^{2, \: 2}}}+{{u^{1, \: 1}}\ {y_{1}^{2, \: 2}}}\right)}\ {|_{\ }^{x \  y \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{1, \: 1}}}+{{u^{1, \: 2}}\ {y_{1}^{1, \: 1}}}\right)}\ {|_{\ }^{y \  x \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{2, \: 1}}}+{{u^{1, \: 2}}\ {y_{1}^{2, \: 1}}}\right)}\ {|_{\ }^{y \  x \  y}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{1, \: 2}}}+{{u^{1, \: 2}}\ {y_{1}^{1, \: 2}}}\right)}\ {|_{\ }^{y \  y \  x}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {y_{2}^{2, \: 2}}}+{{u^{1, \: 2}}\ {y_{1}^{2, \: 2}}}\right)}\ {|_{\ }^{y \  y \  y}}}
(108)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity UY

\label{eq109}3 \over 0(109)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))

Co-algebra

axiom
λ:=Σ(Σ(Σ(script(y,[[i],[j,k]]),i,dx),j,Dx),k,Dx)

\label{eq110}\begin{array}{@{}l}
\displaystyle
{{y_{1}^{1, \: 1}}\ {|_{x \  x}^{x}}}+{{y_{1}^{1, \: 2}}\ {|_{x \  y}^{x}}}+{{y_{1}^{2, \: 1}}\ {|_{y \  x}^{x}}}+{{y_{1}^{2, \: 2}}\ {|_{y \  y}^{x}}}+ 
\
\
\displaystyle
{{y_{2}^{1, \: 1}}\ {|_{x \  x}^{y}}}+{{y_{2}^{1, \: 2}}\ {|_{x \  y}^{y}}}+{{y_{2}^{2, \: 1}}\ {|_{y \  x}^{y}}}+{{y_{2}^{2, \: 2}}\ {|_{y \  y}^{y}}}
(110)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity λ

\label{eq111}1 \over 2(111)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))

Handle

λ
Y

axiom
Φ := λ
  /  Y

\label{eq112}\begin{array}{@{}l}
\displaystyle
{{\left({{y_{1}^{2, \: 2}}^{2}}+{2 \ {y_{1}^{1, \: 2}}\ {y_{1}^{2, \: 1}}}+{{y_{1}^{1, \: 1}}^{2}}\right)}\ {|_{x}^{x}}}+ 
\
\
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
{{y_{1}^{2, \: 2}}\ {y_{2}^{2, \: 2}}}+{{y_{1}^{1, \: 2}}\ {y_{2}^{2, \: 1}}}+{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 2}}}+ 
\
\
\displaystyle
{{y_{1}^{1, \: 1}}\ {y_{2}^{1, \: 1}}}
(112)
Type: LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer))
axiom
arity Φ

\label{eq113}1 \over 1(113)
Type: Prop(LinearOperator?(OrderedVariableList?([x,y]),Expression(Integer)))

Back to the top.

Comments

Please leave comments and suggestions.

Thanks

Bill Page