login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for LinearOperator revision 11 of 63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Editor: page
Time: 2011/04/09 01:34:24 GMT-7
Note: composition

changed:
-    id: ()->%
      ++ tensor product
    _/: (%,%) -> %
      ++ operator composition

changed:
-    T == CartesianTensor(1,dim,K)
-    Rep == Record(n:NonNegativeInteger, m:NonNegativeInteger, t:T)
    T ==> CartesianTensor(1,dim,K)
    NNI ==> NonNegativeInteger
    Rep == Record(domain:NNI, codomain:NNI, data:T)

changed:
-    arity(x:%):DirectProduct(2,NonNegativeInteger) == directProduct [rep(x).n,rep(x).m]
    dom(f:%):NNI == rep(f).domain
    cod(f:%):NNI == rep(f).codomain
    dat(f:%):T == rep(f).data

    arity(f:%):DirectProduct(2,NonNegativeInteger) == directProduct [dom f,cod f]

removed:
-    (x:% + y:%):% ==
-      rep(x).t=0 => per [rep(y).n,rep(y).m,rep(y).t]
-      rep(y).t=0 => per [rep(x).n,rep(x).m,rep(x).t]
-      rep(x).n ~= rep(y).n or rep(x).m ~= rep(y).m => error "arity"
-      per [rep(x).n,rep(x).m,rep(x).t+rep(y).t]
-
-    (x:% - y:%):% ==
-      rep(x).t=0 => per [rep(y).n,rep(y).m,-rep(y).t]
-      rep(y).t=0 => per [rep(x).n,rep(x).m,rep(x).t]
-      rep(x).n ~= rep(y).n or rep(x).m ~= rep(y).m => error "arity"
-      per [rep(x).n,rep(x).m,rep(x).t-rep(y).t]
-
-    1 == per [0,0,1]
-
-    --
-    -- f*g : A^n -> A^{m+p} = f:A^n -> A^m * g:A^n -> A^p
-    --
-    (x:% * y:%):% ==
-      output("* rep(x).n",rep(x).n::OutputForm)$OutputPackage
-      output("* rep(y).n",rep(y).n::OutputForm)$OutputPackage
-      rep(x).n ~= rep(y).n => error "arity"
-      r := product(rep(x).t, rep(y).t)
-      u := 1$DirectProduct(dim,K)::T
-      ud:= product(u,kroneckerDelta()$T)
-      for i in 1..rep(x).n repeat
-        --output("rank",rank(r)::OutputForm)$OutputPackage
-        --output("n",rep(x).n::OutputForm)$OutputPackage
-        r := contract(contract(ud,1,r,rep(x).n+1),1,rep(x).n+1)
-        --output("rank",rank(r)::OutputForm)$OutputPackage
-      per [rep(x).n,rep(x).m+rep(y).m,r]
-
-    -- repeated product
-    ((x:%)^(p:NonNegativeInteger)):% ==
-       q:=subtractIfCan(p,1)
-       q case NonNegativeInteger => x^q * x
-       per [rep(x).n,0,1]
-

changed:
-    (x:% + y:%):% ==
-      output("+ rep(x).m",rep(x).m::OutputForm)$OutputPackage
-      output("+ rep(y).m",rep(y).m::OutputForm)$OutputPackage
-      rep(x).m ~= rep(y).m  => error "arity"
-      output("+ rep(x).n",rep(x).n::OutputForm)$OutputPackage
-      output("+ rep(y).n",rep(y).n::OutputForm)$OutputPackage
-      r := product(rep(x).t, rep(y).t)
-      u := 1$DirectProduct(dim,K)::T
-      du:= product(kroneckerDelta()$T,u)
-      for i in 1..rep(y).m repeat
-        output("+ rank",rank(r)::OutputForm)$OutputPackage
-        output("+ rep(y).m",rep(y).m::OutputForm)$OutputPackage
-        r := contract(contract(du,1,r,rep(y).m+1),1,rep(y).m+2)
-        --output("rank",rank(r)::OutputForm)$OutputPackage
-      per [rep(x).n+rep(y).n,rep(y).m,r]
    (f:% + g:%):% ==
      dom(f) ~= dom(g) or cod(f) ~= cod(g) => error "arity"
      per [dom(f),cod(f),dat(f)+dat(g)]

    (f:% - g:%):% ==
      dom(f) ~= dom(f) or cod(g) ~= cod(g) => error "arity"
      per [dom(f),cod(f),dat(f)-dat(g)]

    --
    -- f/g : A^n -> A^p = f:A^n -> A^m / g:A^m -> A^p
    -- g*f : A^n -> A^p = g:A^m -> A^p * f:A^n -> A^m
    --
    (f:% / g:%):% ==
      cod(f) ~= dom(g) => error "arity"
      r:T := product(dat(f), dat(g))
      n:=dom(f)+1
      m:=n+cod(f)
      while m>n repeat
        r := contract(r,n,m)
        m:=m-1
      per [dom f,cod g,r]

    (g:% * f:%):% == f/g

    1:% == per [1,1,kroneckerDelta()$T]

    -- repeated composition
    (f:% ^ p:NNI):% ==
      cod(f) ~= dom(f) => error "arity"
      q:=subtractIfCan(p,1)
      q case NonNegativeInteger => f^q * f
      1

changed:
-    (x:% * p:NonNegativeInteger):% ==
    (f:% * p:NNI):% ==

changed:
-      q case NonNegativeInteger => x*q + x
-      per [0,rep(x).m,1]  -- need identity for + !!!
      q case NonNegativeInteger => f*q + f
      0

changed:
-      rep(x).n ~= rep(y).n or rep(x).m ~= rep(y).m => error "arity"
-      rep(x).t = rep(y).t
-
-    (x:K * y:%):% == per [rep(y).n,rep(y).m,x*rep(y).t]
-
-    (x:% * y:K):% == per [rep(x).n,rep(x).m,rep(x).t*y]
-
-    elt(x:%,y:%):% ==
-      r:=product(rep(x).t,rep(y).t)
-      yn:=rep(y).n  -- outputs of y
-      xm:=rep(x).m  -- inputs of x
-      while yn>0 and xm>0 repeat
-        output("yn",yn::OutputForm)$OutputPackage
-        output("xm",xm::OutputForm)$OutputPackage
-        output("rank",rank(r)::OutputForm)$OutputPackage
-        r:=contract(r,rep(y).n+xm,yn+rep(y).m)
-        yn:=subtractIfCan(yn,1)::NonNegativeInteger
-        xm:=subtractIfCan(xm,1)::NonNegativeInteger
-      per [rep(x).n+xm,yn+rep(y).m,r]
-
-    id():% == per [1,1,kroneckerDelta()$T]
      dom(x) ~= dom(y) or cod(x) ~= cod(y) => error "arity"
      dat(x) = dat(y)

    (x:K * y:%):% == per [dom(y),cod(y),x*dat(y)]

    (x:% * y:K):% == per [dom(x),cod(x),dat(x)*y]

changed:
-      #removeDuplicates([rep(y).n for y in x])~=1 or
-        #removeDuplicates([rep(y).m for y in x])~=1 => error "arity"
-      per [rep(first x).n+1,rep(first x).m,[rep(y).t for y in x]::T]$Rep
      #removeDuplicates([dom(y) for y in x])~=1 or
        #removeDuplicates([cod(y) for y in x])~=1 => error "arity"
      per [dom(first x)+1,cod(first x),[dat(y) for y in x]::T]$Rep

changed:
-      #removeDuplicates([rep(y).n for y in x])~=1 or
-        #removeDuplicates([rep(y).m for y in x])~=1 => error "arity"
-      per [rep(first x).n,rep(first x).m+1,[rep(y).t for y in x]::T]$Rep
-
-    coerce(x:%):OutputForm == (rep(x).t)::OutputForm
      #removeDuplicates([dom(y) for y in x])~=1 or
        #removeDuplicates([cod(y) for y in x])~=1 => error "arity"
      per [dom(first x),cod(first x)+1,[dat(y) for y in x]::T]$Rep

    coerce(x:%):OutputForm == (dat(x))::OutputForm

Linear transformations (operators) over n-dimensional cartesian vector spaces oveer a commutative ring K. Members of this domain are morphisms K^n \to K^m. Products, co-products and composition (grafting) of morphisms is implemented. Operators are represented internally as tensors.

Operator composition and products can be visualized by directed graphs (read from top to bottom) such as:

      n = 3     inputs

      \  |  /         \  /   /         \              |
       \ | /           \/   /           \            / \
        \|/             \  /           / \          /   \
        / \              \/           /   \         \   /
       /   \              \          /   / \         \ /
      /     \              \        /   /   \         |

      m = 2     outputs

Lines (edges) in the graph represent vectors, nodes represent operators. Horizontal juxtaposition represents product. Vertical juxtaposition represents composition.

spad
)abbrev domain LIN LinearOperator
LinearOperator(dim:NonNegativeInteger,K:CommutativeRing): Join(Ring,BiModule(K,K)) with
    arity: % -> DirectProduct(2,NonNegativeInteger)
    elt: (%,%) -> %
      ++ tensor product
    _/: (%,%) -> %
      ++ operator composition
    inp: List K -> %
      ++ incoming vector
    inp: List % -> %
    out: List K -> %
      ++ output vector
    out: List % -> %
    coerce: SquareMatrix(dim,K) -> %
    _*: (%,NonNegativeInteger) -> %
  == add
    import List NonNegativeInteger
    T ==> CartesianTensor(1,dim,K)
    NNI ==> NonNegativeInteger
    Rep == Record(domain:NNI, codomain:NNI, data:T)
    rep(x:%):Rep == x pretend Rep
    per(x:Rep):% == x pretend %
dom(f:%):NNI == rep(f).domain cod(f:%):NNI == rep(f).codomain dat(f:%):T == rep(f).data
arity(f:%):DirectProduct(2,NonNegativeInteger) == directProduct [dom f,cod f]
0 == per [0,0,0]
-- -- f+g : A^{n+m} -> A^p = f:A^n -> A^p + g:A^m -> A^p -- (f:% + g:%):% == dom(f) ~= dom(g) or cod(f) ~= cod(g) => error "arity" per [dom(f),cod(f),dat(f)+dat(g)]
(f:% - g:%):% == dom(f) ~= dom(f) or cod(g) ~= cod(g) => error "arity" per [dom(f),cod(f),dat(f)-dat(g)]
-- -- f/g : A^n -> A^p = f:A^n -> A^m / g:A^m -> A^p -- g*f : A^n -> A^p = g:A^m -> A^p * f:A^n -> A^m -- (f:% / g:%):% == cod(f) ~= dom(g) => error "arity" r:T := product(dat(f), dat(g)) n:=dom(f)+1 m:=n+cod(f) while m>n repeat r := contract(r,n,m) m:=m-1 per [dom f,cod g,r]
(g:% * f:%):% == f/g
1:% == per [1,1,kroneckerDelta()$T]
-- repeated composition (f:% ^ p:NNI):% == cod(f) ~= dom(f) => error "arity" q:=subtractIfCan(p,1) q case NonNegativeInteger => f^q * f 1
-- repeated sum (f:% * p:NNI):% == q:=subtractIfCan(p,1) q case NonNegativeInteger => f*q + f 0
(x:% = y:%):Boolean == dom(x) ~= dom(y) or cod(x) ~= cod(y) => error "arity" dat(x) = dat(y)
(x:K * y:%):% == per [dom(y),cod(y),x*dat(y)]
(x:% * y:K):% == per [dom(x),cod(x),dat(x)*y]
inp(x:List K):% == per [1,0,entries(x)::T]
inp(x:List %):% == #removeDuplicates([dom(y) for y in x])~=1 or #removeDuplicates([cod(y) for y in x])~=1 => error "arity" per [dom(first x)+1,cod(first x),[dat(y) for y in x]::T]$Rep
out(x:List K):% == per [0,1,entries(x)::T]
out(x:List %):% == #removeDuplicates([dom(y) for y in x])~=1 or #removeDuplicates([cod(y) for y in x])~=1 => error "arity" per [dom(first x),cod(first x)+1,[dat(y) for y in x]::T]$Rep
coerce(x:%):OutputForm == (dat(x))::OutputForm
spad
   Compiling FriCAS source code from file 
      /var/zope2/var/LatexWiki/2505091042092146672-25px001.spad using 
      old system compiler.
   LIN abbreviates domain LinearOperator 
------------------------------------------------------------------------
   initializing NRLIB LIN for LinearOperator 
   compiling into NRLIB LIN 
   importing List NonNegativeInteger
   processing macro definition T$ ==> CartesianTensor(One,dim,K) 
   processing macro definition NNI ==> NonNegativeInteger 
   compiling local rep : $ -> Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K))
      LIN;rep is replaced by x 
Time: 0.18 SEC.
compiling local per : Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K)) -> $ LIN;per is replaced by x Time: 0.01 SEC.
compiling local dom : $ -> NonNegativeInteger Time: 0 SEC.
compiling local cod : $ -> NonNegativeInteger Time: 0 SEC.
compiling local dat : $ -> CartesianTensor(One,dim,K) Time: 0.02 SEC.
compiling exported arity : $ -> DirectProduct(2,NonNegativeInteger) Time: 0.05 SEC.
compiling exported Zero : () -> $ Time: 0.01 SEC.
compiling exported + : ($,$) -> $ Time: 0.02 SEC.
compiling exported - : ($,$) -> $ Time: 0.02 SEC.
compiling exported / : ($,$) -> $ Time: 0.02 SEC.
compiling exported * : ($,$) -> $ Time: 0.01 SEC.
compiling exported One : () -> $ Time: 0 SEC.
compiling exported ^ : ($,NonNegativeInteger) -> $ Time: 0.02 SEC.
compiling exported * : ($,NonNegativeInteger) -> $ Time: 0.02 SEC.
compiling exported = : ($,$) -> Boolean Time: 0.01 SEC.
compiling exported * : (K,$) -> $ Time: 0.01 SEC.
compiling exported * : ($,K) -> $ Time: 0 SEC.
compiling exported inp : List K -> $ Time: 0.38 SEC.
compiling exported inp : List $ -> $ Time: 0.10 SEC.
compiling exported out : List K -> $ Time: 0 SEC.
compiling exported out : List $ -> $ Time: 0.02 SEC.
compiling exported coerce : $ -> OutputForm Time: 0.01 SEC.
(time taken in buildFunctor: 10)
;;; *** |LinearOperator| REDEFINED
;;; *** |LinearOperator| REDEFINED Time: 0.01 SEC.
Cumulative Statistics for Constructor LinearOperator Time: 0.92 seconds
finalizing NRLIB LIN Processing LinearOperator for Browser database: --->-->LinearOperator((arity ((DirectProduct 2 (NonNegativeInteger)) %))): Not documented!!!! --------(elt (% % %))--------- --------(/ (% % %))--------- --------(inp (% (List K)))--------- --->-->LinearOperator((inp (% (List %)))): Not documented!!!! --------(out (% (List K)))--------- --->-->LinearOperator((out (% (List %)))): Not documented!!!! --->-->LinearOperator((coerce (% (SquareMatrix dim K)))): Not documented!!!! --->-->LinearOperator((* (% % (NonNegativeInteger)))): Not documented!!!! --->-->LinearOperator(constructor): Not documented!!!! --->-->LinearOperator(): Missing Description ; compiling file "/var/zope2/var/LatexWiki/LIN.NRLIB/LIN.lsp" (written 09 APR 2011 01:34:08 AM):
; /var/zope2/var/LatexWiki/LIN.NRLIB/LIN.fasl written ; compilation finished in 0:00:00.448 ------------------------------------------------------------------------ LinearOperator is now explicitly exposed in frame initial LinearOperator will be automatically loaded when needed from /var/zope2/var/LatexWiki/LIN.NRLIB/LIN
>> System error: The bounding indices 163 and 162 are bad for a sequence of length 162. See also: The ANSI Standard, Glossary entry for "bounding index designator" The ANSI Standard, writeup for Issue SUBSEQ-OUT-OF-BOUNDS:IS-AN-ERROR

Construction operators: input and output

axiom
L:=LIN(2,FRAC POLY INT)

\label{eq1}\hbox{\axiomType{LinearOperator}\ } (2, \hbox{\axiomType{Fraction}\ } (\hbox{\axiomType{Polynomial}\ } (\hbox{\axiomType{Integer}\ })))(1)
Type: Type
axiom
A1:L:=inp[script(a,[[1,i]]) for i in 1..2]

\label{eq2}\left[{a_{1, \: 1}}, \:{a_{1, \: 2}}\right](2)
Type: LinearOperator?(2,Fraction(Polynomial(Integer)))
axiom
arity A1

\label{eq3}\left[ 1, \: 0 \right](3)
Type: DirectProduct?(2,NonNegativeInteger?)
axiom
A2:L:=inp[script(a,[[2,i]]) for i in 1..2]

\label{eq4}\left[{a_{2, \: 1}}, \:{a_{2, \: 2}}\right](4)
Type: LinearOperator?(2,Fraction(Polynomial(Integer)))
axiom
A:L:=inp[A1,A2]

\label{eq5}\left[ 
\begin{array}{cc}
{a_{1, \: 1}}&{a_{1, \: 2}}
\
{a_{2, \: 1}}&{a_{2, \: 2}}
(5)
Type: LinearOperator?(2,Fraction(Polynomial(Integer)))
axiom
arity A

\label{eq6}\left[ 2, \: 0 \right](6)
Type: DirectProduct?(2,NonNegativeInteger?)
axiom
B1:L:=out[script(b,[[],[1,i]]) for i in 1..2]

\label{eq7}\left[{b^{1, \: 1}}, \:{b^{1, \: 2}}\right](7)
Type: LinearOperator?(2,Fraction(Polynomial(Integer)))
axiom
arity B1

\label{eq8}\left[ 0, \: 1 \right](8)
Type: DirectProduct?(2,NonNegativeInteger?)
axiom
B2:L:=out[script(b,[[],[2,i]]) for i in 1..2]

\label{eq9}\left[{b^{2, \: 1}}, \:{b^{2, \: 2}}\right](9)
Type: LinearOperator?(2,Fraction(Polynomial(Integer)))
axiom
B:L:=out[B1,B2]

\label{eq10}\left[ 
\begin{array}{cc}
{b^{1, \: 1}}&{b^{1, \: 2}}
\
{b^{2, \: 1}}&{b^{2, \: 2}}
(10)
Type: LinearOperator?(2,Fraction(Polynomial(Integer)))
axiom
arity B

\label{eq11}\left[ 0, \: 2 \right](11)
Type: DirectProduct?(2,NonNegativeInteger?)

Products


f<em>g : A^n \to A^{m+p} = f:A^n \to A^m </em> g:A^n \to A^p
 
axiom
A12p := A1 * A2; A12p::OutputForm = A1::OutputForm * A2::OutputForm
>> Error detected within library code: arity

Powers

axiom
A3p:=(A1*A1)*A1
>> Error detected within library code: arity

axiom
B3p:=(B1*B1)*B1
>> Error detected within library code: arity

Sums


f+g : A^{n+m} \to A^p = f:A^n \to A^p + g:A^m \to A^p
 
axiom
A12s := A1 + A2; A12s::OutputForm = A1::OutputForm + A2::OutputForm

\label{eq12}{\left[{{a_{2, \: 1}}+{a_{1, \: 1}}}, \:{{a_{2, \: 2}}+{a_{1, \: 2}}}\right]}={{\left[{a_{1, \: 1}}, \:{a_{1, \: 2}}\right]}+{\left[{a_{2, \: 1}}, \:{a_{2, \: 2}}\right]}}(12)
Type: Equation(OutputForm?)
axiom
arity(A12s)::OutputForm = arity(A1)::OutputForm + arity(A2)::OutputForm

\label{eq13}{\left[ 1, \: 0 \right]}={{\left[ 1, \: 0 \right]}+{\left[ 1, \: 0 \right]}}(13)
Type: Equation(OutputForm?)
axiom
B12s := B1 + B2; B12s::OutputForm = B1::OutputForm + B2::OutputForm

\label{eq14}{\left[{{b^{2, \: 1}}+{b^{1, \: 1}}}, \:{{b^{2, \: 2}}+{b^{1, \: 2}}}\right]}={{\left[{b^{1, \: 1}}, \:{b^{1, \: 2}}\right]}+{\left[{b^{2, \: 1}}, \:{b^{2, \: 2}}\right]}}(14)
Type: Equation(OutputForm?)
axiom
arity(B12s)::OutputForm = arity(B1)::OutputForm + arity(B2)::OutputForm

\label{eq15}{\left[ 0, \: 1 \right]}={{\left[ 0, \: 1 \right]}+{\left[ 0, \: 1 \right]}}(15)
Type: Equation(OutputForm?)

Multiplication

axiom
A3s:=(A1+A1)+A1

\label{eq16}\left[{3 \ {a_{1, \: 1}}}, \:{3 \ {a_{1, \: 2}}}\right](16)
Type: LinearOperator?(2,Fraction(Polynomial(Integer)))
axiom
arity(A3s)

\label{eq17}\left[ 1, \: 0 \right](17)
Type: DirectProduct?(2,NonNegativeInteger?)
axiom
test(A3s=A1+(A1+A1))

\label{eq18} \mbox{\rm true} (18)
Type: Boolean
axiom
test(A3s=A1*3)
>> Error detected within library code: arity

axiom
B3s:=(B1+B1)+B1

\label{eq19}\left[{3 \ {b^{1, \: 1}}}, \:{3 \ {b^{1, \: 2}}}\right](19)
Type: LinearOperator?(2,Fraction(Polynomial(Integer)))
axiom
arity(B3s)

\label{eq20}\left[ 0, \: 1 \right](20)
Type: DirectProduct?(2,NonNegativeInteger?)
axiom
test(B3s=B1+(B1+B1))

\label{eq21} \mbox{\rm true} (21)
Type: Boolean
axiom
test(B3s=B1*3)
>> Error detected within library code: arity

Expected error

axiom
B1A1:=B1*A1

\label{eq22}\left[ 
\begin{array}{cc}
{{b^{1, \: 1}}\ {a_{1, \: 1}}}&{{b^{1, \: 2}}\ {a_{1, \: 1}}}
\
{{b^{1, \: 1}}\ {a_{1, \: 2}}}&{{b^{1, \: 2}}\ {a_{1, \: 2}}}
(22)
Type: LinearOperator?(2,Fraction(Polynomial(Integer)))
axiom
arity(B1A1)

\label{eq23}\left[ 1, \: 1 \right](23)
Type: DirectProduct?(2,NonNegativeInteger?)

Composition

axiom
AB11:=A1 B1
Internal Error The function elt with signature hashcode is missing from domain LinearOperator2(Fraction (Polynomial (Integer)))

Multiple inputs and outputs

axiom
W:L:=out[inp[inp([script(w,[[i,j],[k]]) for j in 1..2])$L for i in 1..2] for k in 1..2]

\label{eq24}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cc}
{w_{1, \: 1}^{1}}&{w_{1, \: 2}^{1}}
\
{w_{2, \: 1}^{1}}&{w_{2, \: 2}^{1}}
(24)
Type: LinearOperator?(2,Fraction(Polynomial(Integer)))
axiom
WB1:=W B1
Internal Error The function elt with signature hashcode is missing from domain LinearOperator2(Fraction (Polynomial (Integer)))

product and composition --Bill Page, Wed, 09 Mar 2011 18:53:36 -0800 reply
Another kind of diagram:
  ___ _       _        _  _
  ___ _)  =   _\_ _    _\/_
  _/          ___ _)   _/\_

Linear operators as morphisms --Bill Page, Thu, 10 Mar 2011 09:42:33 -0800 reply
If linear operators really are to be morphisms (in the sense of category theory) then they must have a domain and a co-domain that are vector spaces, not just an in-degree and out-degree. E.g.:
  Rep == Record(Dom:VectorSpace, Cod:VectorSpace, t:T)

But VectorSpace? is a category which would make Dom and Cod domains. The domains that currently satisfy VectorSpace? in Axiom are rather limited and seem oddly focused on number theory (finite fields). It is a good thing however that DirectProduct? is a conditional member of this cateogry.

axiom
DirectProduct(2,FRAC INT) has VectorSpace(FRAC INT)

\label{eq25} \mbox{\rm true} (25)
Type: Boolean

Unfortunately:

axiom
DirectProduct(2,DirectProduct(2,FRAC INT)) has VectorSpace(FRAC INT)

\label{eq26} \mbox{\rm false} (26)
Type: Boolean

The problem with VectorSpace? is that the domain [Vector]? is not a member of this category instead it satisfies VectoryCategory?.

Is it possible to treat tensors from CartesianTensor? as maps from VectorSpace? to VectorSpace?? We would like for example:

  T:DirectProduct(dim,DirectProduct(dim,FRAC INT)) -> DirectProduct(dim,FRAC INT))

To be a linear operator with two inputs and one output.

A [FreeModule]? over a [Field]? is a VectorSpace? unfortunately this is not currently understood by Axiom:
axiom
FreeModule(Fraction Integer,OrderedVariableList [e1,e1]) has VectorSpace(Fraction Integer)

\label{eq27} \mbox{\rm true} (27)
Type: Boolean