Linear transformations (operators) over n-dimensional cartesian vector spaces oveer a commutative ring . Members of this domain are morphisms . Products, co-products and composition (grafting) of morphisms is implemented. Operators are represented internally as tensors.
Operator composition and products can be visualized by directed graphs (read from top to bottom) such as:
n = 3 inputs
\ | / \ / / \ |
\ | / \/ / \ / \
\|/ \ / / \ / \
/ \ \/ / \ \ /
/ \ \ / / \ \ /
/ \ \ / / \ |
m = 2 outputs
Lines (edges) in the graph represent vectors, nodes represent operators. Horizontal juxtaposition represents product. Vertical juxtaposition represents composition.
spad
)abbrev domain LIN LinearOperator
LinearOperator(dim:NonNegativeInteger,K:CommutativeRing): Join(Ring,BiModule(K,K)) with
arity: % -> DirectProduct(2,NonNegativeInteger)
elt: (%,%) -> %
++ tensor product
_/: (%,%) -> %
++ operator composition
inp: List K -> %
++ incoming vector
inp: List % -> %
out: List K -> %
++ output vector
out: List % -> %
coerce: SquareMatrix(dim,K) -> %
_*: (%,NonNegativeInteger) -> %
== add
import List NonNegativeInteger
T ==> CartesianTensor(1,dim,K)
NNI ==> NonNegativeInteger
Rep == Record(domain:NNI, codomain:NNI, data:T)
rep(x:%):Rep == x pretend Rep
per(x:Rep):% == x pretend %
dom(f:%):NNI == rep(f).domain
cod(f:%):NNI == rep(f).codomain
dat(f:%):T == rep(f).data
arity(f:%):DirectProduct(2,NonNegativeInteger) == directProduct [dom f,cod f]
0 == per [0,0,0]
--
-- f+g : A^{n+m} -> A^p = f:A^n -> A^p + g:A^m -> A^p
--
(f:% + g:%):% ==
dom(f) ~= dom(g) or cod(f) ~= cod(g) => error "arity"
per [dom(f),cod(f),dat(f)+dat(g)]
(f:% - g:%):% ==
dom(f) ~= dom(f) or cod(g) ~= cod(g) => error "arity"
per [dom(f),cod(f),dat(f)-dat(g)]
--
-- f/g : A^n -> A^p = f:A^n -> A^m / g:A^m -> A^p
-- g*f : A^n -> A^p = g:A^m -> A^p * f:A^n -> A^m
--
(f:% / g:%):% ==
cod(f) ~= dom(g) => error "arity"
r:T := product(dat(f), dat(g))
n:=dom(f)+1
m:=n+cod(f)
while m>n repeat
r := contract(r,n,m)
m:=m-1
per [dom f,cod g,r]
(g:% * f:%):% == f/g
1:% == per [1,1,kroneckerDelta()$T]
-- repeated composition
(f:% ^ p:NNI):% ==
cod(f) ~= dom(f) => error "arity"
q:=subtractIfCan(p,1)
q case NonNegativeInteger => f^q * f
1
-- repeated sum
(f:% * p:NNI):% ==
q:=subtractIfCan(p,1)
q case NonNegativeInteger => f*q + f
0
(x:% = y:%):Boolean ==
dom(x) ~= dom(y) or cod(x) ~= cod(y) => error "arity"
dat(x) = dat(y)
(x:K * y:%):% == per [dom(y),cod(y),x*dat(y)]
(x:% * y:K):% == per [dom(x),cod(x),dat(x)*y]
inp(x:List K):% == per [1,0,entries(x)::T]
inp(x:List %):% ==
#removeDuplicates([dom(y) for y in x])~=1 or
#removeDuplicates([cod(y) for y in x])~=1 => error "arity"
per [dom(first x)+1,cod(first x),[dat(y) for y in x]::T]$Rep
out(x:List K):% == per [0,1,entries(x)::T]
out(x:List %):% ==
#removeDuplicates([dom(y) for y in x])~=1 or
#removeDuplicates([cod(y) for y in x])~=1 => error "arity"
per [dom(first x),cod(first x)+1,[dat(y) for y in x]::T]$Rep
coerce(x:%):OutputForm == (dat(x))::OutputForm
spad
Compiling FriCAS source code from file
/var/zope2/var/LatexWiki/2505091042092146672-25px001.spad using
old system compiler.
LIN abbreviates domain LinearOperator
------------------------------------------------------------------------
initializing NRLIB LIN for LinearOperator
compiling into NRLIB LIN
importing List NonNegativeInteger
processing macro definition T$ ==> CartesianTensor(One,dim,K)
processing macro definition NNI ==> NonNegativeInteger
compiling local rep : $ -> Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K))
LIN;rep is replaced by x
Time: 0.18 SEC.
compiling local per : Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K)) -> $
LIN;per is replaced by x
Time: 0.01 SEC.
compiling local dom : $ -> NonNegativeInteger
Time: 0 SEC.
compiling local cod : $ -> NonNegativeInteger
Time: 0 SEC.
compiling local dat : $ -> CartesianTensor(One,dim,K)
Time: 0.02 SEC.
compiling exported arity : $ -> DirectProduct(2,NonNegativeInteger)
Time: 0.05 SEC.
compiling exported Zero : () -> $
Time: 0.01 SEC.
compiling exported + : ($,$) -> $
Time: 0.02 SEC.
compiling exported - : ($,$) -> $
Time: 0.02 SEC.
compiling exported / : ($,$) -> $
Time: 0.02 SEC.
compiling exported * : ($,$) -> $
Time: 0.01 SEC.
compiling exported One : () -> $
Time: 0 SEC.
compiling exported ^ : ($,NonNegativeInteger) -> $
Time: 0.02 SEC.
compiling exported * : ($,NonNegativeInteger) -> $
Time: 0.02 SEC.
compiling exported = : ($,$) -> Boolean
Time: 0.01 SEC.
compiling exported * : (K,$) -> $
Time: 0.01 SEC.
compiling exported * : ($,K) -> $
Time: 0 SEC.
compiling exported inp : List K -> $
Time: 0.38 SEC.
compiling exported inp : List $ -> $
Time: 0.10 SEC.
compiling exported out : List K -> $
Time: 0 SEC.
compiling exported out : List $ -> $
Time: 0.02 SEC.
compiling exported coerce : $ -> OutputForm
Time: 0.01 SEC.
(time taken in buildFunctor: 10)
;;; *** |LinearOperator| REDEFINED
;;; *** |LinearOperator| REDEFINED
Time: 0.01 SEC.
Cumulative Statistics for Constructor LinearOperator
Time: 0.92 seconds
finalizing NRLIB LIN
Processing LinearOperator for Browser database:
--->-->LinearOperator((arity ((DirectProduct 2 (NonNegativeInteger)) %))): Not documented!!!!
--------(elt (% % %))---------
--------(/ (% % %))---------
--------(inp (% (List K)))---------
--->-->LinearOperator((inp (% (List %)))): Not documented!!!!
--------(out (% (List K)))---------
--->-->LinearOperator((out (% (List %)))): Not documented!!!!
--->-->LinearOperator((coerce (% (SquareMatrix dim K)))): Not documented!!!!
--->-->LinearOperator((* (% % (NonNegativeInteger)))): Not documented!!!!
--->-->LinearOperator(constructor): Not documented!!!!
--->-->LinearOperator(): Missing Description
; compiling file "/var/zope2/var/LatexWiki/LIN.NRLIB/LIN.lsp" (written 09 APR 2011 01:34:08 AM):
; /var/zope2/var/LatexWiki/LIN.NRLIB/LIN.fasl written
; compilation finished in 0:00:00.448
------------------------------------------------------------------------
LinearOperator is now explicitly exposed in frame initial
LinearOperator will be automatically loaded when needed from
/var/zope2/var/LatexWiki/LIN.NRLIB/LIN
>> System error:
The bounding indices 163 and 162 are bad for a sequence of length 162.
See also:
The ANSI Standard, Glossary entry for "bounding index designator"
The ANSI Standard, writeup for Issue SUBSEQ-OUT-OF-BOUNDS:IS-AN-ERROR
Construction operators: input and output
axiom
L:=LIN(2,FRAC POLY INT)
Type: Type
axiom
A1:L:=inp[script(a,[[1,i]]) for i in 1..2]
Type: LinearOperator
?(2,
Fraction(Polynomial(Integer)))
axiom
arity A1
Type: DirectProduct
?(2,
NonNegativeInteger
?)
axiom
A2:L:=inp[script(a,[[2,i]]) for i in 1..2]
Type: LinearOperator
?(2,
Fraction(Polynomial(Integer)))
axiom
A:L:=inp[A1,A2]
Type: LinearOperator
?(2,
Fraction(Polynomial(Integer)))
axiom
arity A
Type: DirectProduct
?(2,
NonNegativeInteger
?)
axiom
B1:L:=out[script(b,[[],[1,i]]) for i in 1..2]
Type: LinearOperator
?(2,
Fraction(Polynomial(Integer)))
axiom
arity B1
Type: DirectProduct
?(2,
NonNegativeInteger
?)
axiom
B2:L:=out[script(b,[[],[2,i]]) for i in 1..2]
Type: LinearOperator
?(2,
Fraction(Polynomial(Integer)))
axiom
B:L:=out[B1,B2]
Type: LinearOperator
?(2,
Fraction(Polynomial(Integer)))
axiom
arity B
Type: DirectProduct
?(2,
NonNegativeInteger
?)
Products
axiom
A12p := A1 * A2; A12p::OutputForm = A1::OutputForm * A2::OutputForm
>> Error detected within library code:
arity
Powers
axiom
A3p:=(A1*A1)*A1
>> Error detected within library code:
arity
axiom
B3p:=(B1*B1)*B1
>> Error detected within library code:
arity
Sums
axiom
A12s := A1 + A2; A12s::OutputForm = A1::OutputForm + A2::OutputForm
Type: Equation(OutputForm
?)
axiom
arity(A12s)::OutputForm = arity(A1)::OutputForm + arity(A2)::OutputForm
Type: Equation(OutputForm
?)
axiom
B12s := B1 + B2; B12s::OutputForm = B1::OutputForm + B2::OutputForm
Type: Equation(OutputForm
?)
axiom
arity(B12s)::OutputForm = arity(B1)::OutputForm + arity(B2)::OutputForm
Type: Equation(OutputForm
?)
Multiplication
axiom
A3s:=(A1+A1)+A1
Type: LinearOperator
?(2,
Fraction(Polynomial(Integer)))
axiom
arity(A3s)
Type: DirectProduct
?(2,
NonNegativeInteger
?)
axiom
test(A3s=A1+(A1+A1))
Type: Boolean
axiom
test(A3s=A1*3)
>> Error detected within library code:
arity
axiom
B3s:=(B1+B1)+B1
Type: LinearOperator
?(2,
Fraction(Polynomial(Integer)))
axiom
arity(B3s)
Type: DirectProduct
?(2,
NonNegativeInteger
?)
axiom
test(B3s=B1+(B1+B1))
Type: Boolean
axiom
test(B3s=B1*3)
>> Error detected within library code:
arity
Expected error
axiom
B1A1:=B1*A1
Type: LinearOperator
?(2,
Fraction(Polynomial(Integer)))
axiom
arity(B1A1)
Type: DirectProduct
?(2,
NonNegativeInteger
?)
Composition
axiom
AB11:=A1 B1
Internal Error
The function elt with signature hashcode is missing from domain
LinearOperator2(Fraction (Polynomial (Integer)))
Multiple inputs and outputs
axiom
W:L:=out[inp[inp([script(w,[[i,j],[k]]) for j in 1..2])$L for i in 1..2] for k in 1..2]
Type: LinearOperator
?(2,
Fraction(Polynomial(Integer)))
axiom
WB1:=W B1
Internal Error
The function elt with signature hashcode is missing from domain
LinearOperator2(Fraction (Polynomial (Integer)))
Another kind of diagram:
___ _ _ _ _
___ _) = _\_ _ _\/_
_/ ___ _) _/\_
If linear operators really are to be morphisms (in the sense of category theory) then they must have a domain and a co-domain that are vector spaces, not just an in-degree and out-degree. E.g.:
Rep == Record(Dom:VectorSpace, Cod:VectorSpace, t:T)
But VectorSpace? is a category which would make Dom and Cod domains. The domains that currently satisfy VectorSpace? in Axiom are rather limited and seem oddly focused on number theory (finite fields). It is a good thing however that DirectProduct? is a conditional member of this cateogry.
axiom
DirectProduct(2,FRAC INT) has VectorSpace(FRAC INT)
Type: Boolean
Unfortunately:
axiom
DirectProduct(2,DirectProduct(2,FRAC INT)) has VectorSpace(FRAC INT)
Type: Boolean
The problem with VectorSpace? is that the domain [Vector]? is not a member of this category instead it satisfies VectoryCategory?.
Is it possible to treat tensors from CartesianTensor? as maps from VectorSpace? to VectorSpace?? We would like for example:
T:DirectProduct(dim,DirectProduct(dim,FRAC INT)) -> DirectProduct(dim,FRAC INT))
To be a linear operator with two inputs and one output.
A [FreeModule]
? over a [Field]
? is a VectorSpace
? unfortunately this is not currently understood by Axiom:
axiom
FreeModule(Fraction Integer,OrderedVariableList [e1,e1]) has VectorSpace(Fraction Integer)
Type: Boolean