login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox Quaternion Algebra is Frobenius in Many Ways revision 9 of 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Editor: Bill Page
Time: 2011/04/20 20:03:24 GMT-7
Note: snake relation

changed:
-U:=inp([inp([script('u,[[j,i],[]]) for i in 1..dim])$𝐋 for j in 1..dim])$𝐋
-\end{axiom}
U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim)
\end{axiom}

changed:
-\begin{axiom}
-Ω:𝐋:=unravel((0/2)$Prop,concat(transpose(1/Ů*adjoint([[retract((𝐞.i * 𝐞.j)/Ų)
-  for j in 1..dim] for i in 1..dim]).adjMat)::ℒ ℒ ℚ))
Solve the "snake relation" as a system of linear equations.
\begin{axiom}
Ω:𝐋:=Σ(Σ(script('u,[[],[i,j]])*𝐞.i*𝐞.j, i,1..dim), j,1..dim)
d1:=(I*Ω)/(Ų*I);
d2:=(Ω*I)/(I*Ų);
equate(f,g)==map((x,y)+->(x=y),ravel f, ravel g);
eq1:=equate(d1,I);
eq2:=equate(d2,I);
snake:=solve(concat(eq1,eq2),concat Ξ(Ξ(script('u,[[],[i,j]]), i,1..dim), j,1..dim));
if #snake ~= 1 then error "no solution"
Ω:=eval(Ω,snake(1))

changed:
-Check dimension
-\begin{axiom}
Check "dimension": It depends on parameters!
\begin{axiom}

changed:
-\end{axiom}
test
    (    I Ω     )  /
    (     Ų I    )  =  I

test
    (     Ω I    )  /
    (    I Ų     )  =  I

\end{axiom}

changed:
-  Co-algebra::
  Co-algebra

This expression is expensive to compute::

changed:
-    --test
-
-Why aren't these the same?? Left and Right co-algebras because quaternions are not commutative?
-
-\begin{axiom}

\begin{axiom}

changed:
-     o    I Ω     /
-     o     Y I    o
-
-λr:𝐋 :=
-     o     Ω I    /
-     o    I Y     o
-
-λ - λr
-
-\end{axiom}
     (    I Ω     )  /
     (     Y I    )

test
     (     Ω I    )  /
     (    I Y     )  =  λ

\end{axiom}

changed:
-test
-     o    i     /
-     o    λr    =    Ω
-
-\end{axiom}
-
-Handle(s)
-\begin{axiom}
-
-Hl:𝐋 :=
\end{axiom}

Handle
\begin{axiom}

H:𝐋 :=

removed:
-
-\begin{axiom}
-
-Hr:𝐋 :=
-     o    λr   o /
-     o    Y    o
-
-Hl - Hr
-
-\end{axiom}
-

changed:
-λr0:𝐋 :=eval(λr,ex1)$𝐋
-test(λ0=λr0)
-Hl0:𝐋 :=eval(Hl,ex1)$𝐋
-Hr0:𝐋 :=eval(Hr,ex1)$𝐋
-test(Hl0=Hr0)
-\end{axiom}
H0:𝐋 :=eval(H,ex1)$𝐋
\end{axiom}

Quaternion Algebra Is Frobenius In Many Ways

Linear operators over a 4-dimensional vector space representing quaternion algebra

Ref:

We need the Axiom LinearOperator? library.

axiom
)library MONAL PROP LIN CALEY
Monoidal is now explicitly exposed in frame initial Monoidal will be automatically loaded when needed from /var/zope2/var/LatexWiki/MONAL.NRLIB/MONAL Prop is now explicitly exposed in frame initial Prop will be automatically loaded when needed from /var/zope2/var/LatexWiki/PROP.NRLIB/PROP LinearOperator is now explicitly exposed in frame initial LinearOperator will be automatically loaded when needed from /var/zope2/var/LatexWiki/LIN.NRLIB/LIN CaleyDickson is now explicitly exposed in frame initial CaleyDickson will be automatically loaded when needed from /var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY

Use the following macros for convenient notation

axiom
-- summation
macro Σ(x,i,n)==reduce(+,[x for i in n])
Type: Void
axiom
-- list
macro Ξ(f,i,n)==[f for i in n]
Type: Void
axiom
-- subscript
macro sb == subscript
Type: Void

𝐋 is the domain of 4-dimensional linear operators over the rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.

axiom
dim:=4

\label{eq1}4(1)
Type: PositiveInteger?
axiom
macro ℒ == List
Type: Void
axiom
macro ℂ == CaleyDickson
Type: Void
axiom
macro ℚ == Expression Integer
Type: Void
axiom
𝐋 := LinearOperator(dim, OVAR [], ℚ)

\label{eq2}\hbox{\axiomType{LinearOperator}\ } (4, \hbox{\axiomType{OrderedVariableList}\ } ([ ]) , \hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }))(2)
Type: Type
axiom
𝐞:ℒ 𝐋      := basisVectors()

\label{eq3}\left[{|_{1}}, \:{|_{2}}, \:{|_{3}}, \:{|_{4}}\right](3)
Type: List(LinearOperator?(4,OrderedVariableList?([]),Expression(Integer)))
axiom
𝐝:ℒ 𝐋      := basisForms()

\label{eq4}\left[{|_{\ }^{1}}, \:{|_{\ }^{2}}, \:{|_{\ }^{3}}, \:{|_{\ }^{4}}\right](4)
Type: List(LinearOperator?(4,OrderedVariableList?([]),Expression(Integer)))
axiom
o:𝐋:=1     -- identity for product

\label{eq5}1(5)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
I:𝐋:=[1]   -- identity for composition

\label{eq6}{|_{1}^{1}}+{|_{2}^{2}}+{|_{3}^{3}}+{|_{4}^{4}}(6)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
X:𝐋:=[2,1] -- twist

\label{eq7}\begin{array}{@{}l}
\displaystyle
{|_{1 \  1}^{1 \  1}}+{|_{2 \  1}^{1 \  2}}+{|_{3 \  1}^{1 \  3}}+{|_{4 \  1}^{1 \  4}}+{|_{1 \  2}^{2 \  1}}+{|_{2 \  2}^{2 \  2}}+ 
\
\
\displaystyle
{|_{3 \  2}^{2 \  3}}+{|_{4 \  2}^{2 \  4}}+{|_{1 \  3}^{3 \  1}}+{|_{2 \  3}^{3 \  2}}+{|_{3 \  3}^{3 \  3}}+{|_{4 \  3}^{3 \  4}}+ 
\
\
\displaystyle
{|_{1 \  4}^{4 \  1}}+{|_{2 \  4}^{4 \  2}}+{|_{3 \  4}^{4 \  3}}+{|_{4 \  4}^{4 \  4}}
(7)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))

Now generate structure constants for Quaternion Algebra

The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.

Split-complex and co-quaternions can be specified by Caley-Dickson parameters (q0 = -1, q1 = -1)

axiom
--q0:=sb('q,[0])
q0:=1  -- not split-complex

\label{eq8}1(8)
Type: PositiveInteger?
axiom
q1:=sb('q,[1])

\label{eq9}q_{1}(9)
Type: Symbol
axiom
--q1:=1  -- co-quaternion
QQ := ℂ(ℂ(ℚ,'i,q0),'j,q1);
Type: Type

Basis: Each B.i is a quaternion number

axiom
B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ)

\label{eq10}\left[ 1, \: i , \: j , \:{ij}\right](10)
Type: List(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,*01q(1)))
axiom
-- Multiplication table:
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)

\label{eq11}\left[ 
\begin{array}{cccc}
1 & i & j &{ij}
\
i & - 1 & -{ij}& j 
\
j &{ij}& -{q_{1}}&{-{q_{1}}i}
\
{ij}& - j &{{q_{1}}i}& -{q_{1}}
(11)
Type: Matrix(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,*01q(1)))
axiom
-- Function to divide the matrix entries by a basis element
S(y) == map(x +-> real real(x/y),M)
Type: Void
axiom
-- The result is a nested list
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ
axiom
Compiling function S with type CaleyDickson(CaleyDickson(Expression(
      Integer),i,1),j,*01q(1)) -> Matrix(Expression(Integer))

\label{eq12}\begin{array}{@{}l}
\displaystyle
\left[{\left[{\left[ 1, \: 0, \: 0, \: 0 \right]}, \:{\left[ 0, \: - 1, \: 0, \: 0 \right]}, \:{\left[ 0, \: 0, \: -{q_{1}}, \: 0 \right]}, \:{\left[ 0, \: 0, \: 0, \: -{q_{1}}\right]}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\left[ 0, \: 1, \: 0, \: 0 \right]}, \:{\left[ 1, \: 0, \: 0, \: 0 \right]}, \:{\left[ 0, \: 0, \: 0, \: -{q_{1}}\right]}, \:{\left[ 0, \: 0, \:{q_{1}}, \: 0 \right]}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\left[ 0, \: 0, \: 1, \: 0 \right]}, \:{\left[ 0, \: 0, \: 0, \: 1 \right]}, \:{\left[ 1, \: 0, \: 0, \: 0 \right]}, \:{\left[ 0, \: - 1, \: 0, \: 0 \right]}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\left[ 0, \: 0, \: 0, \: 1 \right]}, \:{\left[ 0, \: 0, \: - 1, \: 0 \right]}, \:{\left[ 0, \: 1, \: 0, \: 0 \right]}, \:{\left[ 1, \: 0, \: 0, \: 0 \right]}\right]}\right] (12)
Type: List(List(List(Expression(Integer))))
axiom
-- structure constants form a tensor operator
Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim)

\label{eq13}\begin{array}{@{}l}
\displaystyle
{|_{1}^{1 \  1}}+{|_{2}^{1 \  2}}+{|_{3}^{1 \  3}}+{|_{4}^{1 \  4}}+{|_{2}^{2 \  1}}-{|_{1}^{2 \  2}}+{|_{4}^{2 \  3}}-{|_{3}^{2 \  4}}+ 
\
\
\displaystyle
{|_{3}^{3 \  1}}-{|_{4}^{3 \  2}}-{{q_{1}}\ {|_{1}^{3 \  3}}}+{{q_{1}}\ {|_{2}^{3 \  4}}}+{|_{4}^{4 \  1}}+{|_{3}^{4 \  2}}-{{q_{1}}\ {|_{2}^{4 \  3}}}- 
\
\
\displaystyle
{{q_{1}}\ {|_{1}^{4 \  4}}}
(13)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
arity Y

\label{eq14}2 \over 1(14)
Type: Prop(LinearOperator?(4,OrderedVariableList?([]),Expression(Integer)))
axiom
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)

\label{eq15}\left[ 
\begin{array}{cccc}
{|_{1}}&{|_{2}}&{|_{3}}&{|_{4}}
\
{|_{2}}& -{|_{1}}& -{|_{4}}&{|_{3}}
\
{|_{3}}&{|_{4}}& -{{q_{1}}\ {|_{1}}}& -{{q_{1}}\ {|_{2}}}
\
{|_{4}}& -{|_{3}}&{{q_{1}}\ {|_{2}}}& -{{q_{1}}\ {|_{1}}}
(15)
Type: Matrix(LinearOperator?(4,OrderedVariableList?([]),Expression(Integer)))

Multiplication of arbitrary quaternions a and b

axiom
a:=Σ(sb('a,[i])*𝐞.i, i,1..dim)

\label{eq16}{{a_{1}}\ {|_{1}}}+{{a_{2}}\ {|_{2}}}+{{a_{3}}\ {|_{3}}}+{{a_{4}}\ {|_{4}}}(16)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
b:=Σ(sb('b,[i])*𝐞.i, i,1..dim)

\label{eq17}{{b_{1}}\ {|_{1}}}+{{b_{2}}\ {|_{2}}}+{{b_{3}}\ {|_{3}}}+{{b_{4}}\ {|_{4}}}(17)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
(a*b)/Y

\label{eq18}\begin{array}{@{}l}
\displaystyle
{{\left({{\left(-{{a_{4}}\ {b_{4}}}-{{a_{3}}\ {b_{3}}}\right)}\ {q_{1}}}-{{a_{2}}\ {b_{2}}}+{{a_{1}}\ {b_{1}}}\right)}\ {|_{1}}}+ 
\
\
\displaystyle
{{\left({{\left({{a_{3}}\ {b_{4}}}-{{a_{4}}\ {b_{3}}}\right)}\ {q_{1}}}+{{a_{1}}\ {b_{2}}}+{{a_{2}}\ {b_{1}}}\right)}\ {|_{2}}}+ 
\
\
\displaystyle
{{\left(-{{a_{2}}\ {b_{4}}}+{{a_{1}}\ {b_{3}}}+{{a_{4}}\ {b_{2}}}+{{a_{3}}\ {b_{1}}}\right)}\ {|_{3}}}+ 
\
\
\displaystyle
{{\left({{a_{1}}\ {b_{4}}}+{{a_{2}}\ {b_{3}}}-{{a_{3}}\ {b_{2}}}+{{a_{4}}\ {b_{1}}}\right)}\ {|_{4}}}
(18)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))

A scalar product is denoted by the (2,0)-tensor U = \{ u_{ij} \}

axiom
U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim)

\label{eq19}\begin{array}{@{}l}
\displaystyle
{{u^{1, \: 1}}\ {|_{\ }^{1 \  1}}}+{{u^{1, \: 2}}\ {|_{\ }^{1 \  2}}}+{{u^{1, \: 3}}\ {|_{\ }^{1 \  3}}}+{{u^{1, \: 4}}\ {|_{\ }^{1 \  4}}}+ 
\
\
\displaystyle
{{u^{2, \: 1}}\ {|_{\ }^{2 \  1}}}+{{u^{2, \: 2}}\ {|_{\ }^{2 \  2}}}+{{u^{2, \: 3}}\ {|_{\ }^{2 \  3}}}+{{u^{2, \: 4}}\ {|_{\ }^{2 \  4}}}+ 
\
\
\displaystyle
{{u^{3, \: 1}}\ {|_{\ }^{3 \  1}}}+{{u^{3, \: 2}}\ {|_{\ }^{3 \  2}}}+{{u^{3, \: 3}}\ {|_{\ }^{3 \  3}}}+{{u^{3, \: 4}}\ {|_{\ }^{3 \  4}}}+ 
\
\
\displaystyle
{{u^{4, \: 1}}\ {|_{\ }^{4 \  1}}}+{{u^{4, \: 2}}\ {|_{\ }^{4 \  2}}}+{{u^{4, \: 3}}\ {|_{\ }^{4 \  3}}}+{{u^{4, \: 4}}\ {|_{\ }^{4 \  4}}}
(19)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))

Definition 1

We say that the scalar product is associative if the tensor equation holds:

    Y   =   Y
     U     U

In other words, if the (3,0)-tensor:


\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-0.92)(4.82,0.92)
\psbezier[linewidth=0.04](2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9)
\psline[linewidth=0.04cm](2.4,0.3)(2.4,-0.1)
\psbezier[linewidth=0.04](2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1)
\psline[linewidth=0.04cm](3.0,-0.1)(3.0,0.9)
\psbezier[linewidth=0.04](4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9)
\psline[linewidth=0.04cm](4.6,0.3)(4.6,-0.1)
\psbezier[linewidth=0.04](4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1)
\psline[linewidth=0.04cm](4.0,-0.1)(4.0,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(3.4948437,0.205){-}
\psline[linewidth=0.04cm](0.6,-0.7)(0.6,0.9)
\psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1)
\psline[linewidth=0.04cm](0.0,-0.1)(0.0,0.9)
\psline[linewidth=0.04cm](1.2,-0.1)(1.2,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(1.6948438,0.205){=}
\end{pspicture} 
}
 


\label{eq20}
  \Phi = \{ \phi^{ijk} = {y^e}_{ij} u_{ek} - u_{ie} {y_e}^{jk} \}
  (20)
(three-point function) is zero.

Using the LinearOperator? domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.

axiom
ω:𝐋 :=
     o    Y I      /
     o     U       -
     o    I Y      /
     o     U       o

\label{eq21}\begin{array}{@{}l}
\displaystyle
{{\left({u^{2, \: 1}}-{u^{1, \: 2}}\right)}\ {|_{\ }^{1 \  2 \  1}}}+{{\left({u^{2, \: 2}}+{u^{1, \: 1}}\right)}\ {|_{\ }^{1 \  2 \  2}}}+ 
\
\
\displaystyle
{{\left({u^{2, \: 3}}-{u^{1, \: 4}}\right)}\ {|_{\ }^{1 \  2 \  3}}}+{{\left({u^{2, \: 4}}+{u^{1, \: 3}}\right)}\ {|_{\ }^{1 \  2 \  4}}}+ 
\
\
\displaystyle
{{\left({u^{3, \: 1}}-{u^{1, \: 3}}\right)}\ {|_{\ }^{1 \  3 \  1}}}+{{\left({u^{3, \: 2}}+{u^{1, \: 4}}\right)}\ {|_{\ }^{1 \  3 \  2}}}+ 
\
\
\displaystyle
{{\left({{u^{1, \: 1}}\ {q_{1}}}+{u^{3, \: 3}}\right)}\ {|_{\ }^{1 \  3 \  3}}}+{{\left(-{{u^{1, \: 2}}\ {q_{1}}}+{u^{3, \: 4}}\right)}\ {|_{\ }^{1 \  3 \  4}}}+ 
\
\
\displaystyle
{{\left({u^{4, \: 1}}-{u^{1, \: 4}}\right)}\ {|_{\ }^{1 \  4 \  1}}}+{{\left({u^{4, \: 2}}-{u^{1, \: 3}}\right)}\ {|_{\ }^{1 \  4 \  2}}}+ 
\
\
\displaystyle
{{\left({{u^{1, \: 2}}\ {q_{1}}}+{u^{4, \: 3}}\right)}\ {|_{\ }^{1 \  4 \  3}}}+{{\left({{u^{1, \: 1}}\ {q_{1}}}+{u^{4, \: 4}}\right)}\ {|_{\ }^{1 \  4 \  4}}}+ 
\
\
\displaystyle
{{\left(-{u^{2, \: 2}}-{u^{1, \: 1}}\right)}\ {|_{\ }^{2 \  2 \  1}}}+{{\left({u^{2, \: 1}}-{u^{1, \: 2}}\right)}\ {|_{\ }^{2 \  2 \  2}}}+ 
\
\
\displaystyle
{{\left(-{u^{2, \: 4}}-{u^{1, \: 3}}\right)}\ {|_{\ }^{2 \  2 \  3}}}+{{\left({u^{2, \: 3}}-{u^{1, \: 4}}\right)}\ {|_{\ }^{2 \  2 \  4}}}+ 
\
\
\displaystyle
{{\left({u^{4, \: 1}}-{u^{2, \: 3}}\right)}\ {|_{\ }^{2 \  3 \  1}}}+{{\left({u^{4, \: 2}}+{u^{2, \: 4}}\right)}\ {|_{\ }^{2 \  3 \  2}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 1}}\ {q_{1}}}+{u^{4, \: 3}}\right)}\ {|_{\ }^{2 \  3 \  3}}}+{{\left(-{{u^{2, \: 2}}\ {q_{1}}}+{u^{4, \: 4}}\right)}\ {|_{\ }^{2 \  3 \  4}}}+ 
\
\
\displaystyle
{{\left(-{u^{3, \: 1}}-{u^{2, \: 4}}\right)}\ {|_{\ }^{2 \  4 \  1}}}+{{\left(-{u^{3, \: 2}}-{u^{2, \: 3}}\right)}\ {|_{\ }^{2 \  4 \  2}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {q_{1}}}-{u^{3, \: 3}}\right)}\ {|_{\ }^{2 \  4 \  3}}}+{{\left({{u^{2, \: 1}}\ {q_{1}}}-{u^{3, \: 4}}\right)}\ {|_{\ }^{2 \  4 \  4}}}+ 
\
\
\displaystyle
{{\left(-{u^{4, \: 1}}-{u^{3, \: 2}}\right)}\ {|_{\ }^{3 \  2 \  1}}}+{{\left(-{u^{4, \: 2}}+{u^{3, \: 1}}\right)}\ {|_{\ }^{3 \  2 \  2}}}+ 
\
\
\displaystyle
{{\left(-{u^{4, \: 3}}-{u^{3, \: 4}}\right)}\ {|_{\ }^{3 \  2 \  3}}}+{{\left(-{u^{4, \: 4}}+{u^{3, \: 3}}\right)}\ {|_{\ }^{3 \  2 \  4}}}+ 
\
\
\displaystyle
{{\left(-{{u^{1, \: 1}}\ {q_{1}}}-{u^{3, \: 3}}\right)}\ {|_{\ }^{3 \  3 \  1}}}+{{\left(-{{u^{1, \: 2}}\ {q_{1}}}+{u^{3, \: 4}}\right)}\ {|_{\ }^{3 \  3 \  2}}}+ 
\
\
\displaystyle
{{\left({u^{3, \: 1}}-{u^{1, \: 3}}\right)}\ {q_{1}}\ {|_{\ }^{3 \  3 \  3}}}+{{\left(-{u^{3, \: 2}}-{u^{1, \: 4}}\right)}\ {q_{1}}\ {|_{\ }^{3 \  3 \  4}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 1}}\ {q_{1}}}-{u^{3, \: 4}}\right)}\ {|_{\ }^{3 \  4 \  1}}}+{{\left({{u^{2, \: 2}}\ {q_{1}}}-{u^{3, \: 3}}\right)}\ {|_{\ }^{3 \  4 \  2}}}+ 
\
\
\displaystyle
{{\left({u^{3, \: 2}}+{u^{2, \: 3}}\right)}\ {q_{1}}\ {|_{\ }^{3 \  4 \  3}}}+{{\left({u^{3, \: 1}}+{u^{2, \: 4}}\right)}\ {q_{1}}\ {|_{\ }^{3 \  4 \  4}}}+ 
\
\
\displaystyle
{{\left(-{u^{4, \: 2}}+{u^{3, \: 1}}\right)}\ {|_{\ }^{4 \  2 \  1}}}+{{\left({u^{4, \: 1}}+{u^{3, \: 2}}\right)}\ {|_{\ }^{4 \  2 \  2}}}+ 
\
\
\displaystyle
{{\left(-{u^{4, \: 4}}+{u^{3, \: 3}}\right)}\ {|_{\ }^{4 \  2 \  3}}}+{{\left({u^{4, \: 3}}+{u^{3, \: 4}}\right)}\ {|_{\ }^{4 \  2 \  4}}}+ 
\
\
\displaystyle
{{\left(-{{u^{2, \: 1}}\ {q_{1}}}-{u^{4, \: 3}}\right)}\ {|_{\ }^{4 \  3 \  1}}}+{{\left(-{{u^{2, \: 2}}\ {q_{1}}}+{u^{4, \: 4}}\right)}\ {|_{\ }^{4 \  3 \  2}}}+ 
\
\
\displaystyle
{{\left({u^{4, \: 1}}-{u^{2, \: 3}}\right)}\ {q_{1}}\ {|_{\ }^{4 \  3 \  3}}}+{{\left(-{u^{4, \: 2}}-{u^{2, \: 4}}\right)}\ {q_{1}}\ {|_{\ }^{4 \  3 \  4}}}+ 
\
\
\displaystyle
{{\left(-{{u^{1, \: 1}}\ {q_{1}}}-{u^{4, \: 4}}\right)}\ {|_{\ }^{4 \  4 \  1}}}+{{\left(-{{u^{1, \: 2}}\ {q_{1}}}-{u^{4, \: 3}}\right)}\ {|_{\ }^{4 \  4 \  2}}}+ 
\
\
\displaystyle
{{\left({u^{4, \: 2}}-{u^{1, \: 3}}\right)}\ {q_{1}}\ {|_{\ }^{4 \  4 \  3}}}+{{\left({u^{4, \: 1}}-{u^{1, \: 4}}\right)}\ {q_{1}}\ {|_{\ }^{4 \  4 \  4}}}
(21)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))

Note: The only purpose of the o symbols on the left above is to serve as a constant left-side margin as required by Axiom. The symbols on the right describe the relation between row.

Definition 2

An algebra with a non-degenerate associative scalar product is called a [Frobenius Algebra]?.

We may consider the problem where multiplication Y is given, and look for all associative scalar products U = U(Y)

This problem can be solved using linear algebra.

axiom
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame initial J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);
Type: Matrix(Expression(Integer))
axiom
u := transpose matrix [concat map(variables,ravel U)::ℒ Symbol];
Type: Matrix(Polynomial(Integer))
axiom
J::OutputForm * u::OutputForm = 0

\label{eq22}\begin{array}{@{}l}
\displaystyle
{{\left[ 
\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & - 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & - 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \
{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 
\
0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 
\
0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 
\
0 &{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 
\
{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
- 1 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & - 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & - 1 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & - 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \
0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 
\
0 & 0 & 0 & 0 & 0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & - 1 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & - 1 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & - 1 
\
-{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 
\
0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 
\
0 & 0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 &{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 &{q_{1}}&{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & - 1 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \
0 & 0 & 0 & 0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 
\
0 & 0 & 0 & 0 & 0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 
\
0 & 0 & 0 & 0 & 0 & 0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 & -{q_{1}}& 0 & 0 
\
-{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 
\
0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 
\
0 & 0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 
\
0 & 0 & 0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 
(22)
Type: Equation(OutputForm?)
axiom
nrows(J),ncols(J)

\label{eq23}\left[{64}, \:{16}\right](23)
Type: Tuple(PositiveInteger?)

The matrix J transforms the coefficients of the tensor U into coefficients of the tensor \Phi. We are looking for the general linear family of tensors U=U(Y,p_i) such that J transforms U into \Phi=0 for any such U.

If the null space of the J matrix is not empty we can use the basis to find all non-trivial solutions for U:

axiom
Ñ:=nullSpace(J)

\label{eq24}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: 1, \: 0, \: 0, \: - 1, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \: 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: - 1, \: 1, \: 0, \: 0, \: 0, \: 0, \: 1, \: 0, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \: -{1 \over{q_{1}}}, \: 0, \: 0, \: -{1 \over{q_{1}}}, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: - 1, \: 0, \: 0, \: 1, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{1 \over{q_{1}}}, \: 0, \: 0, \: 0, \: 0, \:{1 \over{q_{1}}}, \: 0, \: 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: 1 \right]}\right] 
(24)
Type: List(Vector(Expression(Integer)))
axiom
ℰ:=map((x,y)+->x=y, concat
       map(variables,ravel U), entries Σ(sb('p,[i])*Ñ.i, i,1..#Ñ) )

\label{eq25}\begin{array}{@{}l}
\displaystyle
\left[{{u^{1, \: 1}}= -{{p_{4}}\over{q_{1}}}}, \:{{u^{1, \: 2}}= -{{p_{3}}\over{q_{1}}}}, \:{{u^{1, \: 3}}={p_{2}}}, \:{{u^{1, \: 4}}={p_{1}}}, \: \right.
\
\
\displaystyle
\left.{{u^{2, \: 1}}= -{{p_{3}}\over{q_{1}}}}, \:{{u^{2, \: 2}}={{p_{4}}\over{q_{1}}}}, \:{{u^{2, \: 3}}={p_{1}}}, \:{{u^{2, \: 4}}= -{p_{2}}}, \: \right.
\
\
\displaystyle
\left.{{u^{3, \: 1}}={p_{2}}}, \:{{u^{3, \: 2}}= -{p_{1}}}, \:{{u^{3, \: 3}}={p_{4}}}, \:{{u^{3, \: 4}}= -{p_{3}}}, \: \right.
\
\
\displaystyle
\left.{{u^{4, \: 1}}={p_{1}}}, \:{{u^{4, \: 2}}={p_{2}}}, \:{{u^{4, \: 3}}={p_{3}}}, \:{{u^{4, \: 4}}={p_{4}}}\right] 
(25)
Type: List(Equation(Expression(Integer)))

This defines a family of pre-Frobenius algebras:

axiom
zero? eval(ω,ℰ)

\label{eq26} \mbox{\rm true} (26)
Type: Boolean

In general the pairing is not symmetric!

axiom
Ų:𝐋 := eval(U,ℰ)

\label{eq27}\begin{array}{@{}l}
\displaystyle
-{{{p_{4}}\over{q_{1}}}\ {|_{\ }^{1 \  1}}}-{{{p_{3}}\over{q_{1}}}\ {|_{\ }^{1 \  2}}}+{{p_{2}}\ {|_{\ }^{1 \  3}}}+{{p_{1}}\ {|_{\ }^{1 \  4}}}-{{{p_{3}}\over{q_{1}}}\ {|_{\ }^{2 \  1}}}+ 
\
\
\displaystyle
{{{p_{4}}\over{q_{1}}}\ {|_{\ }^{2 \  2}}}+{{p_{1}}\ {|_{\ }^{2 \  3}}}-{{p_{2}}\ {|_{\ }^{2 \  4}}}+{{p_{2}}\ {|_{\ }^{3 \  1}}}-{{p_{1}}\ {|_{\ }^{3 \  2}}}+{{p_{4}}\ {|_{\ }^{3 \  3}}}- 
\
\
\displaystyle
{{p_{3}}\ {|_{\ }^{3 \  4}}}+{{p_{1}}\ {|_{\ }^{4 \  1}}}+{{p_{2}}\ {|_{\ }^{4 \  2}}}+{{p_{3}}\ {|_{\ }^{4 \  3}}}+{{p_{4}}\ {|_{\ }^{4 \  4}}}
(27)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
matrix Ξ(Ξ((𝐞.i 𝐞.j)/Ų, i,1..dim), j,1..dim)

\label{eq28}\left[ 
\begin{array}{cccc}
-{{p_{4}}\over{q_{1}}}& -{{p_{3}}\over{q_{1}}}&{p_{2}}&{p_{1}}
\
-{{p_{3}}\over{q_{1}}}&{{p_{4}}\over{q_{1}}}& -{p_{1}}&{p_{2}}
\
{p_{2}}&{p_{1}}&{p_{4}}&{p_{3}}
\
{p_{1}}& -{p_{2}}& -{p_{3}}&{p_{4}}
(28)
Type: Matrix(LinearOperator?(4,OrderedVariableList?([]),Expression(Integer)))

This is the most general form of the "dot product" of two quaternions

axiom
(a*b)/Ų

\label{eq29}{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
{{\left({{a_{4}}\ {b_{4}}}+{{a_{3}}\ {b_{3}}}\right)}\ {p_{4}}}+{{\left(-{{a_{3}}\ {b_{4}}}+{{a_{4}}\ {b_{3}}}\right)}\ {p_{3}}}+ 
\
\
\displaystyle
{{\left(-{{a_{2}}\ {b_{4}}}+{{a_{1}}\ {b_{3}}}+{{a_{4}}\ {b_{2}}}+{{a_{3}}\ {b_{1}}}\right)}\ {p_{2}}}+ 
\
\
\displaystyle
{{\left({{a_{1}}\ {b_{4}}}+{{a_{2}}\ {b_{3}}}-{{a_{3}}\ {b_{2}}}+{{a_{4}}\ {b_{1}}}\right)}\ {p_{1}}}
(29)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
(a*a)/Ų

\label{eq30}{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({{\left({{a_{4}}^2}+{{a_{3}}^2}\right)}\ {p_{4}}}+{2 \ {a_{1}}\ {a_{3}}\ {p_{2}}}+{2 \ {a_{1}}\ {a_{4}}\ {p_{1}}}\right)}\ {q_{1}}}+ 
\
\
\displaystyle
{{\left({{a_{2}}^2}-{{a_{1}}^2}\right)}\ {p_{4}}}-{2 \ {a_{1}}\ {a_{2}}\ {p_{3}}}
(30)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))

The scalar product must be non-degenerate:

axiom
Ů:=determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ų), j,1..dim), i,1..dim)

\label{eq31}{\left(
\begin{array}{@{}l}
\displaystyle
{{\left(-{{p_{2}}^4}-{2 \ {{p_{1}}^2}\ {{p_{2}}^2}}-{{p_{1}}^4}\right)}\ {{q_{1}}^2}}+ 
\
\
\displaystyle
{{\left({{\left(-{2 \ {{p_{2}}^2}}-{2 \ {{p_{1}}^2}}\right)}\ {{p_{4}}^2}}+{{\left(-{2 \ {{p_{2}}^2}}-{2 \ {{p_{1}}^2}}\right)}\ {{p_{3}}^2}}\right)}\ {q_{1}}}- 
\
\
\displaystyle
{{p_{4}}^4}-{2 \ {{p_{3}}^2}\ {{p_{4}}^2}}-{{p_{3}}^4}
(31)
Type: Expression(Integer)
axiom
factor Ů

\label{eq32}{\left(
\begin{array}{@{}l}
\displaystyle
{{\left(-{{p_{2}}^4}-{2 \ {{p_{1}}^2}\ {{p_{2}}^2}}-{{p_{1}}^4}\right)}\ {{q_{1}}^2}}+ 
\
\
\displaystyle
{{\left({{\left(-{2 \ {{p_{2}}^2}}-{2 \ {{p_{1}}^2}}\right)}\ {{p_{4}}^2}}+{{\left(-{2 \ {{p_{2}}^2}}-{2 \ {{p_{1}}^2}}\right)}\ {{p_{3}}^2}}\right)}\ {q_{1}}}- 
\
\
\displaystyle
{{p_{4}}^4}-{2 \ {{p_{3}}^2}\ {{p_{4}}^2}}-{{p_{3}}^4}
(32)
Type: Factored(Expression(Integer))

Definition 3

Co-pairing

Solve the "snake relation" as a system of linear equations.

axiom
Ω:𝐋:=Σ(Σ(script('u,[[],[i,j]])*𝐞.i*𝐞.j, i,1..dim), j,1..dim)

\label{eq33}\begin{array}{@{}l}
\displaystyle
{{u^{1, \: 1}}\ {|_{1 \  1}}}+{{u^{1, \: 2}}\ {|_{1 \  2}}}+{{u^{1, \: 3}}\ {|_{1 \  3}}}+{{u^{1, \: 4}}\ {|_{1 \  4}}}+{{u^{2, \: 1}}\ {|_{2 \  1}}}+ 
\
\
\displaystyle
{{u^{2, \: 2}}\ {|_{2 \  2}}}+{{u^{2, \: 3}}\ {|_{2 \  3}}}+{{u^{2, \: 4}}\ {|_{2 \  4}}}+{{u^{3, \: 1}}\ {|_{3 \  1}}}+{{u^{3, \: 2}}\ {|_{3 \  2}}}+ 
\
\
\displaystyle
{{u^{3, \: 3}}\ {|_{3 \  3}}}+{{u^{3, \: 4}}\ {|_{3 \  4}}}+{{u^{4, \: 1}}\ {|_{4 \  1}}}+{{u^{4, \: 2}}\ {|_{4 \  2}}}+{{u^{4, \: 3}}\ {|_{4 \  3}}}+ 
\
\
\displaystyle
{{u^{4, \: 4}}\ {|_{4 \  4}}}
(33)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
d1:=(I*Ω)/(Ų*I);
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
d2:=(Ω*I)/(I*Ų);
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
equate(f,g)==map((x,y)+->(x=y),ravel f, ravel g);
Type: Void
axiom
eq1:=equate(d1,I);
axiom
Compiling function equate with type (LinearOperator(4,
      OrderedVariableList([]),Expression(Integer)),LinearOperator(4,
      OrderedVariableList([]),Expression(Integer))) -> List(Equation(
      Expression(Integer)))
Type: List(Equation(Expression(Integer)))
axiom
eq2:=equate(d2,I);
Type: List(Equation(Expression(Integer)))
axiom
snake:=solve(concat(eq1,eq2),concat Ξ(Ξ(script('u,[[],[i,j]]), i,1..dim), j,1..dim));
Type: List(List(Equation(Expression(Integer))))
axiom
if #snake ~= 1 then error "no solution"
Type: Void
axiom
Ω:=eval(Ω,snake(1))

\label{eq34}\begin{array}{@{}l}
\displaystyle
-{{{{p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  1}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  2}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  3}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  4}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  1}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  2}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  3}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  4}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  2}}}+ 
\
\
\displaystyle
{{{p_{4}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  3}}}+ 
\
\
\displaystyle
{{{p_{3}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  4}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  1}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  2}}}- 
\
\
\displaystyle
{{{p_{3}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  3}}}+ 
\
\
\displaystyle
{{{p_{4}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  4}}}
(34)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
matrix Ξ(Ξ(Ω/(𝐝.i*𝐝.j), i,1..dim), j,1..dim)

\label{eq35}\left[ 
\begin{array}{cccc}
-{{{p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}& -{{{p_{3}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}&{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}&{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}
\
-{{{p_{3}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}&{{{p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}&{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}& -{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}
\
{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}& -{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}&{{p_{4}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}& -{{p_{3}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}
\
{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}&{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}&{{p_{3}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}&{{p_{4}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}
(35)
Type: Matrix(LinearOperator?(4,OrderedVariableList?([]),Expression(Integer)))

Check "dimension": It depends on parameters!

axiom
d:𝐋:=
    o   Ω    /
    o   Ų    o

\label{eq36}{4 \ {{p_{4}}^2}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}(36)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
test
    (    I Ω     )  /
    (     Ų I    )  =  I

\label{eq37} \mbox{\rm true} (37)
Type: Boolean
axiom
test
    (     Ω I    )  /
    (    I Ų     )  =  I

\label{eq38} \mbox{\rm true} (38)
Type: Boolean

Definition 4

Co-algebra

This expression is expensive to compute:

    λ:𝐋 :=
         o    Ω Ω  I    /
         o   I Y I I    /
         o   I  X  I    /
         o   I I  Ų     o

axiom
λ:𝐋 :=
     (    I Ω     )  /
     (     Y I    )

\label{eq39}\begin{array}{@{}l}
\displaystyle
-{{{{p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  1}^{1}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  2}^{1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  3}^{1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  4}^{1}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  1}^{1}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  2}^{1}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  3}^{1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  4}^{1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  1}^{1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  2}^{1}}}+ 
\
\
\displaystyle
{{{p_{4}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  3}^{1}}}+ 
\
\
\displaystyle
{{{p_{3}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  4}^{1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  1}^{1}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  2}^{1}}}- 
\
\
\displaystyle
{{{p_{3}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  3}^{1}}}+ 
\
\
\displaystyle
{{{p_{4}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  4}^{1}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  1}^{2}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  2}^{2}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  3}^{2}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  4}^{2}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  1}^{2}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  2}^{2}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  3}^{2}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  4}^{2}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  1}^{2}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  2}^{2}}}+ 
\
\
\displaystyle
{{{p_{3}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  3}^{2}}}- 
\
\
\displaystyle
{{{p_{4}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  4}^{2}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  1}^{2}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  2}^{2}}}+ 
\
\
\displaystyle
{{{p_{4}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  3}^{2}}}+ 
\
\
\displaystyle
{{{p_{3}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  4}^{2}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {{q_{1}}^2}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  1}^{3}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {{q_{1}}^2}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  2}^{3}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  3}^{3}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  4}^{3}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {{q_{1}}^2}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  1}^{3}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {{q_{1}}^2}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  2}^{3}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  3}^{3}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  4}^{3}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  1}^{3}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  2}^{3}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  3}^{3}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  4}^{3}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  1}^{3}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  2}^{3}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  3}^{3}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  4}^{3}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {{q_{1}}^2}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  1}^{4}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {{q_{1}}^2}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  2}^{4}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  3}^{4}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1 \  4}^{4}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {{q_{1}}^2}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  1}^{4}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {{q_{1}}^2}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  2}^{4}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  3}^{4}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2 \  4}^{4}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  1}^{4}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  2}^{4}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  3}^{4}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3 \  4}^{4}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  1}^{4}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  2}^{4}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  3}^{4}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4 \  4}^{4}}}
(39)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
test
     (     Ω I    )  /
     (    I Y     )  =  λ

\label{eq40} \mbox{\rm true} (40)
Type: Boolean

i = Unit of the algebra

axiom
i:=𝐞.1

\label{eq41}|_{1}(41)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
test
     o    i     /
     o    λ     =    Ω

\label{eq42} \mbox{\rm true} (42)
Type: Boolean

Handle

axiom
H:𝐋 :=
     o    λ    o /
     o    Y    o

\label{eq43}\begin{array}{@{}l}
\displaystyle
-{{{4 \ {p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{1}^{1}}}- 
\
\
\displaystyle
{{{4 \ {p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{2}^{2}}}- 
\
\
\displaystyle
{{{4 \ {p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{3}^{3}}}- 
\
\
\displaystyle
{{{4 \ {p_{4}}\ {q_{1}}}\over{{{\left({{p_{2}}^2}+{{p_{1}}^2}\right)}\ {q_{1}}}+{{p_{4}}^2}+{{p_{3}}^2}}}\ {|_{4}^{4}}}
(43)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))

Definition 5

Co-unit
  i 
  U
  

axiom
ι:𝐋:=
    o    i I    /
    o     Ų    o

\label{eq44}-{{{p_{4}}\over{q_{1}}}\ {|_{\ }^{1}}}-{{{p_{3}}\over{q_{1}}}\ {|_{\ }^{2}}}+{{p_{2}}\ {|_{\ }^{3}}}+{{p_{1}}\ {|_{\ }^{4}}}(44)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))

Y=U
ι  
axiom
test
   o     Y     /
   o     ι     o  = Ų

\label{eq45} \mbox{\rm true} (45)
Type: Boolean

For example:

axiom
ex1:=[p[1]=0,p[2]=0,p[3]=0,p[4]=1]

\label{eq46}\left[{{p_{1}}= 0}, \:{{p_{2}}= 0}, \:{{p_{3}}= 0}, \:{{p_{4}}= 1}\right](46)
Type: List(Equation(Polynomial(Integer)))
axiom
Ų0:𝐋  :=eval(Ų,ex1)

\label{eq47}-{{1 \over{q_{1}}}\ {|_{\ }^{1 \  1}}}+{{1 \over{q_{1}}}\ {|_{\ }^{2 \  2}}}+{|_{\ }^{3 \  3}}+{|_{\ }^{4 \  4}}(47)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
Ω0:𝐋  :=eval(Ω,ex1)$𝐋

\label{eq48}-{{q_{1}}\ {|_{1 \  1}}}+{{q_{1}}\ {|_{2 \  2}}}+{|_{3 \  3}}+{|_{4 \  4}}(48)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
λ0:𝐋  :=eval(λ,ex1)$𝐋

\label{eq49}\begin{array}{@{}l}
\displaystyle
-{{q_{1}}\ {|_{1 \  1}^{1}}}+{{q_{1}}\ {|_{2 \  2}^{1}}}+{|_{3 \  3}^{1}}+{|_{4 \  4}^{1}}-{{q_{1}}\ {|_{1 \  2}^{2}}}-{{q_{1}}\ {|_{2 \  1}^{2}}}- 
\
\
\displaystyle
{|_{3 \  4}^{2}}+{|_{4 \  3}^{2}}-{{q_{1}}\ {|_{1 \  3}^{3}}}+{{q_{1}}\ {|_{2 \  4}^{3}}}-{{q_{1}}\ {|_{3 \  1}^{3}}}-{{q_{1}}\ {|_{4 \  2}^{3}}}- 
\
\
\displaystyle
{{q_{1}}\ {|_{1 \  4}^{4}}}-{{q_{1}}\ {|_{2 \  3}^{4}}}+{{q_{1}}\ {|_{3 \  2}^{4}}}-{{q_{1}}\ {|_{4 \  1}^{4}}}
(49)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
H0:𝐋 :=eval(H,ex1)$𝐋

\label{eq50}-{4 \ {q_{1}}\ {|_{1}^{1}}}-{4 \ {q_{1}}\ {|_{2}^{2}}}-{4 \ {q_{1}}\ {|_{3}^{3}}}-{4 \ {q_{1}}\ {|_{4}^{4}}}(50)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))