login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for LinearOperator revision 34 of 63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Editor: Bill Page
Time: 2011/04/13 01:32:13 GMT-7
Note: fix partial evaluation

changed:
-      n:=subtractIfCan(dom ff,cod gg)
-      f:=ff; n case R => f:=1^n*ff
-      m:=subtractIfCan(cod gg, dom ff)
-      g:=gg; m case R => g:=1^m*gg
      n:=subtractIfCan(cod ff,dom gg)
      -- apply g on f from the right, pass extra f outputs on the left
      if n case R then
        g:=n+dom(gg)
      else
        g:=dom(gg)
      m:=subtractIfCan(dom gg, cod ff)
      --  apply g on f from the right, add extra g inputs on the right
      if m case R then
        f:=dom(ff)+m
      else
        f:=dom(ff)

changed:
-      n:=subtractIfCan(dom ff,cod gg)
-      f:=ff; n case R => f:=ff*1^n
-      m:=subtractIfCan(cod gg, dom ff)
-      g:=gg; m case R => g:=gg*1^m
      n:=subtractIfCan(cod ff,dom gg)
      -- apply g on f from the left, pass extra f outputs on the right
      if n case R then
        g:=dom(gg)+n
      else
        g:=dom(gg)
      m:=subtractIfCan(dom gg, cod ff)
      --  apply g on f from the left, add extra g inputs on the left
      if m case R then
        f:=m+dom(ff)
      else
        f:=dom(ff)

changed:
-      per [dom f,cod g]
      f/g

added:
    -- identity for sum (trivial zero map)

added:
    -- identity for product
    1:% == per [0,0,1]
    -- identity for composition
    I==per([1,1,kroneckerDelta()$T])

added:
      -- zero map (non-trivial)

removed:
-
-    -- evaluation:
-    --
-    -- g f : A^n -> A^p = g:A^m -> A^p * f:A^n -> A^m
-    apply(gg:%,ff:%):% ==
-      -- partial application from the right
-      n:=subtractIfCan(dom ff,cod gg)
-      f:=ff; n case NNI => f:=1^n*ff
-      m:=subtractIfCan(cod gg, dom ff)
-      g:=gg; m case NNI => g:=1^m*gg
-      f/g
-
-    -- f/g : A^n -> A^p = f:A^n -> A^m / g:A^m -> A^p
-    (ff:% / gg:%):% ==
-      -- partial application from the left
-      n:=subtractIfCan(dom ff,cod gg)
-      f:=ff; n case NNI => f:=ff*1^n
-      m:=subtractIfCan(cod gg, dom ff)
-      g:=gg; m case NNI => g:=gg*1^m
-      --dom(g) ~= cod(f) => error "arity"
-      r:T := product(dat f, dat g)
-      g1:Integer:=dom(f)+1
-      f1:Integer:=dom(f)+cod(f)+1
-      for i in 0..cod(f)-1 repeat
-        r := contract(r,g1,f1-i)
-      per [dom(f),cod(g),r]

changed:
-      r:=per([1,1,kroneckerDelta()$T])^#p
      r:=I^#p

removed:
-    1:% == per [0,0,1]

changed:
-      per [dom f,cod f,1]
      1

    -- evaluation:
    --
    -- g f : A^n -> A^p = g:A^m -> A^p / f:A^n -> A^m
    apply(gg:%,ff:%):% ==
      -- partial application from the right
      n:=subtractIfCan(cod ff,dom gg)
      -- apply g on f from the right, pass extra f outputs on the left
      if n case NNI then
        g:=I^n*gg
      else
        g:=gg
      m:=subtractIfCan(dom gg, cod ff)
      --  apply g on f from the right, add extra g inputs on the right
      if m case NNI then
        f:=ff*I^m
      else
        f:=ff
      f/g

    -- f/g : A^n -> A^p = f:A^n -> A^m / g:A^m -> A^p
    (ff:% / gg:%):% ==
      -- partial application from the left
      n:=subtractIfCan(cod ff,dom gg)
      -- apply g on f from the left, pass extra f outputs on the right
      if n case NNI then
        g:=gg*I^n
      else
        g:=gg
      m:=subtractIfCan(dom gg, cod ff)
      --  apply g on f from the left, add extra g inputs on the left
      if m case NNI then
        f:=I^m*ff
      else
        f:=ff
      -- dom(g) ~= cod(f) => error "arity"
      r:T := product(dat f, dat g)
      g1:Integer:=dom(f)+1
      f1:Integer:=dom(f)+cod(f)+1
      for i in 0..cod(f)-1 repeat
        r := contract(r,g1,f1-i)
      per [dom(f),cod(g),r]

removed:
-Lists of applicators
-
-Lists of members from all domains that export a function with signature::
-
-  /: (%,%) -> %
-
-now become operators. I had no idea that a package of this kind was even possible!
-
-Note:  In particular this will affect all Fields.
-\begin{spad}
-)abbrev package LINFUN1 LinearOperatorFunctions1
-LinearOperatorFunctions1(S): Exports == Implementation where
-  S:with
-    _/:(%,%)->%
-
-  Exports ==> with
-    _/:(S,List S) -> List S
-    --  ++ lists of applicators
-    apply:(List S,S) -> List S
-      ++ lists of applicators
-
-  Implementation ==> add
-    apply(gg:List S,ff:S):List S == [(ff/g)$S for g in gg]
-    (f:S / g:List S):List S == [(f/gg)$S for gg in g]
-\end{spad}
-

added:

Conveniences

\begin{axiom}
-- summation
macro Σ(x,b,i)==reduce(+,[x*b.i for i in 1..dim])
-- list comprehension
macro Ξ(f,i)==[f for i in 1..dim]
-- super- and sub-scripts
macro /\(x,s)==superscript(x,s)
macro \/(x,s)==subscript(x,s)
\end{axiom}

changed:
-Dx:=basisVectors()$L                    
-dx:=basisForms()$L                      
-matrix [[dx.i * Dx.j for j in 1..dim] for i in 1..dim]
-matrix [[Dx.i / dx.j for j in 1..dim] for i in 1..dim]
-\end{axiom}
-
-Conveniences
-
-\begin{axiom}
-macro Σ(x,b,i)==reduce(+,[x*b.i for i in 1..dim])
-macro /\(x,s)==superscript(x,s)
-macro \/(x,s)==subscript(x,s)
-\end{axiom}
Dx:=basisVectors()$L
dx:=basisForms()$L
matrix Ξ(Ξ( dx.i * Dx.j, i),j)
matrix Ξ(Ξ( Dx.i / dx.j, i),j)
\end{axiom}

removed:
-List of Applicators
-\begin{axiom}
-B/[A1,A2]
-\end{axiom}
-
-Possibly surprising consequence of the generality of the LinearOperatorFunctions1 package.
-
-Does this fairly deep semantic change have any bad side-effects on Axiom's apparent "syntax"? I mean does this cause notational problems in other parts of Axiom?
-\begin{axiom}
-1.0/[2.0,3.0]
-[2.0,3.0](2.0)
-\end{axiom}
-

Introduction

Bi-graded linear operators (transformations) over n-dimensional vector spaces on a commutative ring K. Members of this domain are morphisms K^n \to K^m. Products, permutations and composition (grafting) of morphisms are implemented. Operators are represented internally as tensors.

Operator composition and products can be visualized by directed graphs (read from top to bottom) such as:

      n = 3     inputs

      \  |  /         \  /   /         \              |
       \ | /           \/   /           \            / \
        \|/             \  /           / \          /   \
        / \              \/           /   \         \   /
       /   \              \          /   / \         \ /
      /     \              \        /   /   \         |

      m = 2     outputs

Lines (edges) in the graph represent vectors, nodes represent operators. Horizontal juxtaposition represents product. Vertical juxtaposition represents composition.

See examples and documentation below

I would like you to make brief comments in the form at the bottom of this web page. For more detailed but related comments click discussion on the top menu.

Regards, Bill Page.

Source Code

We try to start the right way by defining the concept of a monoidal category.

Ref: http://en.wikipedia.org/wiki/PROP_(category_theory)

spad
)abbrev category MONAL Monoidal
Monoidal(R:AbelianSemiGroup):Category == Monoid with
    dom: % -> R
      ++ domain
    cod: % -> R
      ++ co-domain
    _/: (%,%) -> %
      ++ vertical composition f/g = g*f
    apply:(%,%) -> %
      ++ horizontal composition
--  add
--    (f:% / g:%):% == apply(g,f)
spad
   Compiling FriCAS source code from file 
      /var/zope2/var/LatexWiki/2643402771659714163-25px001.spad using 
      old system compiler.
   MONAL abbreviates category Monoidal 
------------------------------------------------------------------------
   initializing NRLIB MONAL for Monoidal 
   compiling into NRLIB MONAL 
;;; *** |Monoidal| REDEFINED Time: 0.04 SEC.
finalizing NRLIB MONAL Processing Monoidal for Browser database: --------(dom (R %))--------- --------(cod (R %))--------- --------(/ (% % %))--------- --->-->Monoidal((/ (% % %))): Improper first word in comments: vertical "vertical composition \\spad{f/g} = \\spad{g*f}" --------(apply (% % %))--------- --->-->Monoidal(constructor): Not documented!!!! --->-->Monoidal(): Missing Description ; compiling file "/var/zope2/var/LatexWiki/MONAL.NRLIB/MONAL.lsp" (written 13 APR 2011 01:31:34 AM):
; /var/zope2/var/LatexWiki/MONAL.NRLIB/MONAL.fasl written ; compilation finished in 0:00:00.281 ------------------------------------------------------------------------ Monoidal is now explicitly exposed in frame initial Monoidal will be automatically loaded when needed from /var/zope2/var/LatexWiki/MONAL.NRLIB/MONAL
>> System error: The bounding indices 163 and 162 are bad for a sequence of length 162. See also: The ANSI Standard, Glossary entry for "bounding index designator" The ANSI Standard, writeup for Issue SUBSEQ-OUT-OF-BOUNDS:IS-AN-ERROR

The initial object in this category is the domain Prop (Products and Permutations).

spad
)abbrev domain PROP Prop
Prop(): Exports == Implementation where
  R ==> NonNegativeInteger
Exports ==> Join(Monoidal R, CoercibleTo OutputForm) with _/:(R,R) -> %
Implementation ==> add Rep == Record(domain:R,codomain:R) rep(x:%):Rep == x pretend Rep per(x:Rep):% == x pretend %
dom(f:%):R == rep(f).domain cod(f:%):R == rep(f).codomain
coerce(f:%):OutputForm == dom(f)::OutputForm / cod(f)::OutputForm (f:R / g:R):% == per [f,g] apply(gg:%,ff:%):% == -- partial application from the right n:=subtractIfCan(cod ff,dom gg) -- apply g on f from the right, pass extra f outputs on the left if n case R then g:=n+dom(gg) else g:=dom(gg) m:=subtractIfCan(dom gg, cod ff) -- apply g on f from the right, add extra g inputs on the right if m case R then f:=dom(ff)+m else f:=dom(ff) f/g (ff:% / gg:%):% == -- partial application from the left n:=subtractIfCan(cod ff,dom gg) -- apply g on f from the left, pass extra f outputs on the right if n case R then g:=dom(gg)+n else g:=dom(gg) m:=subtractIfCan(dom gg, cod ff) -- apply g on f from the left, add extra g inputs on the left if m case R then f:=m+dom(ff) else f:=dom(ff) --dom(g) ~= cod(f) => error "arity" f/g 1:% == per [0,0] (f:% * g:%):% == per [dom(f)+dom(g),cod(f)+cod(g)] 0:% == per [0,0] -- preserves arity (f:% + g:%):% == dom(f)~=dom(g) or cod(g) ~= cod(g) => error "arity" f
spad
   Compiling FriCAS source code from file 
      /var/zope2/var/LatexWiki/3615029938084805288-25px002.spad using 
      old system compiler.
   PROP abbreviates domain Prop 
------------------------------------------------------------------------
   initializing NRLIB PROP for Prop 
   compiling into NRLIB PROP 
   compiling local rep : $ -> Record(domain: NonNegativeInteger,codomain: NonNegativeInteger)
      PROP;rep is replaced by x 
Time: 0.04 SEC.
compiling local per : Record(domain: NonNegativeInteger,codomain: NonNegativeInteger) -> $ PROP;per is replaced by x Time: 0 SEC.
compiling exported dom : $ -> NonNegativeInteger Time: 0.01 SEC.
compiling exported cod : $ -> NonNegativeInteger Time: 0 SEC.
compiling exported coerce : $ -> OutputForm Time: 0.01 SEC.
compiling exported / : (NonNegativeInteger,NonNegativeInteger) -> $ Time: 0.01 SEC.
compiling exported apply : ($,$) -> $ Time: 0.01 SEC.
compiling exported / : ($,$) -> $ Time: 0.01 SEC.
compiling exported One : () -> $ Time: 0 SEC.
compiling exported * : ($,$) -> $ Time: 0 SEC.
compiling local Zero : () -> $ Time: 0.01 SEC.
compiling local + : ($,$) -> $ Time: 0.01 SEC.
(time taken in buildFunctor: 0)
;;; *** |Prop| REDEFINED
;;; *** |Prop| REDEFINED Time: 0 SEC.
Cumulative Statistics for Constructor Prop Time: 0.11 seconds
finalizing NRLIB PROP Processing Prop for Browser database: --->-->Prop((/ (% R R))): Not documented!!!! --->-->Prop(constructor): Not documented!!!! --->-->Prop(): Missing Description ; compiling file "/var/zope2/var/LatexWiki/PROP.NRLIB/PROP.lsp" (written 13 APR 2011 01:31:35 AM):
; /var/zope2/var/LatexWiki/PROP.NRLIB/PROP.fasl written ; compilation finished in 0:00:00.218 ------------------------------------------------------------------------ Prop is now explicitly exposed in frame initial Prop will be automatically loaded when needed from /var/zope2/var/LatexWiki/PROP.NRLIB/PROP
>> System error: The bounding indices 163 and 162 are bad for a sequence of length 162. See also: The ANSI Standard, Glossary entry for "bounding index designator" The ANSI Standard, writeup for Issue SUBSEQ-OUT-OF-BOUNDS:IS-AN-ERROR

The LinearOperator? domain is Moniodal over NonNegativeInteger?. It is the free algebra over Prop with n-generators.

Ref: http://en.wikipedia.org/wiki/Category_of_vector_spaces

  • all members of this domain have the same dimension
  • it might be useful (but much more complicated) to allow source and target dimensions to be different

spad
)abbrev domain LIN LinearOperator
LinearOperator(dim:NNI,gen:OrderedFinite,K:CommutativeRing): Exports == Implementation where
  NNI ==> NonNegativeInteger
  T ==> CartesianTensor(1,dim,K)
Exports ==> Join(Field, BiModule(K,K), Monoidal NNI, RetractableTo K) with inp: List K -> % ++ incoming vector inp: List % -> % out: List K -> % ++ output vector out: List % -> % arity: % -> Prop basisVectors: () -> List % basisForms: () -> List % tensor: % -> T map: (K->K,%) -> % ravel: % -> List K unravel: (Prop,List K) -> % coerce:(x:List PositiveInteger) -> % ++ identity for composition and permutations of its products coerce:(x:List None) -> % ++ [] = 1
Implementation ==> add import List NNI Rep == Record(domain:NNI, codomain:NNI, data:T) rep(x:%):Rep == x pretend Rep per(x:Rep):% == x pretend %
-- Prop (arity) dom(f:%):NNI == rep(f).domain cod(f:%):NNI == rep(f).codomain dat(f:%):T == rep(f).data arity(f:%):Prop == dom(f)/cod(f)
retractIfCan(f:%):Union(K,"failed") == dom(f)=0 and cod(f)=0 => retract(dat f)$T return "failed" retract(f:%):K == dom(f)=0 and cod(f)=0 => retract(dat f)$T error "failed"
-- basis basisVectors():List % == [per [0,1,entries(row(1,i)$SquareMatrix(dim,K))::T] for i in 1..dim] basisForms():List % == [per [1,0,entries(row(1,i)$SquareMatrix(dim,K))::T] for i in 1..dim]
-- manipulation map(f:K->K, g:%):% == per [dom g,cod g,unravel(map(f,ravel dat g))$T] ravel(g:%):List K == ravel dat g unravel(p:Prop,r:List K):% == dim^(dom(p)+cod(p)) ~= #r => error "failed" per [dom(p),cod(p),unravel(r)$T] tensor(x:%):T == dat(x)
-- sum (f:% + g:%):% == dat(f)=0 => g dat(g)=0 => f dom(f) ~= dom(g) or cod(f) ~= cod(g) => error "arity" per [dom f,cod f,dat(f)+dat(g)]
(f:% - g:%):% == dat(f)=0 => g dat(g)=0 => f dom(f) ~= dom(f) or cod(g) ~= cod(g) => error "arity" per [dom f, cod f,dat(f)-dat(g)]
-- identity for sum (trivial zero map) 0 == per [0,0,0] -- identity for product 1:% == per [0,0,1] -- identity for composition I==per([1,1,kroneckerDelta()$T])
-- repeated sum (p:NNI * f:%):% == p=1 => f q:=subtractIfCan(p,1) q case NNI => q*f + f -- zero map (non-trivial) per [dom f,cod f,0*dat(f)]
-- permutations and identities coerce(p:List PositiveInteger):% == r:=I^#p #p = 1 and p.1 = 1 => return r p1:List Integer:=[i for i in 1..#p] p2:List Integer:=[#p+i for i in p] p3:=concat(p1,p2) per [#p,#p,reindex(dat r,p3)] coerce(p:List None):% == per [0,0,1] coerce(x:K):% == 1*x
-- product (f:% * g:%):% == r:T := product(dat f,dat g) -- dom(f) + cod(f) + dom(g) + cod(g) p:List Integer := concat _ [[i for i in 1..dom(f)], _ [dom(f)+cod(f)+i for i in 1..dom(g)], _ [dom(f)+i for i in 1..cod(f)], _ [dom(f)+dom(g)+cod(f)+i for i in 1..cod(g)]] -- dom(f) + dom(g) + cod(f) + cod(g) per [dom(f)+dom(g),cod(f)+cod(g),reindex(r,p)]
-- repeated product (f:% ^ p:NNI):% == p=1 => f q:=subtractIfCan(p,1) q case NNI => f^q * f 1
-- evaluation: -- -- g f : A^n -> A^p = g:A^m -> A^p / f:A^n -> A^m apply(gg:%,ff:%):% == -- partial application from the right n:=subtractIfCan(cod ff,dom gg) -- apply g on f from the right, pass extra f outputs on the left if n case NNI then g:=I^n*gg else g:=gg m:=subtractIfCan(dom gg, cod ff) -- apply g on f from the right, add extra g inputs on the right if m case NNI then f:=ff*I^m else f:=ff f/g
-- f/g : A^n -> A^p = f:A^n -> A^m / g:A^m -> A^p (ff:% / gg:%):% == -- partial application from the left n:=subtractIfCan(cod ff,dom gg) -- apply g on f from the left, pass extra f outputs on the right if n case NNI then g:=gg*I^n else g:=gg m:=subtractIfCan(dom gg, cod ff) -- apply g on f from the left, add extra g inputs on the left if m case NNI then f:=I^m*ff else f:=ff -- dom(g) ~= cod(f) => error "arity" r:T := product(dat f, dat g) g1:Integer:=dom(f)+1 f1:Integer:=dom(f)+cod(f)+1 for i in 0..cod(f)-1 repeat r := contract(r,g1,f1-i) per [dom(f),cod(g),r]
-- inherited from Ring (x:% = y:%):Boolean == dom(x) ~= dom(y) or cod(x) ~= cod(y) => error "arity" dat(x) = dat(y) (x:K * y:%):% == per [dom y, cod y,x*dat(y)] (x:% * y:K):% == per [dom x,cod x,dat(x)*y] (x:Integer * y:%):% == per [dom y,cod y,x*dat(y)]
-- constructors inp(x:List K):% == per [1,0,entries(x)::T] inp(x:List %):% == #removeDuplicates([dom(y) for y in x]) ~= 1 or #removeDuplicates([cod(y) for y in x]) ~= 1 => error "arity" per [(dom(first x)+1),cod(first x),[dat(y) for y in x]::T]$Rep out(x:List K):% == per [0,1,entries(x)::T] out(x:List %):% == #removeDuplicates([dom(y) for y in x])~=1 or #removeDuplicates([cod(y) for y in x])~=1 => error "arity" per [dom(first x),(cod(first x)+1),[dat(y) for y in x]::T]$Rep
-- display operators using basis coerce(x:%):OutputForm == dom(x)=0 and cod(x)=0 => return dat(x)::OutputForm if size()$gen > 0 then gens:List OutputForm:=[index(i::PositiveInteger)$gen::OutputForm for i in 1..dim] else -- default to numeric indices gens:List OutputForm:=[i::OutputForm for i in 1..dim] -- input basis inps:List OutputForm := [] for i in 1..dom(x) repeat empty? inps => inps:=gens inps:=concat [[hconcat(inps.k,gens.j) for j in 1..dim] for k in 1..#inps] -- output basis outs:List OutputForm := [] for i in 1..cod(x) repeat empty? outs => outs:=gens outs:=concat [[hconcat(outs.k,gens.j) for j in 1..dim] for k in 1..#outs] -- term list bases:List OutputForm:=[] coeffs:=ravel dat(x) if #inps > 0 and #outs > 0 then expon:List List OutputForm:=concat([[[i,j] for j in outs] for i in inps]) bases:=[scripts('e::OutputForm,ij) for ij in expon] else if #inps > 0 then bases:=[sub('e::OutputForm,i) for i in inps] else if #outs > 0 then bases:=[super('e::OutputForm,j) for j in outs] terms:=[(k=1 => base;k::OutputForm*base) for base in bases for k in coeffs | k~=0] empty? terms => return 0::OutputForm return reduce(_+,terms)
spad
   Compiling FriCAS source code from file 
      /var/zope2/var/LatexWiki/6166686104021041501-25px003.spad using 
      old system compiler.
   LIN abbreviates domain LinearOperator 
------------------------------------------------------------------------
   initializing NRLIB LIN for LinearOperator 
   compiling into NRLIB LIN 
   importing List NonNegativeInteger
   compiling local rep : $ -> Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K))
      LIN;rep is replaced by x 
Time: 0.09 SEC.
compiling local per : Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K)) -> $ LIN;per is replaced by x Time: 0 SEC.
compiling exported dom : $ -> NonNegativeInteger Time: 0 SEC.
compiling exported cod : $ -> NonNegativeInteger Time: 0 SEC.
compiling local dat : $ -> CartesianTensor(One,dim,K) Time: 0 SEC.
compiling exported arity : $ -> Prop Time: 0 SEC.
compiling exported retractIfCan : $ -> Union(K,failed) Time: 0 SEC.
compiling exported retract : $ -> K Time: 0.01 SEC.
compiling exported basisVectors : () -> List $ Time: 0.05 SEC.
compiling exported basisForms : () -> List $ Time: 0.02 SEC.
compiling exported map : (K -> K,$) -> $ Time: 0.14 SEC.
compiling exported ravel : $ -> List K Time: 0.01 SEC.
compiling exported unravel : (Prop,List K) -> $ Time: 0.06 SEC.
compiling exported tensor : $ -> CartesianTensor(One,dim,K) Time: 0 SEC.
compiling exported + : ($,$) -> $ Time: 0.01 SEC.
compiling exported - : ($,$) -> $ Time: 0.02 SEC.
compiling exported Zero : () -> $ Time: 0 SEC.
compiling exported One : () -> $ Time: 0 SEC.
compiling exported * : (NonNegativeInteger,$) -> $ Time: 0.01 SEC.
compiling exported coerce : List PositiveInteger -> $ Time: 0.04 SEC.
compiling exported coerce : List None -> $ Time: 0.01 SEC.
compiling exported coerce : K -> $ Time: 0.03 SEC.
compiling exported * : ($,$) -> $ Time: 0.02 SEC.
compiling exported ^ : ($,NonNegativeInteger) -> $ Time: 0.01 SEC.
compiling exported apply : ($,$) -> $ Time: 0.08 SEC.
compiling exported / : ($,$) -> $ Time: 0.16 SEC.
compiling exported = : ($,$) -> Boolean Time: 0.01 SEC.
compiling exported * : (K,$) -> $ Time: 0.01 SEC.
compiling exported * : ($,K) -> $ Time: 0 SEC.
compiling exported * : (Integer,$) -> $ Time: 0 SEC.
compiling exported inp : List K -> $ Time: 0.01 SEC.
compiling exported inp : List $ -> $ Time: 0.04 SEC.
compiling exported out : List K -> $ Time: 0.01 SEC.
compiling exported out : List $ -> $ Time: 0.02 SEC.
compiling exported coerce : $ -> OutputForm Time: 0.12 SEC.
(time taken in buildFunctor: 10)
;;; *** |LinearOperator| REDEFINED
;;; *** |LinearOperator| REDEFINED Time: 0.29 SEC.
Warnings: [1] coerce: bases has no value
Cumulative Statistics for Constructor LinearOperator Time: 1.28 seconds
finalizing NRLIB LIN Processing LinearOperator for Browser database: --------(inp (% (List K)))--------- --->-->LinearOperator((inp (% (List %)))): Not documented!!!! --------(out (% (List K)))--------- --->-->LinearOperator((out (% (List %)))): Not documented!!!! --->-->LinearOperator((arity ((Prop) %))): Not documented!!!! --->-->LinearOperator((basisVectors ((List %)))): Not documented!!!! --->-->LinearOperator((basisForms ((List %)))): Not documented!!!! --->-->LinearOperator((tensor (T$ %))): Not documented!!!! --->-->LinearOperator((map (% (Mapping K K) %))): Not documented!!!! --->-->LinearOperator((ravel ((List K) %))): Not documented!!!! --->-->LinearOperator((unravel (% (Prop) (List K)))): Not documented!!!! --------(coerce (% (List (PositiveInteger))))--------- --->-->LinearOperator((coerce (% (List (PositiveInteger))))): Improper first word in comments: identity "identity for composition and permutations of its products" --------(coerce (% (List (None))))--------- --->-->LinearOperator((coerce (% (List (None))))): Improper first word in comments: [] "[] = 1" --->-->LinearOperator(constructor): Not documented!!!! --->-->LinearOperator(): Missing Description ; compiling file "/var/zope2/var/LatexWiki/LIN.NRLIB/LIN.lsp" (written 13 APR 2011 01:31:37 AM):
; /var/zope2/var/LatexWiki/LIN.NRLIB/LIN.fasl written ; compilation finished in 0:00:01.564 ------------------------------------------------------------------------ LinearOperator is now explicitly exposed in frame initial LinearOperator will be automatically loaded when needed from /var/zope2/var/LatexWiki/LIN.NRLIB/LIN
>> System error: The bounding indices 163 and 162 are bad for a sequence of length 162. See also: The ANSI Standard, Glossary entry for "bounding index designator" The ANSI Standard, writeup for Issue SUBSEQ-OUT-OF-BOUNDS:IS-AN-ERROR

Getting Started

Consult the source code above for more details.

Conveniences

axiom
-- summation
macro Σ(x,b,i)==reduce(+,[x*b.i for i in 1..dim])
Type: Void
axiom
-- list comprehension
macro Ξ(f,i)==[f for i in 1..dim]
Type: Void
axiom
-- super- and sub-scripts
macro /\(x,s)==superscript(x,s)
Type: Void
axiom
macro \/(x,s)==subscript(x,s)
Type: Void

Basis

axiom
dim:=2

\label{eq1}2(1)
Type: PositiveInteger?
axiom
L:=LinearOperator(dim,OVAR [x,y],FRAC POLY INT)

\label{eq2}\hbox{\axiomType{LinearOperator}\ } (2, \hbox{\axiomType{OrderedVariableList}\ } ([ x , y ]) , \hbox{\axiomType{Fraction}\ } (\hbox{\axiomType{Polynomial}\ } (\hbox{\axiomType{Integer}\ })))(2)
Type: Type
axiom
Dx:=basisVectors()$L

\label{eq3}\left[{e_{\ }^{x}}, \:{e_{\ }^{y}}\right](3)
Type: List(LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer))))
axiom
dx:=basisForms()$L

\label{eq4}\left[{e_{x}}, \:{e_{y}}\right](4)
Type: List(LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer))))
axiom
matrix Ξ(Ξ( dx.i * Dx.j, i),j)

\label{eq5}\left[ 
\begin{array}{cc}
{e_{x}^{x}}&{e_{y}^{x}}
\
{e_{x}^{y}}&{e_{y}^{y}}
(5)
Type: Matrix(LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer))))
axiom
matrix Ξ(Ξ( Dx.i / dx.j, i),j)

\label{eq6}\left[ 
\begin{array}{cc}
1 & 0 
\
0 & 1 
(6)
Type: Matrix(LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer))))

Construction

axiom
A1:L := Σ(a1\/[i],dx,i)

\label{eq7}{{a 1_{1}}\ {e_{x}}}+{{a 1_{2}}\ {e_{y}}}(7)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity A1

\label{eq8}1 \over 0(8)
Type: Prop
axiom
A2:L := Σ(a2\/[i],dx,i)

\label{eq9}{{a 2_{1}}\ {e_{x}}}+{{a 2_{2}}\ {e_{y}}}(9)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
A:L := inp[A1,A2]

\label{eq10}{{a 1_{1}}\ {e_{xx}}}+{{a 1_{2}}\ {e_{xy}}}+{{a 2_{1}}\ {e_{yx}}}+{{a 2_{2}}\ {e_{yy}}}(10)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity A

\label{eq11}2 \over 0(11)
Type: Prop
axiom
B1:L := Σ(b1/\[i],Dx,i)

\label{eq12}{{b 1^{1}}\ {e_{\ }^{x}}}+{{b 1^{2}}\ {e_{\ }^{y}}}(12)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity B1

\label{eq13}0 \over 1(13)
Type: Prop
axiom
B2:L := Σ(b2/\[i],Dx,i)

\label{eq14}{{b 2^{1}}\ {e_{\ }^{x}}}+{{b 2^{2}}\ {e_{\ }^{y}}}(14)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
B:L := out[B1,B2]

\label{eq15}{{b 1^{1}}\ {e_{\ }^{xx}}}+{{b 1^{2}}\ {e_{\ }^{xy}}}+{{b 2^{1}}\ {e_{\ }^{yx}}}+{{b 2^{2}}\ {e_{\ }^{yy}}}(15)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity B

\label{eq16}0 \over 2(16)
Type: Prop
axiom
BB:L := Σ(Σ(b/\[i,j],Dx,i),Dx,j)

\label{eq17}{{b^{1, \: 1}}\ {e_{\ }^{xx}}}+{{b^{1, \: 2}}\ {e_{\ }^{xy}}}+{{b^{2, \: 1}}\ {e_{\ }^{yx}}}+{{b^{2, \: 2}}\ {e_{\ }^{yy}}}(17)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
W:L := Σ(Σ(Σ(w/\[i,j,k],dx,i),dx,j),Dx,k)

\label{eq18}\begin{array}{@{}l}
\displaystyle
{{w^{1, \: 1, \: 1}}\ {e_{xx}^{x}}}+{{w^{1, \: 1, \: 2}}\ {e_{xx}^{y}}}+{{w^{1, \: 2, \: 1}}\ {e_{xy}^{x}}}+ 
\
\
\displaystyle
{{w^{1, \: 2, \: 2}}\ {e_{xy}^{y}}}+{{w^{2, \: 1, \: 1}}\ {e_{yx}^{x}}}+{{w^{2, \: 1, \: 2}}\ {e_{yx}^{y}}}+ 
\
\
\displaystyle
{{w^{2, \: 2, \: 1}}\ {e_{yy}^{x}}}+{{w^{2, \: 2, \: 2}}\ {e_{yy}^{y}}}
(18)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))

Composition (evaluation)


g/f : A^n \to A^{m+p} = f:A^n \to A^m <em> g:A^n \to A^p
 
axiom
AB2 := A2 / B2; AB2::OutputForm = A2::OutputForm / B2::OutputForm

\label{eq19}\begin{array}{@{}l}
\displaystyle
{{{b 2^{1}}\ {a 2_{1}}\ {e_{x}^{x}}}+{{b 2^{2}}\ {a 2_{1}}\ {e_{x}^{y}}}+{{b 2^{1}}\ {a 2_{2}}\ {e_{y}^{x}}}+{{b 2^{2}}\ {a 2_{2}}\ {e_{y}^{y}}}}= 
\
\
\displaystyle
{{{{a 2_{1}}\ {e_{x}}}+{{a 2_{2}}\ {e_{y}}}}\over{{{b 2^{1}}\ {e_{\ }^{x}}}+{{b 2^{2}}\ {e_{\ }^{y}}}}}
(19)
Type: Equation(OutputForm?)
axiom
arity(AB2)::OutputForm = arity(A2)::OutputForm / arity(B2)::OutputForm

\label{eq20}{1 \over 1}={{1 \over 0}\over{0 \over 1}}(20)
Type: Equation(OutputForm?)
axiom
BA1 := B1 / A1; BA1::OutputForm = B1::OutputForm / A1::OutputForm

\label{eq21}{{{b 1^{2}}\ {a 1_{2}}}+{{b 1^{1}}\ {a 1_{1}}}}={{{{b 1^{1}}\ {e_{\ }^{x}}}+{{b 1^{2}}\ {e_{\ }^{y}}}}\over{{{a 1_{1}}\ {e_{x}}}+{{a 1_{2}}\ {e_{y}}}}}(21)
Type: Equation(OutputForm?)
axiom
arity(BA1)::OutputForm = arity(B1)::OutputForm / arity(A1)::OutputForm

\label{eq22}{0 \over 0}={{0 \over 1}\over{1 \over 0}}(22)
Type: Equation(OutputForm?)
axiom
AB1 := A1 / B1; AB1::OutputForm = A1::OutputForm / B1::OutputForm

\label{eq23}\begin{array}{@{}l}
\displaystyle
{{{b 1^{1}}\ {a 1_{1}}\ {e_{x}^{x}}}+{{b 1^{2}}\ {a 1_{1}}\ {e_{x}^{y}}}+{{b 1^{1}}\ {a 1_{2}}\ {e_{y}^{x}}}+{{b 1^{2}}\ {a 1_{2}}\ {e_{y}^{y}}}}= 
\
\
\displaystyle
{{{{a 1_{1}}\ {e_{x}}}+{{a 1_{2}}\ {e_{y}}}}\over{{{b 1^{1}}\ {e_{\ }^{x}}}+{{b 1^{2}}\ {e_{\ }^{y}}}}}
(23)
Type: Equation(OutputForm?)
axiom
arity(AB1)::OutputForm = arity(A1)::OutputForm / arity(B1)::OutputForm

\label{eq24}{1 \over 1}={{1 \over 0}\over{0 \over 1}}(24)
Type: Equation(OutputForm?)

Partial Evaluation

axiom
BBA1 := B/A1

\label{eq25}{{\left({{b 2^{1}}\ {a 1_{2}}}+{{b 1^{1}}\ {a 1_{1}}}\right)}\ {e_{\ }^{x}}}+{{\left({{b 2^{2}}\ {a 1_{2}}}+{{b 1^{2}}\ {a 1_{1}}}\right)}\ {e_{\ }^{y}}}(25)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
BBA2 := B A1

\label{eq26}\begin{array}{@{}l}
\displaystyle
{{b 1^{1}}\ {a 1_{1}}\ {e_{x}^{xx}}}+{{b 1^{2}}\ {a 1_{1}}\ {e_{x}^{xy}}}+{{b 2^{1}}\ {a 1_{1}}\ {e_{x}^{yx}}}+ 
\
\
\displaystyle
{{b 2^{2}}\ {a 1_{1}}\ {e_{x}^{yy}}}+{{b 1^{1}}\ {a 1_{2}}\ {e_{y}^{xx}}}+{{b 1^{2}}\ {a 1_{2}}\ {e_{y}^{xy}}}+ 
\
\
\displaystyle
{{b 2^{1}}\ {a 1_{2}}\ {e_{y}^{yx}}}+{{b 2^{2}}\ {a 1_{2}}\ {e_{y}^{yy}}}
(26)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
BBA3 := A1/B

\label{eq27}\begin{array}{@{}l}
\displaystyle
{{b 1^{1}}\ {a 1_{1}}\ {e_{x}^{xx}}}+{{b 1^{2}}\ {a 1_{1}}\ {e_{x}^{xy}}}+{{b 2^{1}}\ {a 1_{1}}\ {e_{x}^{yx}}}+ 
\
\
\displaystyle
{{b 2^{2}}\ {a 1_{1}}\ {e_{x}^{yy}}}+{{b 1^{1}}\ {a 1_{2}}\ {e_{y}^{xx}}}+{{b 1^{2}}\ {a 1_{2}}\ {e_{y}^{xy}}}+ 
\
\
\displaystyle
{{b 2^{1}}\ {a 1_{2}}\ {e_{y}^{yx}}}+{{b 2^{2}}\ {a 1_{2}}\ {e_{y}^{yy}}}
(27)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
BBA4 := A1 B

\label{eq28}{{\left({{b 1^{2}}\ {a 1_{2}}}+{{b 1^{1}}\ {a 1_{1}}}\right)}\ {e_{\ }^{x}}}+{{\left({{b 2^{2}}\ {a 1_{2}}}+{{b 2^{1}}\ {a 1_{1}}}\right)}\ {e_{\ }^{y}}}(28)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))

Powers

axiom
AB3:=(AB1*AB1)*AB1;
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity(AB3)

\label{eq29}3 \over 3(29)
Type: Prop
axiom
test(AB3=AB1*(AB1*AB1))

\label{eq30} \mbox{\rm true} (30)
Type: Boolean
axiom
test(AB3=AB1^3)

\label{eq31} \mbox{\rm true} (31)
Type: Boolean

Sums


f+g : A^n \to A^m = f:A^n \to A^m + g:A^n \to A^m
 
axiom
A12s := A1 + A2; A12s::OutputForm = A1::OutputForm + A2::OutputForm

\label{eq32}\begin{array}{@{}l}
\displaystyle
{{{\left({a 2_{1}}+{a 1_{1}}\right)}\ {e_{x}}}+{{\left({a 2_{2}}+{a 1_{2}}\right)}\ {e_{y}}}}= 
\
\
\displaystyle
{{{a 1_{1}}\ {e_{x}}}+{{a 1_{2}}\ {e_{y}}}+{{a 2_{1}}\ {e_{x}}}+{{a 2_{2}}\ {e_{y}}}}
(32)
Type: Equation(OutputForm?)
axiom
arity(A12s)::OutputForm = arity(A1)::OutputForm + arity(A2)::OutputForm

\label{eq33}{1 \over 0}={{1 \over 0}+{1 \over 0}}(33)
Type: Equation(OutputForm?)
axiom
B12s := B1 + B2; B12s::OutputForm = B1::OutputForm + B2::OutputForm

\label{eq34}\begin{array}{@{}l}
\displaystyle
{{{\left({b 2^{1}}+{b 1^{1}}\right)}\ {e_{\ }^{x}}}+{{\left({b 2^{2}}+{b 1^{2}}\right)}\ {e_{\ }^{y}}}}= 
\
\
\displaystyle
{{{b 1^{1}}\ {e_{\ }^{x}}}+{{b 1^{2}}\ {e_{\ }^{y}}}+{{b 2^{1}}\ {e_{\ }^{x}}}+{{b 2^{2}}\ {e_{\ }^{y}}}}
(34)
Type: Equation(OutputForm?)
axiom
arity(B12s)::OutputForm = arity(B1)::OutputForm + arity(B2)::OutputForm

\label{eq35}{0 \over 1}={{0 \over 1}+{0 \over 1}}(35)
Type: Equation(OutputForm?)

Multiplication

axiom
A3s:=(A1+A1)+A1

\label{eq36}{3 \ {a 1_{1}}\ {e_{x}}}+{3 \ {a 1_{2}}\ {e_{y}}}(36)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity(A3s)

\label{eq37}1 \over 0(37)
Type: Prop
axiom
test(A3s=A1+(A1+A1))

\label{eq38} \mbox{\rm true} (38)
Type: Boolean
axiom
test(A3s=A1*3)

\label{eq39} \mbox{\rm true} (39)
Type: Boolean

axiom
B3s:=(B1+B1)+B1

\label{eq40}{3 \ {b 1^{1}}\ {e_{\ }^{x}}}+{3 \ {b 1^{2}}\ {e_{\ }^{y}}}(40)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity(B3s)

\label{eq41}0 \over 1(41)
Type: Prop
axiom
test(B3s=B1+(B1+B1))

\label{eq42} \mbox{\rm true} (42)
Type: Boolean
axiom
test(B3s=B1*3)

\label{eq43} \mbox{\rm true} (43)
Type: Boolean

Product

axiom
AB11:=A1*B1

\label{eq44}{{b 1^{1}}\ {a 1_{1}}\ {e_{x}^{x}}}+{{b 1^{2}}\ {a 1_{1}}\ {e_{x}^{y}}}+{{b 1^{1}}\ {a 1_{2}}\ {e_{y}^{x}}}+{{b 1^{2}}\ {a 1_{2}}\ {e_{y}^{y}}}(44)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity(AB11)

\label{eq45}1 \over 1(45)
Type: Prop
axiom
BA11:= B1*A1

\label{eq46}{{b 1^{1}}\ {a 1_{1}}\ {e_{x}^{x}}}+{{b 1^{2}}\ {a 1_{1}}\ {e_{x}^{y}}}+{{b 1^{1}}\ {a 1_{2}}\ {e_{y}^{x}}}+{{b 1^{2}}\ {a 1_{2}}\ {e_{y}^{y}}}(46)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity(BA11)

\label{eq47}1 \over 1(47)
Type: Prop
axiom
AB := A*B

\label{eq48}\begin{array}{@{}l}
\displaystyle
{{b 1^{1}}\ {a 1_{1}}\ {e_{xx}^{xx}}}+{{b 1^{2}}\ {a 1_{1}}\ {e_{xx}^{xy}}}+{{b 2^{1}}\ {a 1_{1}}\ {e_{xx}^{yx}}}+ 
\
\
\displaystyle
{{b 2^{2}}\ {a 1_{1}}\ {e_{xx}^{yy}}}+{{b 1^{1}}\ {a 1_{2}}\ {e_{xy}^{xx}}}+{{b 1^{2}}\ {a 1_{2}}\ {e_{xy}^{xy}}}+ 
\
\
\displaystyle
{{b 2^{1}}\ {a 1_{2}}\ {e_{xy}^{yx}}}+{{b 2^{2}}\ {a 1_{2}}\ {e_{xy}^{yy}}}+{{b 1^{1}}\ {a 2_{1}}\ {e_{yx}^{xx}}}+ 
\
\
\displaystyle
{{b 1^{2}}\ {a 2_{1}}\ {e_{yx}^{xy}}}+{{b 2^{1}}\ {a 2_{1}}\ {e_{yx}^{yx}}}+{{b 2^{2}}\ {a 2_{1}}\ {e_{yx}^{yy}}}+ 
\
\
\displaystyle
{{b 1^{1}}\ {a 2_{2}}\ {e_{yy}^{xx}}}+{{b 1^{2}}\ {a 2_{2}}\ {e_{yy}^{xy}}}+{{b 2^{1}}\ {a 2_{2}}\ {e_{yy}^{yx}}}+ 
\
\
\displaystyle
{{b 2^{2}}\ {a 2_{2}}\ {e_{yy}^{yy}}}
(48)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity(AB)

\label{eq49}2 \over 2(49)
Type: Prop
axiom
BA := B*A

\label{eq50}\begin{array}{@{}l}
\displaystyle
{{b 1^{1}}\ {a 1_{1}}\ {e_{xx}^{xx}}}+{{b 1^{2}}\ {a 1_{1}}\ {e_{xx}^{xy}}}+{{b 2^{1}}\ {a 1_{1}}\ {e_{xx}^{yx}}}+ 
\
\
\displaystyle
{{b 2^{2}}\ {a 1_{1}}\ {e_{xx}^{yy}}}+{{b 1^{1}}\ {a 1_{2}}\ {e_{xy}^{xx}}}+{{b 1^{2}}\ {a 1_{2}}\ {e_{xy}^{xy}}}+ 
\
\
\displaystyle
{{b 2^{1}}\ {a 1_{2}}\ {e_{xy}^{yx}}}+{{b 2^{2}}\ {a 1_{2}}\ {e_{xy}^{yy}}}+{{b 1^{1}}\ {a 2_{1}}\ {e_{yx}^{xx}}}+ 
\
\
\displaystyle
{{b 1^{2}}\ {a 2_{1}}\ {e_{yx}^{xy}}}+{{b 2^{1}}\ {a 2_{1}}\ {e_{yx}^{yx}}}+{{b 2^{2}}\ {a 2_{1}}\ {e_{yx}^{yy}}}+ 
\
\
\displaystyle
{{b 1^{1}}\ {a 2_{2}}\ {e_{yy}^{xx}}}+{{b 1^{2}}\ {a 2_{2}}\ {e_{yy}^{xy}}}+{{b 2^{1}}\ {a 2_{2}}\ {e_{yy}^{yx}}}+ 
\
\
\displaystyle
{{b 2^{2}}\ {a 2_{2}}\ {e_{yy}^{yy}}}
(50)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity(BA)

\label{eq51}2 \over 2(51)
Type: Prop
axiom
WB1:=W*B1

\label{eq52}\begin{array}{@{}l}
\displaystyle
{{b 1^{1}}\ {w^{1, \: 1, \: 1}}\ {e_{xx}^{xx}}}+{{b 1^{2}}\ {w^{1, \: 1, \: 1}}\ {e_{xx}^{xy}}}+ 
\
\
\displaystyle
{{b 1^{1}}\ {w^{1, \: 1, \: 2}}\ {e_{xx}^{yx}}}+{{b 1^{2}}\ {w^{1, \: 1, \: 2}}\ {e_{xx}^{yy}}}+ 
\
\
\displaystyle
{{b 1^{1}}\ {w^{1, \: 2, \: 1}}\ {e_{xy}^{xx}}}+{{b 1^{2}}\ {w^{1, \: 2, \: 1}}\ {e_{xy}^{xy}}}+ 
\
\
\displaystyle
{{b 1^{1}}\ {w^{1, \: 2, \: 2}}\ {e_{xy}^{yx}}}+{{b 1^{2}}\ {w^{1, \: 2, \: 2}}\ {e_{xy}^{yy}}}+ 
\
\
\displaystyle
{{b 1^{1}}\ {w^{2, \: 1, \: 1}}\ {e_{yx}^{xx}}}+{{b 1^{2}}\ {w^{2, \: 1, \: 1}}\ {e_{yx}^{xy}}}+ 
\
\
\displaystyle
{{b 1^{1}}\ {w^{2, \: 1, \: 2}}\ {e_{yx}^{yx}}}+{{b 1^{2}}\ {w^{2, \: 1, \: 2}}\ {e_{yx}^{yy}}}+ 
\
\
\displaystyle
{{b 1^{1}}\ {w^{2, \: 2, \: 1}}\ {e_{yy}^{xx}}}+{{b 1^{2}}\ {w^{2, \: 2, \: 1}}\ {e_{yy}^{xy}}}+ 
\
\
\displaystyle
{{b 1^{1}}\ {w^{2, \: 2, \: 2}}\ {e_{yy}^{yx}}}+{{b 1^{2}}\ {w^{2, \: 2, \: 2}}\ {e_{yy}^{yy}}}
(52)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity(WB1)

\label{eq53}2 \over 2(53)
Type: Prop
axiom
X2:L:=inp[inp([script(x,[[i,j]]) for j in 1..2])$L for i in 1..2]

\label{eq54}{{x_{1, \: 1}}\ {e_{xx}}}+{{x_{1, \: 2}}\ {e_{xy}}}+{{x_{2, \: 1}}\ {e_{yx}}}+{{x_{2, \: 2}}\ {e_{yy}}}(54)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
XB21:=X2*B1

\label{eq55}\begin{array}{@{}l}
\displaystyle
{{b 1^{1}}\ {x_{1, \: 1}}\ {e_{xx}^{x}}}+{{b 1^{2}}\ {x_{1, \: 1}}\ {e_{xx}^{y}}}+{{b 1^{1}}\ {x_{1, \: 2}}\ {e_{xy}^{x}}}+ \
\
\displaystyle
{{b 1^{2}}\ {x_{1, \: 2}}\ {e_{xy}^{y}}}+{{b 1^{1}}\ {x_{2, \: 1}}\ {e_{yx}^{x}}}+{{b 1^{2}}\ {x_{2, \: 1}}\ {e_{yx}^{y}}}+ \
\
\displaystyle
{{b 1^{1}}\ {x_{2, \: 2}}\ {e_{yy}^{x}}}+{{b 1^{2}}\ {x_{2, \: 2}}\ {e_{yy}^{y}}}
(55)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity(XB21)

\label{eq56}2 \over 1(56)
Type: Prop
axiom
Y2:L:=out[out([script(y,[[],[i,j]]) for j in 1..2])$L for i in 1..2]

\label{eq57}{{y^{1, \: 1}}\ {e_{\ }^{xx}}}+{{y^{1, \: 2}}\ {e_{\ }^{xy}}}+{{y^{2, \: 1}}\ {e_{\ }^{yx}}}+{{y^{2, \: 2}}\ {e_{\ }^{yy}}}(57)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
XY22:=X2*Y2

\label{eq58}\begin{array}{@{}l}
\displaystyle
{{y^{1, \: 1}}\ {x_{1, \: 1}}\ {e_{xx}^{xx}}}+{{y^{1, \: 2}}\ {x_{1, \: 1}}\ {e_{xx}^{xy}}}+{{y^{2, \: 1}}\ {x_{1, \: 1}}\ {e_{xx}^{yx}}}+ 
\
\
\displaystyle
{{y^{2, \: 2}}\ {x_{1, \: 1}}\ {e_{xx}^{yy}}}+{{y^{1, \: 1}}\ {x_{1, \: 2}}\ {e_{xy}^{xx}}}+{{y^{1, \: 2}}\ {x_{1, \: 2}}\ {e_{xy}^{xy}}}+ 
\
\
\displaystyle
{{y^{2, \: 1}}\ {x_{1, \: 2}}\ {e_{xy}^{yx}}}+{{y^{2, \: 2}}\ {x_{1, \: 2}}\ {e_{xy}^{yy}}}+{{y^{1, \: 1}}\ {x_{2, \: 1}}\ {e_{yx}^{xx}}}+ 
\
\
\displaystyle
{{y^{1, \: 2}}\ {x_{2, \: 1}}\ {e_{yx}^{xy}}}+{{y^{2, \: 1}}\ {x_{2, \: 1}}\ {e_{yx}^{yx}}}+{{y^{2, \: 2}}\ {x_{2, \: 1}}\ {e_{yx}^{yy}}}+ 
\
\
\displaystyle
{{y^{1, \: 1}}\ {x_{2, \: 2}}\ {e_{yy}^{xx}}}+{{y^{1, \: 2}}\ {x_{2, \: 2}}\ {e_{yy}^{xy}}}+{{y^{2, \: 1}}\ {x_{2, \: 2}}\ {e_{yy}^{yx}}}+ 
\
\
\displaystyle
{{y^{2, \: 2}}\ {x_{2, \: 2}}\ {e_{yy}^{yy}}}
(58)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity(XY22)

\label{eq59}2 \over 2(59)
Type: Prop
axiom
YX22:=Y2*X2

\label{eq60}\begin{array}{@{}l}
\displaystyle
{{y^{1, \: 1}}\ {x_{1, \: 1}}\ {e_{xx}^{xx}}}+{{y^{1, \: 2}}\ {x_{1, \: 1}}\ {e_{xx}^{xy}}}+{{y^{2, \: 1}}\ {x_{1, \: 1}}\ {e_{xx}^{yx}}}+ 
\
\
\displaystyle
{{y^{2, \: 2}}\ {x_{1, \: 1}}\ {e_{xx}^{yy}}}+{{y^{1, \: 1}}\ {x_{1, \: 2}}\ {e_{xy}^{xx}}}+{{y^{1, \: 2}}\ {x_{1, \: 2}}\ {e_{xy}^{xy}}}+ 
\
\
\displaystyle
{{y^{2, \: 1}}\ {x_{1, \: 2}}\ {e_{xy}^{yx}}}+{{y^{2, \: 2}}\ {x_{1, \: 2}}\ {e_{xy}^{yy}}}+{{y^{1, \: 1}}\ {x_{2, \: 1}}\ {e_{yx}^{xx}}}+ 
\
\
\displaystyle
{{y^{1, \: 2}}\ {x_{2, \: 1}}\ {e_{yx}^{xy}}}+{{y^{2, \: 1}}\ {x_{2, \: 1}}\ {e_{yx}^{yx}}}+{{y^{2, \: 2}}\ {x_{2, \: 1}}\ {e_{yx}^{yy}}}+ 
\
\
\displaystyle
{{y^{1, \: 1}}\ {x_{2, \: 2}}\ {e_{yy}^{xx}}}+{{y^{1, \: 2}}\ {x_{2, \: 2}}\ {e_{yy}^{xy}}}+{{y^{2, \: 1}}\ {x_{2, \: 2}}\ {e_{yy}^{yx}}}+ 
\
\
\displaystyle
{{y^{2, \: 2}}\ {x_{2, \: 2}}\ {e_{yy}^{yy}}}
(60)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity(XY22)

\label{eq61}2 \over 2(61)
Type: Prop
axiom
test((A*A)*A=A*(A*A))

\label{eq62} \mbox{\rm true} (62)
Type: Boolean
axiom
test((B*B)*B=B*(B*B))

\label{eq63} \mbox{\rm true} (63)
Type: Boolean
axiom
test((A*B)*A=A*(B*A))

\label{eq64} \mbox{\rm true} (64)
Type: Boolean

Permutations and Identities

axiom
H:L:=[1,2]

\label{eq65}{e_{xx}^{xx}}+{e_{xy}^{xy}}+{e_{yx}^{yx}}+{e_{yy}^{yy}}(65)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
X:L:=[2,1]

\label{eq66}{e_{xx}^{xx}}+{e_{xy}^{yx}}+{e_{yx}^{xy}}+{e_{yy}^{yy}}(66)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
test(X/X=H)

\label{eq67} \mbox{\rm true} (67)
Type: Boolean

Manipulations

axiom
tensor AB

\label{eq68}\left[ 
\begin{array}{cc}
{\left[ 
\begin{array}{cc}
{{b 1^{1}}\ {a 1_{1}}}&{{b 1^{2}}\ {a 1_{1}}}
\
{{b 2^{1}}\ {a 1_{1}}}&{{b 2^{2}}\ {a 1_{1}}}
(68)
Type: CartesianTensor?(1,2,Fraction(Polynomial(Integer)))
axiom
ravel YU
There are 2 exposed and 0 unexposed library operations named ravel having 1 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op ravel to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named ravel with argument type(s) Variable(YU)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. test(unravel(arity YU,ravel YU)$L=YU)
There are 2 exposed and 0 unexposed library operations named arity having 1 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op arity to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named arity with argument type(s) Variable(YU)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. map(x+->x+1,YU)$L

\label{eq69}YU + 1(69)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))

Examples

Another kind of diagram::

__ _ __ ) = \ / __ )

axiom
Y:=out[inp[inp([script(y,[[i,j],[k]]) for k in 1..2])$L for j in 1..2] for i in 1..2]

\label{eq70}\begin{array}{@{}l}
\displaystyle
{{y_{1, \: 1}^{1}}\ {e_{xx}^{x}}}+{{y_{1, \: 1}^{2}}\ {e_{xx}^{y}}}+{{y_{1, \: 2}^{1}}\ {e_{xy}^{x}}}+{{y_{1, \: 2}^{2}}\ {e_{xy}^{y}}}+ 
\
\
\displaystyle
{{y_{2, \: 1}^{1}}\ {e_{yx}^{x}}}+{{y_{2, \: 1}^{2}}\ {e_{yx}^{y}}}+{{y_{2, \: 2}^{1}}\ {e_{yy}^{x}}}+{{y_{2, \: 2}^{2}}\ {e_{yy}^{y}}}
(70)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity Y

\label{eq71}2 \over 1(71)
Type: Prop
axiom
tensor Y

\label{eq72}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cc}
{y_{1, \: 1}^{1}}&{y_{1, \: 1}^{2}}
\
{y_{1, \: 2}^{1}}&{y_{1, \: 2}^{2}}
(72)
Type: CartesianTensor?(1,2,Fraction(Polynomial(Integer)))
axiom
U:=inp[inp([script(u,[[i,j],[]]) for j in 1..2])$L for i in 1..2]

\label{eq73}{{u_{1, \: 1}}\ {e_{xx}}}+{{u_{1, \: 2}}\ {e_{xy}}}+{{u_{2, \: 1}}\ {e_{yx}}}+{{u_{2, \: 2}}\ {e_{yy}}}(73)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity U

\label{eq74}2 \over 0(74)
Type: Prop
axiom
YU:=(Y*[1])/U

\label{eq75}\begin{array}{@{}l}
\displaystyle
{{\left({{y_{1, \: 1}^{2}}\ {u_{2, \: 1}}}+{{y_{1, \: 1}^{1}}\ {u_{1, \: 1}}}\right)}\ {e_{{xx}x}}}+ 
\
\
\displaystyle
{{\left({{y_{1, \: 1}^{2}}\ {u_{2, \: 2}}}+{{y_{1, \: 1}^{1}}\ {u_{1, \: 2}}}\right)}\ {e_{{xx}y}}}+ 
\
\
\displaystyle
{{\left({{y_{1, \: 2}^{2}}\ {u_{2, \: 1}}}+{{y_{1, \: 2}^{1}}\ {u_{1, \: 1}}}\right)}\ {e_{{xy}x}}}+ 
\
\
\displaystyle
{{\left({{y_{1, \: 2}^{2}}\ {u_{2, \: 2}}}+{{y_{1, \: 2}^{1}}\ {u_{1, \: 2}}}\right)}\ {e_{{xy}y}}}+ 
\
\
\displaystyle
{{\left({{y_{2, \: 1}^{2}}\ {u_{2, \: 1}}}+{{y_{2, \: 1}^{1}}\ {u_{1, \: 1}}}\right)}\ {e_{{yx}x}}}+ 
\
\
\displaystyle
{{\left({{y_{2, \: 1}^{2}}\ {u_{2, \: 2}}}+{{y_{2, \: 1}^{1}}\ {u_{1, \: 2}}}\right)}\ {e_{{yx}y}}}+ 
\
\
\displaystyle
{{\left({{y_{2, \: 2}^{2}}\ {u_{2, \: 1}}}+{{y_{2, \: 2}^{1}}\ {u_{1, \: 1}}}\right)}\ {e_{{yy}x}}}+ 
\
\
\displaystyle
{{\left({{y_{2, \: 2}^{2}}\ {u_{2, \: 2}}}+{{y_{2, \: 2}^{1}}\ {u_{1, \: 2}}}\right)}\ {e_{{yy}y}}}
(75)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity YU

\label{eq76}3 \over 0(76)
Type: Prop
axiom
UY:=([1]*Y)/U

\label{eq77}\begin{array}{@{}l}
\displaystyle
{{\left({{y_{1, \: 1}^{2}}\ {u_{1, \: 2}}}+{{y_{1, \: 1}^{1}}\ {u_{1, \: 1}}}\right)}\ {e_{{xx}x}}}+ 
\
\
\displaystyle
{{\left({{y_{1, \: 2}^{2}}\ {u_{1, \: 2}}}+{{y_{1, \: 2}^{1}}\ {u_{1, \: 1}}}\right)}\ {e_{{xx}y}}}+ 
\
\
\displaystyle
{{\left({{y_{2, \: 1}^{2}}\ {u_{1, \: 2}}}+{{y_{2, \: 1}^{1}}\ {u_{1, \: 1}}}\right)}\ {e_{{xy}x}}}+ 
\
\
\displaystyle
{{\left({{y_{2, \: 2}^{2}}\ {u_{1, \: 2}}}+{{y_{2, \: 2}^{1}}\ {u_{1, \: 1}}}\right)}\ {e_{{xy}y}}}+ 
\
\
\displaystyle
{{\left({{y_{1, \: 1}^{2}}\ {u_{2, \: 2}}}+{{y_{1, \: 1}^{1}}\ {u_{2, \: 1}}}\right)}\ {e_{{yx}x}}}+ 
\
\
\displaystyle
{{\left({{y_{1, \: 2}^{2}}\ {u_{2, \: 2}}}+{{y_{1, \: 2}^{1}}\ {u_{2, \: 1}}}\right)}\ {e_{{yx}y}}}+ 
\
\
\displaystyle
{{\left({{y_{2, \: 1}^{2}}\ {u_{2, \: 2}}}+{{y_{2, \: 1}^{1}}\ {u_{2, \: 1}}}\right)}\ {e_{{yy}x}}}+ 
\
\
\displaystyle
{{\left({{y_{2, \: 2}^{2}}\ {u_{2, \: 2}}}+{{y_{2, \: 2}^{1}}\ {u_{2, \: 1}}}\right)}\ {e_{{yy}y}}}
(77)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity UY

\label{eq78}3 \over 0(78)
Type: Prop

Handle

          
 _/ _\__ 

axiom
λ:=inp[out[out([script(y,[[i],[j,k]]) for k in 1..2])$L for j in 1..2] for i in 1..2]

\label{eq79}\begin{array}{@{}l}
\displaystyle
{{y_{1}^{1, \: 1}}\ {e_{x}^{xx}}}+{{y_{1}^{1, \: 2}}\ {e_{x}^{xy}}}+{{y_{1}^{2, \: 1}}\ {e_{x}^{yx}}}+{{y_{1}^{2, \: 2}}\ {e_{x}^{yy}}}+ 
\
\
\displaystyle
{{y_{2}^{1, \: 1}}\ {e_{y}^{xx}}}+{{y_{2}^{1, \: 2}}\ {e_{y}^{xy}}}+{{y_{2}^{2, \: 1}}\ {e_{y}^{yx}}}+{{y_{2}^{2, \: 2}}\ {e_{y}^{yy}}}
(79)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity λ

\label{eq80}1 \over 2(80)
Type: Prop
axiom
tensor λ

\label{eq81}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cc}
{y_{1}^{1, \: 1}}&{y_{1}^{1, \: 2}}
\
{y_{1}^{2, \: 1}}&{y_{1}^{2, \: 2}}
(81)
Type: CartesianTensor?(1,2,Fraction(Polynomial(Integer)))
axiom
Φ := λ/Y

\label{eq82}\begin{array}{@{}l}
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
{{y_{1}^{2, \: 2}}\ {y_{2, \: 2}^{1}}}+{{y_{1}^{2, \: 1}}\ {y_{2, \: 1}^{1}}}+{{y_{1}^{1, \: 2}}\ {y_{1, \: 2}^{1}}}+ 
\
\
\displaystyle
{{y_{1}^{1, \: 1}}\ {y_{1, \: 1}^{1}}}
(82)
Type: LinearOperator?(2,OrderedVariableList?([x,y]),Fraction(Polynomial(Integer)))
axiom
arity Φ

\label{eq83}1 \over 1(83)
Type: Prop

Back to the top.

Comments

Please leave comments and suggestions.

Thanks

Bill Page

Linear operators as morphisms --Bill Page, Thu, 10 Mar 2011 09:42:33 -0800 reply
If linear operators really are to be morphisms (in the sense of category theory) then they must have a domain and a co-domain that are vector spaces, not just an in-degree and out-degree. E.g.:
  Rep == Record(Dom:VectorSpace, Cod:VectorSpace, t:T)

But VectorSpace? is a category which would make Dom and Cod domains. The domains that currently satisfy VectorSpace? in Axiom are rather limited and seem oddly focused on number theory (finite fields). It is a good thing however that DirectProduct? is a conditional member of this cateogry.

axiom
DirectProduct(2,FRAC INT) has VectorSpace(FRAC INT)

\label{eq84} \mbox{\rm true} (84)
Type: Boolean

Unfortunately:

axiom
DirectProduct(2,DirectProduct(2,FRAC INT)) has VectorSpace(FRAC INT)

\label{eq85} \mbox{\rm false} (85)
Type: Boolean

The problem with VectorSpace? is that the domain [Vector]? is not a member of this category instead it satisfies VectoryCategory?.

Is it possible to treat tensors from CartesianTensor? as maps from VectorSpace? to VectorSpace?? We would like for example:

  T:DirectProduct(dim,DirectProduct(dim,FRAC INT)) -> DirectProduct(dim,FRAC INT))

To be a linear operator with two inputs and one output.

A [FreeModule]? over a [Field]? is a VectorSpace? unfortunately this is not currently understood by Axiom:
axiom
FreeModule(Fraction Integer,OrderedVariableList [e1,e1]) has VectorSpace(Fraction Integer)

\label{eq86} \mbox{\rm true} (86)
Type: Boolean