login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox Quaternion Algebra is Frobenius in Many Ways revision 22 of 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Editor: Bill Page
Time: 2011/05/24 20:22:13 GMT-7
Note: arbitrary signature

changed:
-q0:=1  -- not split-complex
q0:=σ::Symbol
--q0:=1  -- not split-complex

changed:
-q1:=1  -- quaternion
q1:=μ::Symbol
--q1:=1  -- quaternion

changed:
-factor Ů
-\end{axiom}
factor(numer Ů)/factor(denom Ů)
\end{axiom}

changed:
-Frobenius Condition
-\begin{axiom}
Frobenius Condition (fork)
\begin{axiom}

removed:
-
-Bi-algebra conditions
-\begin{axiom}
-ΦΦ:=         _
-  (  λ λ  ) / _
-  ( I X I ) / _
-  (  Y Y  ) ;
-
-solve(equate(ΦΦ=H),Ξ(sb('p,[i]), i,1..#Ñ))
-\end{axiom}

changed:
-ck3:=[p[1]=1,p[2]=1,p[3]=1]
ck3:=[p[1]=1,p[2]=1,p[3]=1,σ=1,μ=1]

changed:
-i = Unit of the algebra
-\begin{axiom}
Handle
\begin{axiom}

Φ:𝐋 :=
         λ     /
         Y

\end{axiom}

The Cartan-Killing form makes Φ of the identity
\begin{axiom}
test( eval(Φ,ck)=I )
\end{axiom}

but it can be the identity in many ways. For example,
\begin{axiom}
solve(equate(eval(Φ,[p[1]=1,p[2]=1,p[3]=1,σ=1,μ=1])=I),[p[4]])
\end{axiom}

If handle is identity then fork is idempotent but the converse is not true
\begin{axiom}
Φ1:=map(numer,ravel(Φ-I)::List FRAC POLY INT);
Φ2:=groebner Φ1
in?(ideal h2, ideal Φ2)
in?(ideal Φ2, ideal h2)
\end{axiom}

Bi-algebra conditions
\begin{axiom}
ΦΦ:=         _
  (  λ λ  ) / _
  ( I X I ) / _
  (  Y Y  ) ;
bi1:=map(numer,ravel(ΦΦ-H)::List FRAC POLY INT);
bi2:=groebner bi1
solve(bi2,[p[1],p[2],p[3],p[4]])
\end{axiom}

Definition 5

  i = Unit of the algebra

\begin{axiom}


changed:
-Handle
-\begin{axiom}
-
-Φ:𝐋 :=
-         λ     /
-         X     /
-         Y
-
-\end{axiom}
-
-Definition 5
-
-  <center>Co-unit<pre>
-  i 
-  U
-  </pre></center>
-
-\begin{axiom}
Co-unit

<center><pre>
i 
U
</pre></center>

\begin{axiom}

changed:
-ex1:=[q[1]=1,p[1]=1,p[2]=1,p[3]=1,p[4]=1]
ex1:=[σ=1,μ=1,p[1]=1,p[2]=1,p[3]=1,p[4]=1]

Quaternion Algebra Is Frobenius In Many Ways

Linear operators over a 4-dimensional vector space representing quaternion algebra

Ref:

We need the Axiom LinearOperator? library.

axiom
)library CARTEN ARITY CMONAL CPROP CLOP CALEY
CartesianTensor is now explicitly exposed in frame initial CartesianTensor will be automatically loaded when needed from /var/zope2/var/LatexWiki/CARTEN.NRLIB/CARTEN Arity is now explicitly exposed in frame initial Arity will be automatically loaded when needed from /var/zope2/var/LatexWiki/ARITY.NRLIB/ARITY ClosedMonoidal is now explicitly exposed in frame initial ClosedMonoidal will be automatically loaded when needed from /var/zope2/var/LatexWiki/CMONAL.NRLIB/CMONAL ClosedProp is now explicitly exposed in frame initial ClosedProp will be automatically loaded when needed from /var/zope2/var/LatexWiki/CPROP.NRLIB/CPROP ClosedLinearOperator is now explicitly exposed in frame initial ClosedLinearOperator will be automatically loaded when needed from /var/zope2/var/LatexWiki/CLOP.NRLIB/CLOP CaleyDickson is now explicitly exposed in frame initial CaleyDickson will be automatically loaded when needed from /var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY

Use the following macros for convenient notation

axiom
-- summation
macro Σ(x,i,n)==reduce(+,[x for i in n])
Type: Void
axiom
-- list
macro Ξ(f,i,n)==[f for i in n]
Type: Void
axiom
-- subscript
macro sb == subscript
Type: Void

𝐋 is the domain of 4-dimensional linear operators over the rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.

axiom
dim:=4

\label{eq1}4(1)
Type: PositiveInteger?
axiom
macro ℒ == List
Type: Void
axiom
macro ℂ == CaleyDickson
Type: Void
axiom
macro ℚ == Expression Integer
Type: Void
axiom
𝐋 := ClosedLinearOperator(OVAR ['1,'i,'j,'k], ℚ)

\label{eq2}\hbox{\axiomType{ClosedLinearOperator}\ } (\hbox{\axiomType{OrderedVariableList}\ } ([ 1, i , j , k ]) , \hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }))(2)
Type: Type
axiom
𝐞:ℒ 𝐋      := basisOut()

\label{eq3}\left[{|_{\  1}}, \:{|_{\  i}}, \:{|_{\  j}}, \:{|_{\  k}}\right](3)
Type: List(ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer)))
axiom
𝐝:ℒ 𝐋      := basisIn()

\label{eq4}\left[{|^{\  1}}, \:{|^{\  i}}, \:{|^{\  j}}, \:{|^{\  k}}\right](4)
Type: List(ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer)))
axiom
I:𝐋:=[1]   -- identity for composition

\label{eq5}{|_{\  1}^{\  1}}+{|_{\  i}^{\  i}}+{|_{\  j}^{\  j}}+{|_{\  k}^{\  k}}(5)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
X:𝐋:=[2,1] -- twist

\label{eq6}\begin{array}{@{}l}
\displaystyle
{|_{\  1 \  1}^{\  1 \  1}}+{|_{\  i \  1}^{\  1 \  i}}+{|_{\  j \  1}^{\  1 \  j}}+{|_{\  k \  1}^{\  1 \  k}}+{|_{\  1 \  i}^{\  i \  1}}+ 
\
\
\displaystyle
{|_{\  i \  i}^{\  i \  i}}+{|_{\  j \  i}^{\  i \  j}}+{|_{\  k \  i}^{\  i \  k}}+{|_{\  1 \  j}^{\  j \  1}}+{|_{\  i \  j}^{\  j \  i}}+{|_{\  j \  j}^{\  j \  j}}+ 
\
\
\displaystyle
{|_{\  k \  j}^{\  j \  k}}+{|_{\  1 \  k}^{\  k \  1}}+{|_{\  i \  k}^{\  k \  i}}+{|_{\  j \  k}^{\  k \  j}}+{|_{\  k \  k}^{\  k \  k}}
(6)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
V:𝐋:=ev(1) -- evaluation

\label{eq7}{|^{\  1 \  1}}+{|^{\  i \  i}}+{|^{\  j \  j}}+{|^{\  k \  k}}(7)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
Λ:𝐋:=co(1) -- co-evaluation

\label{eq8}{|_{\  1 \  1}}+{|_{\  i \  i}}+{|_{\  j \  j}}+{|_{\  k \  k}}(8)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
equate(eq)==map((x,y)+->(x=y),ravel lhs eq, ravel rhs eq);
Type: Void

Now generate structure constants for Quaternion Algebra

The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.

Split-complex and co-quaternions can be specified by Caley-Dickson parameters (q0 = -1, q1 = -1)

axiom
--q0:=sb('q,[0])
q0:=σ::Symbol

\label{eq9}��(9)
Type: Symbol
axiom
--q0:=1  -- not split-complex
--q1:=sb('q,[1])
q1:=μ::Symbol

\label{eq10}��(10)
Type: Symbol
axiom
--q1:=1  -- quaternion
QQ := ℂ(ℂ(ℚ,'i,q0),'j,q1);
Type: Type

Basis: Each B.i is a quaternion number

axiom
B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ)

\label{eq11}\left[ 1, \: i , \: j , \:{ij}\right](11)
Type: List(CaleyDickson?(CaleyDickson?(Expression(Integer),i,σ),j,μ))
axiom
-- Multiplication table:
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)

\label{eq12}\left[ 
\begin{array}{cccc}
1 & i & j &{ij}
\
i & - �� & -{ij}&{�� j}
\
j &{ij}& - �� &{- �� i}
\
{ij}&{- �� j}&{�� i}& -{�� \  ��}
(12)
Type: Matrix(CaleyDickson?(CaleyDickson?(Expression(Integer),i,σ),j,μ))
axiom
-- Function to divide the matrix entries by a basis element
S(y) == map(x +-> real real(x/y),M)
Type: Void
axiom
-- The result is a nested list
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ
axiom
Compiling function S with type CaleyDickson(CaleyDickson(Expression(
      Integer),i,σ),j,μ) -> Matrix(Expression(Integer))

\label{eq13}\begin{array}{@{}l}
\displaystyle
\left[{\left[{\left[ 1, \: 0, \: 0, \: 0 \right]}, \:{\left[ 0, \: - �� , \: 0, \: 0 \right]}, \:{\left[ 0, \: 0, \: - �� , \: 0 \right]}, \:{\left[ 0, \: 0, \: 0, \: -{�� \  ��}\right]}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\left[ 0, \: 1, \: 0, \: 0 \right]}, \:{\left[ 1, \: 0, \: 0, \: 0 \right]}, \:{\left[ 0, \: 0, \: 0, \: - �� \right]}, \:{\left[ 0, \: 0, \: �� , \: 0 \right]}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\left[ 0, \: 0, \: 1, \: 0 \right]}, \:{\left[ 0, \: 0, \: 0, \: �� \right]}, \:{\left[ 1, \: 0, \: 0, \: 0 \right]}, \:{\left[ 0, \: - �� , \: 0, \: 0 \right]}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\left[ 0, \: 0, \: 0, \: 1 \right]}, \:{\left[ 0, \: 0, \: - 1, \: 0 \right]}, \:{\left[ 0, \: 1, \: 0, \: 0 \right]}, \:{\left[ 1, \: 0, \: 0, \: 0 \right]}\right]}\right] (13)
Type: List(List(List(Expression(Integer))))
axiom
-- structure constants form a tensor operator
Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim)

\label{eq14}\begin{array}{@{}l}
\displaystyle
{|_{\  1}^{\  1 \  1}}+{|_{\  i}^{\  1 \  i}}+{|_{\  j}^{\  1 \  j}}+{|_{\  k}^{\  1 \  k}}+{|_{\  i}^{\  i \  1}}-{�� \ {|_{\  1}^{\  i \  i}}}+{|_{\  k}^{\  i \  j}}- 
\
\
\displaystyle
{�� \ {|_{\  j}^{\  i \  k}}}+{|_{\  j}^{\  j \  1}}-{|_{\  k}^{\  j \  i}}-{�� \ {|_{\  1}^{\  j \  j}}}+{�� \ {|_{\  i}^{\  j \  k}}}+{|_{\  k}^{\  k \  1}}+ 
\
\
\displaystyle
{�� \ {|_{\  j}^{\  k \  i}}}-{�� \ {|_{\  i}^{\  k \  j}}}-{�� \  �� \ {|_{\  1}^{\  k \  k}}}
(14)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
arity Y

\label{eq15}{+^2}\over +(15)
Type: ClosedProp?(ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer)))
axiom
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)

\label{eq16}\left[ 
\begin{array}{cccc}
{|_{\  1}}&{|_{\  i}}&{|_{\  j}}&{|_{\  k}}
\
{|_{\  i}}& -{�� \ {|_{\  1}}}& -{|_{\  k}}&{�� \ {|_{\  j}}}
\
{|_{\  j}}&{|_{\  k}}& -{�� \ {|_{\  1}}}& -{�� \ {|_{\  i}}}
\
{|_{\  k}}& -{�� \ {|_{\  j}}}&{�� \ {|_{\  i}}}& -{�� \  �� \ {|_{\  1}}}
(16)
Type: Matrix(ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer)))

Multiplication of arbitrary quaternions a and b

axiom
a:=Σ(sb('a,[i])*𝐞.i, i,1..dim)

\label{eq17}{{a_{1}}\ {|_{\  1}}}+{{a_{2}}\ {|_{\  i}}}+{{a_{3}}\ {|_{\  j}}}+{{a_{4}}\ {|_{\  k}}}(17)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
b:=Σ(sb('b,[i])*𝐞.i, i,1..dim)

\label{eq18}{{b_{1}}\ {|_{\  1}}}+{{b_{2}}\ {|_{\  i}}}+{{b_{3}}\ {|_{\  j}}}+{{b_{4}}\ {|_{\  k}}}(18)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
(a*b)/Y

\label{eq19}\begin{array}{@{}l}
\displaystyle
{{\left({{\left(-{{a_{4}}\ {b_{4}}\  ��}-{{a_{2}}\ {b_{2}}}\right)}\  ��}-{{a_{3}}\ {b_{3}}\  ��}+{{a_{1}}\ {b_{1}}}\right)}\ {|_{\  1}}}+ 
\
\
\displaystyle
{{\left({{\left({{a_{3}}\ {b_{4}}}-{{a_{4}}\ {b_{3}}}\right)}\  ��}+{{a_{1}}\ {b_{2}}}+{{a_{2}}\ {b_{1}}}\right)}\ {|_{\  i}}}+ 
\
\
\displaystyle
{{\left({{\left(-{{a_{2}}\ {b_{4}}}+{{a_{4}}\ {b_{2}}}\right)}\  ��}+{{a_{1}}\ {b_{3}}}+{{a_{3}}\ {b_{1}}}\right)}\ {|_{\  j}}}+ 
\
\
\displaystyle
{{\left({{a_{1}}\ {b_{4}}}+{{a_{2}}\ {b_{3}}}-{{a_{3}}\ {b_{2}}}+{{a_{4}}\ {b_{1}}}\right)}\ {|_{\  k}}}
(19)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

Multiplication is Associative

axiom
test(
  ( I Y ) / _
  (  Y  ) = _
  ( Y I ) / _
  (  Y  ) )

\label{eq20} \mbox{\rm true} (20)
Type: Boolean

A scalar product is denoted by the (2,0)-tensor U = \{ u_{ij} \}

axiom
U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim)

\label{eq21}\begin{array}{@{}l}
\displaystyle
{{u^{1, \: 1}}\ {|^{\  1 \  1}}}+{{u^{1, \: 2}}\ {|^{\  1 \  i}}}+{{u^{1, \: 3}}\ {|^{\  1 \  j}}}+{{u^{1, \: 4}}\ {|^{\  1 \  k}}}+ 
\
\
\displaystyle
{{u^{2, \: 1}}\ {|^{\  i \  1}}}+{{u^{2, \: 2}}\ {|^{\  i \  i}}}+{{u^{2, \: 3}}\ {|^{\  i \  j}}}+{{u^{2, \: 4}}\ {|^{\  i \  k}}}+{{u^{3, \: 1}}\ {|^{\  j \  1}}}+ 
\
\
\displaystyle
{{u^{3, \: 2}}\ {|^{\  j \  i}}}+{{u^{3, \: 3}}\ {|^{\  j \  j}}}+{{u^{3, \: 4}}\ {|^{\  j \  k}}}+{{u^{4, \: 1}}\ {|^{\  k \  1}}}+ 
\
\
\displaystyle
{{u^{4, \: 2}}\ {|^{\  k \  i}}}+{{u^{4, \: 3}}\ {|^{\  k \  j}}}+{{u^{4, \: 4}}\ {|^{\  k \  k}}}
(21)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

Definition 1

We say that the scalar product is associative if the tensor equation holds:

    Y   =   Y
     U     U

In other words, if the (3,0)-tensor:


\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-0.92)(4.82,0.92)
\psbezier[linewidth=0.04](2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9)
\psline[linewidth=0.04cm](2.4,0.3)(2.4,-0.1)
\psbezier[linewidth=0.04](2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1)
\psline[linewidth=0.04cm](3.0,-0.1)(3.0,0.9)
\psbezier[linewidth=0.04](4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9)
\psline[linewidth=0.04cm](4.6,0.3)(4.6,-0.1)
\psbezier[linewidth=0.04](4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1)
\psline[linewidth=0.04cm](4.0,-0.1)(4.0,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(3.4948437,0.205){-}
\psline[linewidth=0.04cm](0.6,-0.7)(0.6,0.9)
\psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1)
\psline[linewidth=0.04cm](0.0,-0.1)(0.0,0.9)
\psline[linewidth=0.04cm](1.2,-0.1)(1.2,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(1.6948438,0.205){=}
\end{pspicture} 
}
 


\label{eq22}
  \Phi = \{ \phi^{ijk} = {y^e}_{ij} u_{ek} - u_{ie} {y_e}^{jk} \}
  (22)
(three-point function) is zero.

Using the LinearOperator? domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.

axiom
ω:𝐋 :=
     (    Y I    )  /
           U        -
     (    I Y    )  /
           U

\label{eq23}\begin{array}{@{}l}
\displaystyle
{{\left({u^{2, \: 1}}-{u^{1, \: 2}}\right)}\ {|^{\  1 \  i \  1}}}+{{\left({{u^{1, \: 1}}\  ��}+{u^{2, \: 2}}\right)}\ {|^{\  1 \  i \  i}}}+ 
\
\
\displaystyle
{{\left({u^{2, \: 3}}-{u^{1, \: 4}}\right)}\ {|^{\  1 \  i \  j}}}+{{\left({{u^{1, \: 3}}\  ��}+{u^{2, \: 4}}\right)}\ {|^{\  1 \  i \  k}}}+ 
\
\
\displaystyle
{{\left({u^{3, \: 1}}-{u^{1, \: 3}}\right)}\ {|^{\  1 \  j \  1}}}+{{\left({u^{3, \: 2}}+{u^{1, \: 4}}\right)}\ {|^{\  1 \  j \  i}}}+ 
\
\
\displaystyle
{{\left({{u^{1, \: 1}}\  ��}+{u^{3, \: 3}}\right)}\ {|^{\  1 \  j \  j}}}+{{\left(-{{u^{1, \: 2}}\  ��}+{u^{3, \: 4}}\right)}\ {|^{\  1 \  j \  k}}}+ 
\
\
\displaystyle
{{\left({u^{4, \: 1}}-{u^{1, \: 4}}\right)}\ {|^{\  1 \  k \  1}}}+{{\left(-{{u^{1, \: 3}}\  ��}+{u^{4, \: 2}}\right)}\ {|^{\  1 \  k \  i}}}+ 
\
\
\displaystyle
{{\left({{u^{1, \: 2}}\  ��}+{u^{4, \: 3}}\right)}\ {|^{\  1 \  k \  j}}}+{{\left({{u^{1, \: 1}}\  �� \  ��}+{u^{4, \: 4}}\right)}\ {|^{\  1 \  k \  k}}}+ 
\
\
\displaystyle
{{\left(-{{u^{1, \: 1}}\  ��}-{u^{2, \: 2}}\right)}\ {|^{\  i \  i \  1}}}+{{\left({u^{2, \: 1}}-{u^{1, \: 2}}\right)}\  �� \ {|^{\  i \  i \  i}}}+ 
\
\
\displaystyle
{{\left(-{{u^{1, \: 3}}\  ��}-{u^{2, \: 4}}\right)}\ {|^{\  i \  i \  j}}}+{{\left({u^{2, \: 3}}-{u^{1, \: 4}}\right)}\  �� \ {|^{\  i \  i \  k}}}+ 
\
\
\displaystyle
{{\left({u^{4, \: 1}}-{u^{2, \: 3}}\right)}\ {|^{\  i \  j \  1}}}+{{\left({u^{4, \: 2}}+{u^{2, \: 4}}\right)}\ {|^{\  i \  j \  i}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 1}}\  ��}+{u^{4, \: 3}}\right)}\ {|^{\  i \  j \  j}}}+{{\left(-{{u^{2, \: 2}}\  ��}+{u^{4, \: 4}}\right)}\ {|^{\  i \  j \  k}}}+ 
\
\
\displaystyle
{{\left(-{{u^{3, \: 1}}\  ��}-{u^{2, \: 4}}\right)}\ {|^{\  i \  k \  1}}}+{{\left(-{u^{3, \: 2}}-{u^{2, \: 3}}\right)}\  �� \ {|^{\  i \  k \  i}}}+ 
\
\
\displaystyle
{{\left(-{{u^{3, \: 3}}\  ��}+{{u^{2, \: 2}}\  ��}\right)}\ {|^{\  i \  k \  j}}}+{{\left({{u^{2, \: 1}}\  ��}-{u^{3, \: 4}}\right)}\  �� \ {|^{\  i \  k \  k}}}+ 
\
\
\displaystyle
{{\left(-{u^{4, \: 1}}-{u^{3, \: 2}}\right)}\ {|^{\  j \  i \  1}}}+{{\left({{u^{3, \: 1}}\  ��}-{u^{4, \: 2}}\right)}\ {|^{\  j \  i \  i}}}+ 
\
\
\displaystyle
{{\left(-{u^{4, \: 3}}-{u^{3, \: 4}}\right)}\ {|^{\  j \  i \  j}}}+{{\left({{u^{3, \: 3}}\  ��}-{u^{4, \: 4}}\right)}\ {|^{\  j \  i \  k}}}+ 
\
\
\displaystyle
{{\left(-{{u^{1, \: 1}}\  ��}-{u^{3, \: 3}}\right)}\ {|^{\  j \  j \  1}}}+{{\left(-{{u^{1, \: 2}}\  ��}+{u^{3, \: 4}}\right)}\ {|^{\  j \  j \  i}}}+ 
\
\
\displaystyle
{{\left({u^{3, \: 1}}-{u^{1, \: 3}}\right)}\  �� \ {|^{\  j \  j \  j}}}+{{\left(-{u^{3, \: 2}}-{u^{1, \: 4}}\right)}\  �� \ {|^{\  j \  j \  k}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 1}}\  ��}-{u^{3, \: 4}}\right)}\ {|^{\  j \  k \  1}}}+{{\left(-{{u^{3, \: 3}}\  ��}+{{u^{2, \: 2}}\  ��}\right)}\ {|^{\  j \  k \  i}}}+ 
\
\
\displaystyle
{{\left({u^{3, \: 2}}+{u^{2, \: 3}}\right)}\  �� \ {|^{\  j \  k \  j}}}+{{\left({{u^{3, \: 1}}\  �� \  ��}+{{u^{2, \: 4}}\  ��}\right)}\ {|^{\  j \  k \  k}}}+ 
\
\
\displaystyle
{{\left({{u^{3, \: 1}}\  ��}-{u^{4, \: 2}}\right)}\ {|^{\  k \  i \  1}}}+{{\left({u^{4, \: 1}}+{u^{3, \: 2}}\right)}\  �� \ {|^{\  k \  i \  i}}}+ 
\
\
\displaystyle
{{\left({{u^{3, \: 3}}\  ��}-{u^{4, \: 4}}\right)}\ {|^{\  k \  i \  j}}}+{{\left({u^{4, \: 3}}+{u^{3, \: 4}}\right)}\  �� \ {|^{\  k \  i \  k}}}+ 
\
\
\displaystyle
{{\left(-{{u^{2, \: 1}}\  ��}-{u^{4, \: 3}}\right)}\ {|^{\  k \  j \  1}}}+{{\left(-{{u^{2, \: 2}}\  ��}+{u^{4, \: 4}}\right)}\ {|^{\  k \  j \  i}}}+ 
\
\
\displaystyle
{{\left({u^{4, \: 1}}-{u^{2, \: 3}}\right)}\  �� \ {|^{\  k \  j \  j}}}+{{\left(-{u^{4, \: 2}}-{u^{2, \: 4}}\right)}\  �� \ {|^{\  k \  j \  k}}}+ 
\
\
\displaystyle
{{\left(-{{u^{1, \: 1}}\  �� \  ��}-{u^{4, \: 4}}\right)}\ {|^{\  k \  k \  1}}}+{{\left(-{{u^{1, \: 2}}\  ��}-{u^{4, \: 3}}\right)}\  �� \ {|^{\  k \  k \  i}}}+ 
\
\
\displaystyle
{{\left(-{{u^{1, \: 3}}\  �� \  ��}+{{u^{4, \: 2}}\  ��}\right)}\ {|^{\  k \  k \  j}}}+{{\left({u^{4, \: 1}}-{u^{1, \: 4}}\right)}\  �� \  �� \ {|^{\  k \  k \  k}}}
(23)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

Definition 2

An algebra with a non-degenerate associative scalar product is called a [Frobenius Algebra]?.

The Cartan-Killing Trace

axiom
Ú:=
   (  Y Λ  ) / _
   (   Y I ) / _
        V

\label{eq24}{4 \ {|^{\  1 \  1}}}-{4 \  �� \ {|^{\  i \  i}}}-{4 \  �� \ {|^{\  j \  j}}}-{4 \  �� \  �� \ {|^{\  k \  k}}}(24)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
Ù:=
   (  Λ Y  ) / _
   ( I Y   ) / _
      V

\label{eq25}{4 \ {|^{\  1 \  1}}}-{4 \  �� \ {|^{\  i \  i}}}-{4 \  �� \ {|^{\  j \  j}}}-{4 \  �� \  �� \ {|^{\  k \  k}}}(25)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
test(Ù=Ú)

\label{eq26} \mbox{\rm true} (26)
Type: Boolean

forms a non-degenerate associative scalar product for Y

axiom
Ũ := Ù

\label{eq27}{4 \ {|^{\  1 \  1}}}-{4 \  �� \ {|^{\  i \  i}}}-{4 \  �� \ {|^{\  j \  j}}}-{4 \  �� \  �� \ {|^{\  k \  k}}}(27)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
test
     (    Y I    )  /
           Ũ        =
     (    I Y    )  /
           Ũ

\label{eq28} \mbox{\rm true} (28)
Type: Boolean
axiom
determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ũ), j,1..dim), i,1..dim)

\label{eq29}-{{256}\ {��^2}\ {��^2}}(29)
Type: Expression(Integer)

General Solution

We may consider the problem where multiplication Y is given, and look for all associative scalar products U = U(Y)

This problem can be solved using linear algebra.

axiom
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame initial J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);
Type: Matrix(Expression(Integer))
axiom
u := transpose matrix [concat map(variables,ravel U)::ℒ Symbol];
Type: Matrix(Polynomial(Integer))
axiom
J::OutputForm * u::OutputForm = 0

\label{eq30}\begin{array}{@{}l}
\displaystyle
{{\left[ 
\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & - 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
�� & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & - 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & �� & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \
�� & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 
\
0 & - �� & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 
\
0 & 0 & - �� & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 
\
0 & �� & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 
\
{�� \  ��}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
- �� & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & - �� & 0 & 0 & �� & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & - �� & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & - �� & 0 & 0 & �� & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \
0 & 0 & 0 & 0 & �� & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 
\
0 & 0 & 0 & 0 & 0 & - �� & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & - �� & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & - �� & 0 & 0 & - �� & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & �� & 0 & 0 & 0 & 0 & - �� & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 &{�� \  ��}& 0 & 0 & 0 & 0 & 0 & 0 & - �� & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & - 1 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & �� & 0 & 0 & 0 & 0 & - 1 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & - 1 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & �� & 0 & 0 & 0 & 0 & - 1 
\
- �� & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 
\
0 & - �� & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 
\
0 & 0 & - �� & 0 & 0 & 0 & 0 & 0 & �� & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & - �� & 0 & 0 & 0 & 0 & 0 & - �� & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & �� & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & �� & 0 & 0 & 0 & 0 & - �� & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & �� & 0 & 0 & �� & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & �� &{�� \  ��}& 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & �� & 0 & 0 & 0 & 0 & - 1 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & �� & 0 & 0 & �� & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & �� & 0 & 0 & 0 & 0 & - 1 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & �� & 0 & 0 & �� & 0 
\
0 & 0 & 0 & 0 & - �� & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 
\
0 & 0 & 0 & 0 & 0 & - �� & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 
\
0 & 0 & 0 & 0 & 0 & 0 & - �� & 0 & 0 & 0 & 0 & 0 & �� & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & - �� & 0 & 0 & 0 & 0 & 0 & - �� & 0 & 0 
\
-{�� \  ��}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 
\
0 & -{�� \  ��}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - �� & 0 
\
0 & 0 & -{�� \  ��}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & �� & 0 & 0 
\
0 & 0 & 0 & -{�� \  ��}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{�� \  ��}& 0 & 0 & 0 
(30)
Type: Equation(OutputForm?)
axiom
nrows(J),ncols(J)

\label{eq31}\left[{64}, \:{16}\right](31)
Type: Tuple(PositiveInteger?)

The matrix J transforms the coefficients of the tensor U into coefficients of the tensor \Phi. We are looking for the general linear family of tensors U=U(Y,p_i) such that J transforms U into \Phi=0 for any such U.

If the null space of the J matrix is not empty we can use the basis to find all non-trivial solutions for U:

axiom
Ñ:=nullSpace(J)

\label{eq32}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: 1, \: 0, \: 0, \: - 1, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \: 0, \:{1 \over ��}, \: 0, \: 0, \: 0, \: 0, \: - 1, \:{1 \over ��}, \: 0, \: 0, \: 0, \: 0, \: 1, \: 0, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \: -{1 \over ��}, \: 0, \: 0, \: -{1 \over ��}, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: - 1, \: 0, \: 0, \: 1, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{1 \over{�� \  ��}}, \: 0, \: 0, \: 0, \: 0, \:{1 \over ��}, \: 0, \: 0, \: 0, \: 0, \:{1 \over ��}, \: 0, \: 0, \: 0, \: 0, \: 1 \right]}\right] 
(32)
Type: List(Vector(Expression(Integer)))
axiom
ℰ:=map((x,y)+->x=y, concat
       map(variables,ravel U), entries Σ(sb('p,[i])*Ñ.i, i,1..#Ñ) )

\label{eq33}\begin{array}{@{}l}
\displaystyle
\left[{{u^{1, \: 1}}= -{{p_{4}}\over{�� \  ��}}}, \:{{u^{1, \: 2}}= -{{p_{3}}\over ��}}, \:{{u^{1, \: 3}}={{p_{2}}\over ��}}, \:{{u^{1, \: 4}}={p_{1}}}, \: \right.
\
\
\displaystyle
\left.{{u^{2, \: 1}}= -{{p_{3}}\over ��}}, \:{{u^{2, \: 2}}={{p_{4}}\over ��}}, \:{{u^{2, \: 3}}={p_{1}}}, \:{{u^{2, \: 4}}= -{p_{2}}}, \: \right.
\
\
\displaystyle
\left.{{u^{3, \: 1}}={{p_{2}}\over ��}}, \:{{u^{3, \: 2}}= -{p_{1}}}, \:{{u^{3, \: 3}}={{p_{4}}\over ��}}, \:{{u^{3, \: 4}}= -{p_{3}}}, \: \right.
\
\
\displaystyle
\left.{{u^{4, \: 1}}={p_{1}}}, \:{{u^{4, \: 2}}={p_{2}}}, \:{{u^{4, \: 3}}={p_{3}}}, \:{{u^{4, \: 4}}={p_{4}}}\right] 
(33)
Type: List(Equation(Expression(Integer)))

This defines a family of pre-Frobenius algebras:

axiom
zero? eval(ω,ℰ)

\label{eq34} \mbox{\rm true} (34)
Type: Boolean

In general the pairing is not symmetric!

axiom
Ų:𝐋 := eval(U,ℰ)

\label{eq35}\begin{array}{@{}l}
\displaystyle
-{{{p_{4}}\over{�� \  ��}}\ {|^{\  1 \  1}}}-{{{p_{3}}\over ��}\ {|^{\  1 \  i}}}+{{{p_{2}}\over ��}\ {|^{\  1 \  j}}}+{{p_{1}}\ {|^{\  1 \  k}}}-{{{p_{3}}\over ��}\ {|^{\  i \  1}}}+ 
\
\
\displaystyle
{{{p_{4}}\over ��}\ {|^{\  i \  i}}}+{{p_{1}}\ {|^{\  i \  j}}}-{{p_{2}}\ {|^{\  i \  k}}}+{{{p_{2}}\over ��}\ {|^{\  j \  1}}}-{{p_{1}}\ {|^{\  j \  i}}}+{{{p_{4}}\over ��}\ {|^{\  j \  j}}}- 
\
\
\displaystyle
{{p_{3}}\ {|^{\  j \  k}}}+{{p_{1}}\ {|^{\  k \  1}}}+{{p_{2}}\ {|^{\  k \  i}}}+{{p_{3}}\ {|^{\  k \  j}}}+{{p_{4}}\ {|^{\  k \  k}}}
(35)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
matrix Ξ(Ξ((𝐞.i 𝐞.j)/Ų, i,1..dim), j,1..dim)

\label{eq36}\left[ 
\begin{array}{cccc}
-{{p_{4}}\over{�� \  ��}}& -{{p_{3}}\over ��}&{{p_{2}}\over ��}&{p_{1}}
\
-{{p_{3}}\over ��}&{{p_{4}}\over ��}& -{p_{1}}&{p_{2}}
\
{{p_{2}}\over ��}&{p_{1}}&{{p_{4}}\over ��}&{p_{3}}
\
{p_{1}}& -{p_{2}}& -{p_{3}}&{p_{4}}
(36)
Type: Matrix(ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer)))

This is the most general form of the "dot product" of two quaternions

axiom
(a*b)/Ų

\label{eq37}{\left(
\begin{array}{@{}l}
\displaystyle
{
\begin{array}{@{}l}
\displaystyle
{\left({
\begin{array}{@{}l}
\displaystyle
{{\left({{a_{4}}\ {b_{4}}\ {p_{4}}}+{{\left(-{{a_{3}}\ {b_{4}}}+{{a_{4}}\ {b_{3}}}\right)}\ {p_{3}}}+{{\left(-{{a_{2}}\ {b_{4}}}+{{a_{4}}\ {b_{2}}}\right)}\ {p_{2}}}+{{\left({{a_{1}}\ {b_{4}}}+{{a_{2}}\ {b_{3}}}-{{a_{3}}\ {b_{2}}}+{{a_{4}}\ {b_{1}}}\right)}\ {p_{1}}}\right)}\  ��}+ 
\
\
\displaystyle
{{a_{2}}\ {b_{2}}\ {p_{4}}}+{{\left(-{{a_{1}}\ {b_{2}}}-{{a_{2}}\ {b_{1}}}\right)}\ {p_{3}}}
(37)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
(a*a)/Ų

\label{eq38}{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({{\left({{{a_{4}}^2}\ {p_{4}}}+{2 \ {a_{1}}\ {a_{4}}\ {p_{1}}}\right)}\  ��}+{{{a_{2}}^2}\ {p_{4}}}-{2 \ {a_{1}}\ {a_{2}}\ {p_{3}}}\right)}\  ��}+ 
\
\
\displaystyle
{{\left({{{a_{3}}^2}\ {p_{4}}}+{2 \ {a_{1}}\ {a_{3}}\ {p_{2}}}\right)}\  ��}-{{{a_{1}}^2}\ {p_{4}}}
(38)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

Cartan-Killing is a special case

axiom
ck:=solve(equate(Ũ=Ų),Ξ(sb('p,[i]), i,1..#Ñ)).1
axiom
Compiling function equate with type Equation(ClosedLinearOperator(
      OrderedVariableList([1,i,j,k]),Expression(Integer))) -> List(
      Equation(Expression(Integer)))

\label{eq39}\left[{{p_{1}}= 0}, \:{{p_{2}}= 0}, \:{{p_{3}}= 0}, \:{{p_{4}}= -{4 \  �� \  ��}}\right](39)
Type: List(Equation(Expression(Integer)))

The scalar product must be non-degenerate:

axiom
Ů:=determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ų), j,1..dim), i,1..dim)

\label{eq40}{\left(
\begin{array}{@{}l}
\displaystyle
{{\left(-{{{p_{1}}^4}\ {��^2}}-{2 \ {{p_{1}}^2}\ {{p_{3}}^2}\  ��}-{{p_{3}}^4}\right)}\ {��^2}}+ 
\
\
\displaystyle
{
\begin{array}{@{}l}
\displaystyle
{\left({
\begin{array}{@{}l}
\displaystyle
-{2 \ {{p_{1}}^2}\ {{p_{2}}^2}\ {��^2}}+{{\left(-{2 \ {{p_{1}}^2}\ {{p_{4}}^2}}-{2 \ {{p_{2}}^2}\ {{p_{3}}^2}}\right)}\  ��}- 
\
\
\displaystyle
{2 \ {{p_{3}}^2}\ {{p_{4}}^2}}
(40)
Type: Expression(Integer)
axiom
factor(numer Ů)/factor(denom Ů)

\label{eq41}-{{{\left({{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}\right)}^2}\over{{��^2}\ {��^2}}}(41)
Type: Fraction(Factored(SparseMultivariatePolynomial?(Integer,Kernel(Expression(Integer)))))

Definition 3

Co-pairing

Solve the [Snake Relation]? as a system of linear equations.

axiom
Ω:𝐋:=Σ(Σ(script('u,[[i,j]])*𝐞.i*𝐞.j, i,1..dim), j,1..dim)

\label{eq42}\begin{array}{@{}l}
\displaystyle
{{u_{1, \: 1}}\ {|_{\  1 \  1}}}+{{u_{1, \: 2}}\ {|_{\  1 \  i}}}+{{u_{1, \: 3}}\ {|_{\  1 \  j}}}+{{u_{1, \: 4}}\ {|_{\  1 \  k}}}+ 
\
\
\displaystyle
{{u_{2, \: 1}}\ {|_{\  i \  1}}}+{{u_{2, \: 2}}\ {|_{\  i \  i}}}+{{u_{2, \: 3}}\ {|_{\  i \  j}}}+{{u_{2, \: 4}}\ {|_{\  i \  k}}}+{{u_{3, \: 1}}\ {|_{\  j \  1}}}+ 
\
\
\displaystyle
{{u_{3, \: 2}}\ {|_{\  j \  i}}}+{{u_{3, \: 3}}\ {|_{\  j \  j}}}+{{u_{3, \: 4}}\ {|_{\  j \  k}}}+{{u_{4, \: 1}}\ {|_{\  k \  1}}}+ 
\
\
\displaystyle
{{u_{4, \: 2}}\ {|_{\  k \  i}}}+{{u_{4, \: 3}}\ {|_{\  k \  j}}}+{{u_{4, \: 4}}\ {|_{\  k \  k}}}
(42)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
d1:=(I*Ω)/(Ų*I);
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
d2:=(Ω*I)/(I*Ų);
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
eq1:=equate(d1=I);
Type: List(Equation(Expression(Integer)))
axiom
eq2:=equate(d2=I);
Type: List(Equation(Expression(Integer)))
axiom
snake:=solve(concat(eq1,eq2),concat Ξ(Ξ(script('u,[[i,j]]), i,1..dim), j,1..dim));
Type: List(List(Equation(Expression(Integer))))
axiom
if #snake ~= 1 then error "no solution"
Type: Void
axiom
Ω:=eval(Ω,snake(1))

\label{eq43}\begin{array}{@{}l}
\displaystyle
-{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}}}- 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}}}- 
\
\
\displaystyle
{{{{p_{2}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}}}- 
\
\
\displaystyle
{{{{p_{3}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}}}+ 
\
\
\displaystyle
{{{p_{4}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}}}
(43)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
matrix Ξ(Ξ(Ω/(𝐝.i*𝐝.j), i,1..dim), j,1..dim)

\label{eq44}\left[ 
\begin{array}{cccc}
-{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}& -{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}&{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}&{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}
\
-{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}&{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}&{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}& -{{{p_{2}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}
\
{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}& -{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}&{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}& -{{{p_{3}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}
\
{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}&{{{p_{2}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}&{{{p_{3}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}&{{p_{4}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}
(44)
Type: Matrix(ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer)))

Check "dimension" and the snake relations.

axiom
d:𝐋:=
       Ω    /
       X    /
       Ų

\label{eq45}4(45)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
test
    (    I Ω     )  /
    (     Ų I    )  =  I

\label{eq46} \mbox{\rm true} (46)
Type: Boolean
axiom
test
    (     Ω I    )  /
    (    I Ų     )  =  I

\label{eq47} \mbox{\rm true} (47)
Type: Boolean

Definition 4

Co-algebra

Compute the "three-point" function and use it to define co-multiplication.

axiom
W:=(Y,I)/Ų

\label{eq48}\begin{array}{@{}l}
\displaystyle
-{{{p_{4}}\over{�� \  ��}}\ {|^{\  1 \  1 \  1}}}-{{{p_{3}}\over ��}\ {|^{\  1 \  1 \  i}}}+{{{p_{2}}\over ��}\ {|^{\  1 \  1 \  j}}}+{{p_{1}}\ {|^{\  1 \  1 \  k}}}- 
\
\
\displaystyle
{{{p_{3}}\over ��}\ {|^{\  1 \  i \  1}}}+{{{p_{4}}\over ��}\ {|^{\  1 \  i \  i}}}+{{p_{1}}\ {|^{\  1 \  i \  j}}}-{{p_{2}}\ {|^{\  1 \  i \  k}}}+{{{p_{2}}\over ��}\ {|^{\  1 \  j \  1}}}- 
\
\
\displaystyle
{{p_{1}}\ {|^{\  1 \  j \  i}}}+{{{p_{4}}\over ��}\ {|^{\  1 \  j \  j}}}-{{p_{3}}\ {|^{\  1 \  j \  k}}}+{{p_{1}}\ {|^{\  1 \  k \  1}}}+{{p_{2}}\ {|^{\  1 \  k \  i}}}+ 
\
\
\displaystyle
{{p_{3}}\ {|^{\  1 \  k \  j}}}+{{p_{4}}\ {|^{\  1 \  k \  k}}}-{{{p_{3}}\over ��}\ {|^{\  i \  1 \  1}}}+{{{p_{4}}\over ��}\ {|^{\  i \  1 \  i}}}+{{p_{1}}\ {|^{\  i \  1 \  j}}}- 
\
\
\displaystyle
{{p_{2}}\ {|^{\  i \  1 \  k}}}+{{{p_{4}}\over ��}\ {|^{\  i \  i \  1}}}+{{{{p_{3}}\  ��}\over ��}\ {|^{\  i \  i \  i}}}-{{p_{2}}\ {|^{\  i \  i \  j}}}-{{p_{1}}\  �� \ {|^{\  i \  i \  k}}}+ 
\
\
\displaystyle
{{p_{1}}\ {|^{\  i \  j \  1}}}+{{p_{2}}\ {|^{\  i \  j \  i}}}+{{p_{3}}\ {|^{\  i \  j \  j}}}+{{p_{4}}\ {|^{\  i \  j \  k}}}-{{p_{2}}\ {|^{\  i \  k \  1}}}+ 
\
\
\displaystyle
{{p_{1}}\  �� \ {|^{\  i \  k \  i}}}-{{p_{4}}\ {|^{\  i \  k \  j}}}+{{p_{3}}\  �� \ {|^{\  i \  k \  k}}}+{{{p_{2}}\over ��}\ {|^{\  j \  1 \  1}}}-{{p_{1}}\ {|^{\  j \  1 \  i}}}+ \
\
\displaystyle
{{{p_{4}}\over ��}\ {|^{\  j \  1 \  j}}}-{{p_{3}}\ {|^{\  j \  1 \  k}}}-{{p_{1}}\ {|^{\  j \  i \  1}}}-{{p_{2}}\ {|^{\  j \  i \  i}}}-{{p_{3}}\ {|^{\  j \  i \  j}}}- 
\
\
\displaystyle
{{p_{4}}\ {|^{\  j \  i \  k}}}+{{{p_{4}}\over ��}\ {|^{\  j \  j \  1}}}+{{p_{3}}\ {|^{\  j \  j \  i}}}-{{{{p_{2}}\  ��}\over ��}\ {|^{\  j \  j \  j}}}-{{p_{1}}\  �� \ {|^{\  j \  j \  k}}}- 
\
\
\displaystyle
{{p_{3}}\ {|^{\  j \  k \  1}}}+{{p_{4}}\ {|^{\  j \  k \  i}}}+{{p_{1}}\  �� \ {|^{\  j \  k \  j}}}-{{p_{2}}\  �� \ {|^{\  j \  k \  k}}}+{{p_{1}}\ {|^{\  k \  1 \  1}}}+ 
\
\
\displaystyle
{{p_{2}}\ {|^{\  k \  1 \  i}}}+{{p_{3}}\ {|^{\  k \  1 \  j}}}+{{p_{4}}\ {|^{\  k \  1 \  k}}}+{{p_{2}}\ {|^{\  k \  i \  1}}}-{{p_{1}}\  �� \ {|^{\  k \  i \  i}}}+ 
\
\
\displaystyle
{{p_{4}}\ {|^{\  k \  i \  j}}}-{{p_{3}}\  �� \ {|^{\  k \  i \  k}}}+{{p_{3}}\ {|^{\  k \  j \  1}}}-{{p_{4}}\ {|^{\  k \  j \  i}}}-{{p_{1}}\  �� \ {|^{\  k \  j \  j}}}+ 
\
\
\displaystyle
{{p_{2}}\  �� \ {|^{\  k \  j \  k}}}+{{p_{4}}\ {|^{\  k \  k \  1}}}+{{p_{3}}\  �� \ {|^{\  k \  k \  i}}}-{{p_{2}}\  �� \ {|^{\  k \  k \  j}}}- 
\
\
\displaystyle
{{p_{1}}\  �� \  �� \ {|^{\  k \  k \  k}}}
(48)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
λ:=(Ω,I,Ω)/(I,W,I)

\label{eq49}\begin{array}{@{}l}
\displaystyle
-{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  1}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  1}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  1}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  1}}}- 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  1}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  1}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  1}}}- 
\
\
\displaystyle
{{{{p_{2}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  1}}}- 
\
\
\displaystyle
{{{{p_{3}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  1}}}+ 
\
\
\displaystyle
{{{p_{4}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  1}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  i}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  i}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  i}}}- 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  i}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  i}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  i}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  i}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  i}}}- 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  i}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  i}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  i}}}- 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  i}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  i}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  i}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  i}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  i}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  j}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  j}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  j}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  j}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  j}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  j}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  j}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  j}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  j}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  j}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  j}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  j}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  j}}}- 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  j}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  j}}}- 
\
\
\displaystyle
{{{{p_{2}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  j}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  k}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  k}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  k}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  k}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  k}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  k}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  k}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  k}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  k}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  k}}}- 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  k}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  k}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  k}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  k}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  k}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  k}}}
(49)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

axiom
test
     (    I Ω     )  /
     (     Y I    )  =  λ

\label{eq50} \mbox{\rm true} (50)
Type: Boolean
axiom
test
     (     Ω I    )  /
     (    I Y     )  =  λ

\label{eq51} \mbox{\rm true} (51)
Type: Boolean

Co-associativity

axiom
test(
  (  λ  ) / _
  ( I λ ) = _
  (  λ  ) / _
  ( λ I ) )

\label{eq52} \mbox{\rm true} (52)
Type: Boolean

Frobenius Condition (fork)

axiom
H :=
         Y    /
         λ

\label{eq53}\begin{array}{@{}l}
\displaystyle
-{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  1 \  1}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  1 \  1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  1 \  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  1 \  1}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  1 \  1}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  1 \  1}}}- 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  1 \  1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  1 \  1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  1 \  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  1 \  1}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  1 \  1}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  1 \  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  1 \  1}}}- 
\
\
\displaystyle
{{{{p_{2}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  1 \  1}}}- 
\
\
\displaystyle
{{{{p_{3}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  1 \  1}}}+ 
\
\
\displaystyle
{{{p_{4}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  1 \  1}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  1 \  i}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  1 \  i}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  1 \  i}}}- 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  1 \  i}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  1 \  i}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  1 \  i}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  1 \  i}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  1 \  i}}}- 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  1 \  i}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  1 \  i}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  1 \  i}}}- 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  1 \  i}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  1 \  i}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  1 \  i}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  1 \  i}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  1 \  i}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  1 \  j}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  1 \  j}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  1 \  j}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  1 \  j}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  1 \  j}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  1 \  j}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  1 \  j}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  1 \  j}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  1 \  j}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  1 \  j}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  1 \  j}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  1 \  j}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  1 \  j}}}- 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  1 \  j}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  1 \  j}}}- 
\
\
\displaystyle
{{{{p_{2}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  1 \  j}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  1 \  k}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  1 \  k}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  1 \  k}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  1 \  k}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  1 \  k}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  1 \  k}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  1 \  k}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  1 \  k}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  1 \  k}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  1 \  k}}}- 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  1 \  k}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  1 \  k}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  1 \  k}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  1 \  k}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  1 \  k}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  1 \  k}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  i \  1}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  i \  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  i \  1}}}- 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  i \  1}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  i \  1}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  i \  1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  i \  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  i \  1}}}- 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  i \  1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  i \  1}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  i \  1}}}- 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  i \  1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  i \  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  i \  1}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  i \  1}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  i \  1}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  i \  i}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  i \  i}}}- 
\
\
\displaystyle
{{{{p_{2}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  i \  i}}}- 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  i \  i}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  i \  i}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  i \  i}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  i \  i}}}- 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  i \  i}}}- 
\
\
\displaystyle
{{{{p_{2}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  i \  i}}}- 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  i \  i}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  i \  i}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  i \  i}}}- 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  i \  i}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  i \  i}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  i \  i}}}- 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  i \  i}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  i \  j}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  i \  j}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  i \  j}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  i \  j}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  i \  j}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  i \  j}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  i \  j}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  i \  j}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  i \  j}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  i \  j}}}- 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  i \  j}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  i \  j}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  i \  j}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  i \  j}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  i \  j}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  i \  j}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  i \  k}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  i \  k}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  i \  k}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  i \  k}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  i \  k}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  i \  k}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  i \  k}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  i \  k}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  i \  k}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  i \  k}}}- 
\
\
\displaystyle
{{{{p_{2}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  i \  k}}}- 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  i \  k}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  i \  k}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  i \  k}}}- 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  i \  k}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  i \  k}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  j \  1}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  j \  1}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  j \  1}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  j \  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  j \  1}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  j \  1}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  j \  1}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  j \  1}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  j \  1}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  j \  1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  j \  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  j \  1}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  j \  1}}}- 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  j \  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  j \  1}}}- 
\
\
\displaystyle
{{{{p_{2}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  j \  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  j \  i}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  j \  i}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  j \  i}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  j \  i}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  j \  i}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  j \  i}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  j \  i}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  j \  i}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  j \  i}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  j \  i}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  j \  i}}}- 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  j \  i}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  j \  i}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  j \  i}}}- 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  j \  i}}}- 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  j \  i}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  j \  j}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  j \  j}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  j \  j}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  j \  j}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  j \  j}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  j \  j}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  j \  j}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  j \  j}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  j \  j}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  j \  j}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  j \  j}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  j \  j}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  j \  j}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  j \  j}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  j \  j}}}- 
\
\
\displaystyle
{{{{p_{4}}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  j \  j}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  j \  k}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  j \  k}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  j \  k}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  j \  k}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  j \  k}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  j \  k}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  j \  k}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  j \  k}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  j \  k}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  j \  k}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  j \  k}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  j \  k}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  j \  k}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  j \  k}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  j \  k}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  j \  k}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  k \  1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  k \  1}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  k \  1}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  k \  1}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  k \  1}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  k \  1}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  k \  1}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  k \  1}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  k \  1}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  k \  1}}}- 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  k \  1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  k \  1}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  k \  1}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  k \  1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  k \  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  k \  1}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  k \  i}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  k \  i}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  k \  i}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  k \  i}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  k \  i}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  k \  i}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  k \  i}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  k \  i}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  k \  i}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  k \  i}}}+ 
\
\
\displaystyle
{{{{p_{2}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  k \  i}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  k \  i}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  k \  i}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  k \  i}}}+ 
\
\
\displaystyle
{{{{p_{1}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  k \  i}}}- 
\
\
\displaystyle
{{{{p_{2}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  k \  i}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  k \  j}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  k \  j}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  k \  j}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  k \  j}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  k \  j}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  k \  j}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  k \  j}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  k \  j}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  k \  j}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  k \  j}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  k \  j}}}+ 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  k \  j}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  k \  j}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  k \  j}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  k \  j}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  k \  j}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  1}^{\  k \  k}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  i}^{\  k \  k}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  j}^{\  k \  k}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1 \  k}^{\  k \  k}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  1}^{\  k \  k}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  i}^{\  k \  k}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  j}^{\  k \  k}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i \  k}^{\  k \  k}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  1}^{\  k \  k}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  i}^{\  k \  k}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  j}^{\  k \  k}}}- 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j \  k}^{\  k \  k}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {��^2}\ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  1}^{\  k \  k}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {��^2}\  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  i}^{\  k \  k}}}+ 
\
\
\displaystyle
{{{{p_{3}}\  �� \ {��^2}}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  j}^{\  k \  k}}}- 
\
\
\displaystyle
{{{{p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k \  k}^{\  k \  k}}}
(53)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
test
     (   λ I   )  /
     (  I Y    )  =  H

\label{eq54} \mbox{\rm true} (54)
Type: Boolean
axiom
test
     (   I λ   )  /
     (    Y I  )  =  H

\label{eq55} \mbox{\rm true} (55)
Type: Boolean

The Cartan-Killing form makes H of the Frobenius condition idempotent

axiom
test( eval(H,ck)=eval(H/H,ck) )

\label{eq56} \mbox{\rm true} (56)
Type: Boolean

But it is not unique. E.g. other idempots

axiom
h1:=map(numer,ravel(H-H/H)::List FRAC POLY INT);
Type: List(Polynomial(Integer))
axiom
h2:=groebner h1

\label{eq57}\begin{array}{@{}l}
\displaystyle
\left[{
\begin{array}{@{}l}
\displaystyle
{{\left({{\left({{16}\ {p_{1}}\ {p_{4}}}+{4 \ {{p_{1}}^3}}\right)}\ {��^2}}+{4 \ {p_{1}}\ {{p_{3}}^2}\  ��}\right)}\ {��^2}}+ 
\
\
\displaystyle
{{\left({4 \ {p_{1}}\ {{p_{2}}^2}\ {��^2}}-{{{p_{1}}^3}\ {p_{4}}\  ��}-{{p_{1}}\ {{p_{3}}^2}\ {p_{4}}}\right)}\  ��}-{{p_{1}}\ {{p_{2}}^2}\ {p_{4}}\  ��}-{{p_{1}}\ {{p_{4}}^3}}
(57)
Type: List(Polynomial(Integer))
axiom
ck3:=[p[1]=1,p[2]=1,p[3]=1,σ=1,μ=1]

\label{eq58}\left[{{p_{1}}= 1}, \:{{p_{2}}= 1}, \:{{p_{3}}= 1}, \:{�� = 1}, \:{�� = 1}\right](58)
Type: List(Equation(Polynomial(Integer)))
axiom
ck4:=solve(eval(h2,ck3),[p[4]])

\label{eq59}\left[{\left[{{p_{4}}= - 1}\right]}, \:{\left[{{p_{4}}= - 3}\right]}\right](59)
Type: List(List(Equation(Fraction(Polynomial(Integer)))))
axiom
test( eval(H,concat(ck3,ck4.1))=eval(H/H,concat(ck3,ck4.1)) )

\label{eq60} \mbox{\rm true} (60)
Type: Boolean
axiom
test( eval(H,concat(ck3,ck4.2))=eval(H/H,concat(ck3,ck4.2)) )

\label{eq61} \mbox{\rm true} (61)
Type: Boolean
axiom
determinant Ξ(Ξ(retract( (𝐞.i * 𝐞.j)/eval(Ų,concat(ck3,ck4.1)) ), j,1..dim), i,1..dim)

\label{eq62}-{16}(62)
Type: Expression(Integer)
axiom
determinant Ξ(Ξ(retract( (𝐞.i * 𝐞.j)/eval(Ų,concat(ck3,ck4.2)) ), j,1..dim), i,1..dim)

\label{eq63}-{144}(63)
Type: Expression(Integer)

Handle

axiom
Φ:𝐋 :=
         λ     /
         Y

\label{eq64}\begin{array}{@{}l}
\displaystyle
-{{{4 \ {p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  1}^{\  1}}}- 
\
\
\displaystyle
{{{4 \ {p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  i}^{\  i}}}- 
\
\
\displaystyle
{{{4 \ {p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  j}^{\  j}}}- 
\
\
\displaystyle
{{{4 \ {p_{4}}\  �� \  ��}\over{{{\left({{{p_{1}}^2}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}}\ {|_{\  k}^{\  k}}}
(64)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

The Cartan-Killing form makes Φ of the identity

axiom
test( eval(Φ,ck)=I )

\label{eq65} \mbox{\rm true} (65)
Type: Boolean

but it can be the identity in many ways. For example,

axiom
solve(equate(eval(Φ,[p[1]=1,p[2]=1,p[3]=1,σ=1,μ=1])=I),[p[4]])

\label{eq66}\left[{\left[{{p_{4}}= - 1}\right]}, \:{\left[{{p_{4}}= - 3}\right]}\right](66)
Type: List(List(Equation(Expression(Integer))))

If handle is identity then fork is idempotent but the converse is not true

axiom
Φ1:=map(numer,ravel(Φ-I)::List FRAC POLY INT);
Type: List(Polynomial(Integer))
axiom
Φ2:=groebner Φ1

\label{eq67}\left[{{{\left({{\left({4 \ {p_{4}}}+{{p_{1}}^2}\right)}\  ��}+{{p_{3}}^2}\right)}\  ��}+{{{p_{2}}^2}\  ��}+{{p_{4}}^2}}\right](67)
Type: List(Polynomial(Integer))
axiom
in?(ideal h2, ideal Φ2)

\label{eq68} \mbox{\rm true} (68)
Type: Boolean
axiom
in?(ideal Φ2, ideal h2)

\label{eq69} \mbox{\rm false} (69)
Type: Boolean

Bi-algebra conditions

axiom
ΦΦ:=         _
  (  λ λ  ) / _
  ( I X I ) / _
  (  Y Y  ) ;
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
bi1:=map(numer,ravel(ΦΦ-H)::List FRAC POLY INT);
Type: List(Polynomial(Integer))
axiom
bi2:=groebner bi1

\label{eq70}\begin{array}{@{}l}
\displaystyle
\left[{{{\left({4 \ {{p_{4}}^2}\ {��^2}}+{{{p_{3}}^2}\ {p_{4}}\  ��}\right)}\ {��^2}}+{{\left({{{p_{2}}^2}\ {p_{4}}\ {��^2}}+{{{p_{4}}^3}\  ��}\right)}\  ��}}, \:{{p_{3}}\ {p_{4}}\ {��^2}\ {��^2}}, \: \right.
\
\
\displaystyle
\left.{{p_{2}}\ {p_{4}}\ {��^2}\ {��^2}}, \:{{p_{1}}\ {p_{4}}\ {��^2}\ {��^2}}, \: \right.
\
\
\displaystyle
\left.{{4 \ {{p_{3}}^2}\ {��^2}\ {��^2}}+{{\left(-{{{p_{1}}^2}\ {p_{4}}\ {��^2}}-{{{p_{3}}^2}\ {p_{4}}\  ��}\right)}\  ��}-{{{p_{2}}^2}\ {p_{4}}\ {��^2}}-{{{p_{4}}^3}\  ��}}, \: \right.
\
\
\displaystyle
\left.{{p_{2}}\ {p_{3}}\ {��^2}\ {��^2}}, \:{{p_{1}}\ {p_{3}}\ {��^2}\ {��^2}}, \: \right.
\
\
\displaystyle
\left.{{{\left({4 \ {{p_{2}}^2}\ {��^2}}-{{{p_{1}}^2}\ {p_{4}}\  ��}-{{{p_{3}}^2}\ {p_{4}}}\right)}\ {��^2}}+{{\left(-{{{p_{2}}^2}\ {p_{4}}\  ��}-{{p_{4}}^3}\right)}\  ��}}, \: \right.
\
\
\displaystyle
\left.{{p_{1}}\ {p_{2}}\ {��^2}\ {��^2}}, \: \right.
\
\
\displaystyle
\left.{{4 \ {{p_{1}}^2}\ {��^2}\ {��^2}}+{{\left(-{{{p_{1}}^2}\ {p_{4}}\  ��}-{{{p_{3}}^2}\ {p_{4}}}\right)}\  ��}-{{{p_{2}}^2}\ {p_{4}}\  ��}-{{p_{4}}^3}}, \: \right.
\
\
\displaystyle
\left.{{{{p_{3}}^2}\ {{p_{4}}^2}\  �� \ {��^2}}+{{\left({{{p_{2}}^2}\ {{p_{4}}^2}\ {��^2}}+{{{p_{4}}^4}\  ��}\right)}\  ��}}, \: \right.
\
\
\displaystyle
\left.{{{\left({{{p_{1}}^3}\ {p_{4}}\  ��}+{{p_{1}}\ {{p_{3}}^2}\ {p_{4}}}\right)}\ {��^2}}+{{\left({{p_{1}}\ {{p_{2}}^2}\ {p_{4}}\  ��}+{{p_{1}}\ {{p_{4}}^3}}\right)}\  ��}}, \: \right.
\
\
\displaystyle
\left.{{{{p_{3}}^3}\  �� \ {��^2}}+{{\left({{{p_{2}}^2}\ {p_{3}}\ {��^2}}+{{p_{3}}\ {{p_{4}}^2}\  ��}\right)}\  ��}}, \: \right.
\
\
\displaystyle
\left.{{{p_{2}}\ {{p_{3}}^2}\  �� \ {��^2}}+{{\left({{{p_{2}}^3}\ {��^2}}+{{p_{2}}\ {{p_{4}}^2}\  ��}\right)}\  ��}}, \: \right.
\
\
\displaystyle
\left.{
\begin{array}{@{}l}
\displaystyle
{4 \ {p_{1}}\ {{p_{3}}^2}\  �� \ {��^2}}+ 
\
\
\displaystyle
{{\left({4 \ {p_{1}}\ {{p_{2}}^2}\ {��^2}}+{{\left({4 \ {p_{1}}\ {{p_{4}}^2}}+{{{p_{1}}^3}\ {p_{4}}}\right)}\  ��}+{{p_{1}}\ {{p_{3}}^2}\ {p_{4}}}\right)}\  ��}+ 
\
\
\displaystyle
{{p_{1}}\ {{p_{2}}^2}\ {p_{4}}\  ��}+{{p_{1}}\ {{p_{4}}^3}}
(70)
Type: List(Polynomial(Integer))
axiom
solve(bi2,[p[1],p[2],p[3],p[4]])

\label{eq71}\left[{\left[{{p_{1}}= 0}, \:{{p_{2}}= 0}, \:{{p_{3}}= 0}, \:{{p_{4}}= 0}\right]}\right](71)
Type: List(List(Equation(Fraction(Polynomial(Integer)))))

Definition 5

i = Unit of the algebra

axiom
i:=𝐞.1

\label{eq72}|_{\  1}(72)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
test
         i     /
         λ     =    Ω

\label{eq73} \mbox{\rm true} (73)
Type: Boolean

Co-unit

i 
U

axiom
ι:𝐋:=
    (    i I   ) /
          Ų

\label{eq74}-{{{p_{4}}\over{�� \  ��}}\ {|^{\  1}}}-{{{p_{3}}\over ��}\ {|^{\  i}}}+{{{p_{2}}\over ��}\ {|^{\  j}}}+{{p_{1}}\ {|^{\  k}}}(74)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

Y=U
ι  
axiom
test
        Y     /
        ι     =  Ų

\label{eq75} \mbox{\rm true} (75)
Type: Boolean

For example:

axiom
ex1:=[σ=1,μ=1,p[1]=1,p[2]=1,p[3]=1,p[4]=1]

\label{eq76}\left[{�� = 1}, \:{�� = 1}, \:{{p_{1}}= 1}, \:{{p_{2}}= 1}, \:{{p_{3}}= 1}, \:{{p_{4}}= 1}\right](76)
Type: List(Equation(Polynomial(Integer)))
axiom
Ų0:𝐋  :=eval(Ų,ex1)

\label{eq77}\begin{array}{@{}l}
\displaystyle
-{|^{\  1 \  1}}-{|^{\  1 \  i}}+{|^{\  1 \  j}}+{|^{\  1 \  k}}-{|^{\  i \  1}}+{|^{\  i \  i}}+{|^{\  i \  j}}-{|^{\  i \  k}}+ 
\
\
\displaystyle
{|^{\  j \  1}}-{|^{\  j \  i}}+{|^{\  j \  j}}-{|^{\  j \  k}}+{|^{\  k \  1}}+{|^{\  k \  i}}+{|^{\  k \  j}}+{|^{\  k \  k}}
(77)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
Ω0:𝐋  :=eval(Ω,ex1)$𝐋

\label{eq78}\begin{array}{@{}l}
\displaystyle
-{{1 \over 4}\ {|_{\  1 \  1}}}-{{1 \over 4}\ {|_{\  1 \  i}}}+{{1 \over 4}\ {|_{\  1 \  j}}}+{{1 \over 4}\ {|_{\  1 \  k}}}-{{1 \over 4}\ {|_{\  i \  1}}}+{{1 \over 4}\ {|_{\  i \  i}}}- 
\
\
\displaystyle
{{1 \over 4}\ {|_{\  i \  j}}}+{{1 \over 4}\ {|_{\  i \  k}}}+{{1 \over 4}\ {|_{\  j \  1}}}+{{1 \over 4}\ {|_{\  j \  i}}}+{{1 \over 4}\ {|_{\  j \  j}}}+{{1 \over 4}\ {|_{\  j \  k}}}+ 
\
\
\displaystyle
{{1 \over 4}\ {|_{\  k \  1}}}-{{1 \over 4}\ {|_{\  k \  i}}}-{{1 \over 4}\ {|_{\  k \  j}}}+{{1 \over 4}\ {|_{\  k \  k}}}
(78)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
λ0:𝐋  :=eval(λ,ex1)$𝐋

\label{eq79}\begin{array}{@{}l}
\displaystyle
-{{1 \over 4}\ {|_{\  1 \  1}^{\  1}}}-{{1 \over 4}\ {|_{\  1 \  i}^{\  1}}}+{{1 \over 4}\ {|_{\  1 \  j}^{\  1}}}+{{1 \over 4}\ {|_{\  1 \  k}^{\  1}}}-{{1 \over 4}\ {|_{\  i \  1}^{\  1}}}+ 
\
\
\displaystyle
{{1 \over 4}\ {|_{\  i \  i}^{\  1}}}-{{1 \over 4}\ {|_{\  i \  j}^{\  1}}}+{{1 \over 4}\ {|_{\  i \  k}^{\  1}}}+{{1 \over 4}\ {|_{\  j \  1}^{\  1}}}+{{1 \over 4}\ {|_{\  j \  i}^{\  1}}}+ 
\
\
\displaystyle
{{1 \over 4}\ {|_{\  j \  j}^{\  1}}}+{{1 \over 4}\ {|_{\  j \  k}^{\  1}}}+{{1 \over 4}\ {|_{\  k \  1}^{\  1}}}-{{1 \over 4}\ {|_{\  k \  i}^{\  1}}}-{{1 \over 4}\ {|_{\  k \  j}^{\  1}}}+ 
\
\
\displaystyle
{{1 \over 4}\ {|_{\  k \  k}^{\  1}}}+{{1 \over 4}\ {|_{\  1 \  1}^{\  i}}}-{{1 \over 4}\ {|_{\  1 \  i}^{\  i}}}+{{1 \over 4}\ {|_{\  1 \  j}^{\  i}}}-{{1 \over 4}\ {|_{\  1 \  k}^{\  i}}}- 
\
\
\displaystyle
{{1 \over 4}\ {|_{\  i \  1}^{\  i}}}-{{1 \over 4}\ {|_{\  i \  i}^{\  i}}}+{{1 \over 4}\ {|_{\  i \  j}^{\  i}}}+{{1 \over 4}\ {|_{\  i \  k}^{\  i}}}-{{1 \over 4}\ {|_{\  j \  1}^{\  i}}}+ 
\
\
\displaystyle
{{1 \over 4}\ {|_{\  j \  i}^{\  i}}}+{{1 \over 4}\ {|_{\  j \  j}^{\  i}}}-{{1 \over 4}\ {|_{\  j \  k}^{\  i}}}+{{1 \over 4}\ {|_{\  k \  1}^{\  i}}}+{{1 \over 4}\ {|_{\  k \  i}^{\  i}}}+ 
\
\
\displaystyle
{{1 \over 4}\ {|_{\  k \  j}^{\  i}}}+{{1 \over 4}\ {|_{\  k \  k}^{\  i}}}-{{1 \over 4}\ {|_{\  1 \  1}^{\  j}}}-{{1 \over 4}\ {|_{\  1 \  i}^{\  j}}}-{{1 \over 4}\ {|_{\  1 \  j}^{\  j}}}- 
\
\
\displaystyle
{{1 \over 4}\ {|_{\  1 \  k}^{\  j}}}+{{1 \over 4}\ {|_{\  i \  1}^{\  j}}}-{{1 \over 4}\ {|_{\  i \  i}^{\  j}}}-{{1 \over 4}\ {|_{\  i \  j}^{\  j}}}+{{1 \over 4}\ {|_{\  i \  k}^{\  j}}}- 
\
\
\displaystyle
{{1 \over 4}\ {|_{\  j \  1}^{\  j}}}-{{1 \over 4}\ {|_{\  j \  i}^{\  j}}}+{{1 \over 4}\ {|_{\  j \  j}^{\  j}}}+{{1 \over 4}\ {|_{\  j \  k}^{\  j}}}+{{1 \over 4}\ {|_{\  k \  1}^{\  j}}}- 
\
\
\displaystyle
{{1 \over 4}\ {|_{\  k \  i}^{\  j}}}+{{1 \over 4}\ {|_{\  k \  j}^{\  j}}}-{{1 \over 4}\ {|_{\  k \  k}^{\  j}}}-{{1 \over 4}\ {|_{\  1 \  1}^{\  k}}}+{{1 \over 4}\ {|_{\  1 \  i}^{\  k}}}+ 
\
\
\displaystyle
{{1 \over 4}\ {|_{\  1 \  j}^{\  k}}}-{{1 \over 4}\ {|_{\  1 \  k}^{\  k}}}-{{1 \over 4}\ {|_{\  i \  1}^{\  k}}}-{{1 \over 4}\ {|_{\  i \  i}^{\  k}}}-{{1 \over 4}\ {|_{\  i \  j}^{\  k}}}- 
\
\
\displaystyle
{{1 \over 4}\ {|_{\  i \  k}^{\  k}}}-{{1 \over 4}\ {|_{\  j \  1}^{\  k}}}+{{1 \over 4}\ {|_{\  j \  i}^{\  k}}}-{{1 \over 4}\ {|_{\  j \  j}^{\  k}}}+{{1 \over 4}\ {|_{\  j \  k}^{\  k}}}- 
\
\
\displaystyle
{{1 \over 4}\ {|_{\  k \  1}^{\  k}}}-{{1 \over 4}\ {|_{\  k \  i}^{\  k}}}+{{1 \over 4}\ {|_{\  k \  j}^{\  k}}}+{{1 \over 4}\ {|_{\  k \  k}^{\  k}}}
(79)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
Φ0:𝐋 :=eval(Φ,ex1)$𝐋

\label{eq80}-{|_{\  1}^{\  1}}-{|_{\  i}^{\  i}}-{|_{\  j}^{\  j}}-{|_{\  k}^{\  k}}(80)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))