login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox Quaternion Algebra is Frobenius in Many Ways revision 3 of 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Editor: page
Time: 2011/04/08 00:04:06 GMT-7
Note: S3 permutations

changed:
-  See::
-
    Zbigniew Oziewicz, Gregory Peter Wene
    (26 Mar 2011)

removed:
-    (Submitted on 26 Mar 2011)
-    Zbigniew Oziewicz (UNAM), Gregory Peter Wene (UTSA)

4-dimensional vector space representing Quaternion algebra

axiom
dim:=4

\label{eq1}4(1)
Type: PositiveInteger?
axiom
T := CartesianTensor(1,dim,EXPR INT)

\label{eq2}\hbox{\axiomType{CartesianTensor}\ } (1, 4, \hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }))(2)
Type: Type
axiom
X:List T := [unravel [(i=j => 1;0) for j in 1..dim] for i in 1..dim]

\label{eq3}\left[{\left[ 1, \: 0, \: 0, \: 0 \right]}, \:{\left[ 0, \: 1, \: 0, \: 0 \right]}, \:{\left[ 0, \: 0, \: 1, \: 0 \right]}, \:{\left[ 0, \: 0, \: 0, \: 1 \right]}\right](3)
Type: List(CartesianTensor?(1,4,Expression(Integer)))
axiom
X(1),X(2)

\label{eq4}\left[{\left[ 1, \: 0, \: 0, \: 0 \right]}, \:{\left[ 0, \: 1, \: 0, \: 0 \right]}\right](4)
Type: Tuple(CartesianTensor?(1,4,Expression(Integer)))

Generate structure constants for Quaternion Algebra

axiom
B:=map(x+->quatern(x.1,x.2,x.3,x.4),1$SQMATRIX(4,FRAC INT)::List List FRAC INT)

\label{eq5}\left[ 1, \: i , \: j , \: k \right](5)
Type: List(Quaternion(Fraction(Integer)))
axiom
M:=matrix [[B.i*B.j for j in 1..4] for i in 1..4]

\label{eq6}\left[ 
\begin{array}{cccc}
1 & i & j & k 
\
i & - 1 & k & - j 
\
j & - k & - 1 & i 
\
k & j & - i & - 1 
(6)
Type: Matrix(Quaternion(Fraction(Integer)))
axiom
S(y)==map(x+->(x*inv(y)=1 or x*inv(y)=-1 => x*inv(y);0),M)
Type: Void
axiom
Yg:T:=unravel concat concat(map(S,B)::List List List FRAC POLY INT)
axiom
Compiling function S with type Quaternion(Fraction(Integer)) -> 
      Matrix(Quaternion(Fraction(Integer)))

\label{eq7}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cccc}
1 & 0 & 0 & 0 
\
0 & - 1 & 0 & 0 
\
0 & 0 & - 1 & 0 
\
0 & 0 & 0 & - 1 
(7)
Type: CartesianTensor?(1,4,Expression(Integer))

A scalar product is denoted by the (2,0)-tensor U = \{ u_{ij} \}

axiom
U:T := unravel(concat
  [[script(u,[[],[j,i]])
    for i in 1..dim]
      for j in 1..dim]
        )

\label{eq8}\left[ 
\begin{array}{cccc}
{u^{1, \: 1}}&{u^{1, \: 2}}&{u^{1, \: 3}}&{u^{1, \: 4}}
\
{u^{2, \: 1}}&{u^{2, \: 2}}&{u^{2, \: 3}}&{u^{2, \: 4}}
\
{u^{3, \: 1}}&{u^{3, \: 2}}&{u^{3, \: 3}}&{u^{3, \: 4}}
\
{u^{4, \: 1}}&{u^{4, \: 2}}&{u^{4, \: 3}}&{u^{4, \: 4}}
(8)
Type: CartesianTensor?(1,4,Expression(Integer))

Definition 1

We say that the scalar product is associative if the tensor equation holds:

    Y   =   Y
     U     U

In other words, if the (3,0)-tensor:

    i  j  k   i  j  k   i  j  k
     \ | /     \/  /     \  \/
      \|/   =   \ /   -   \ /
       0         0         0


\label{eq9}
  \Phi = \{ \phi^{ijk} = {y^e}_{ij} u_{ek} - u_{ie} {y_e}^{jk} \}
  (9)
(three-point function) is zero.

axiom
ω := reindex(reindex(U,[2,1])*reindex(Yg,[1,3,2]),[3,2,1])-U*Yg

\label{eq10}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cccc}
0 & 0 & 0 & 0 
\
{{u^{2, \: 1}}-{u^{1, \: 2}}}&{{u^{2, \: 2}}+{u^{1, \: 1}}}&{{u^{2, \: 3}}-{u^{1, \: 4}}}&{{u^{2, \: 4}}+{u^{1, \: 3}}}
\
{{u^{3, \: 1}}-{u^{1, \: 3}}}&{{u^{3, \: 2}}+{u^{1, \: 4}}}&{{u^{3, \: 3}}+{u^{1, \: 1}}}&{{u^{3, \: 4}}-{u^{1, \: 2}}}
\
{{u^{4, \: 1}}-{u^{1, \: 4}}}&{{u^{4, \: 2}}-{u^{1, \: 3}}}&{{u^{4, \: 3}}+{u^{1, \: 2}}}&{{u^{4, \: 4}}+{u^{1, \: 1}}}
(10)
Type: CartesianTensor?(1,4,Expression(Integer))

Definition 2

An algebra with a non-degenerate associative scalar product is called pre-Frobenius.

We may consider the problem where multiplication Y is given, and look for all associative scalar products U = U(Y)

This problem can be solved using linear algebra.

axiom
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame initial J := jacobian(ravel ω,concat(map(variables,ravel U))::List Symbol);
Type: Matrix(Expression(Integer))
axiom
uu := transpose matrix [concat(map(variables,ravel(U)))::List Symbol];
Type: Matrix(Polynomial(Integer))
axiom
J::OutputForm * uu::OutputForm = 0

\label{eq11}\begin{array}{@{}l}
\displaystyle
{{\left[ 
\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & - 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & - 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \
0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 
\
0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 
\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
- 1 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & - 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & - 1 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & - 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \
0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & - 1 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & - 1 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & - 1 
\
- 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 
\
0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 
\
0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & - 1 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \
0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 
\
0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 
\
0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 
\
- 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 
\
0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 
\
0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 
\
0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 
(11)
Type: Equation(OutputForm?)
axiom
nrows(J)

\label{eq12}64(12)
Type: PositiveInteger?
axiom
ncols(J)

\label{eq13}16(13)
Type: PositiveInteger?

The matrix J transforms the coefficients of the tensor U into coefficients of the tensor \Phi. We are looking for the general linear family of tensors U=U(Y,p_i) such that J transforms U into \Phi=0 for any such U.

If the null space of the J matrix is not empty we can use the basis to find all non-trivial solutions for U:

axiom
NJ:=nullSpace(J)

\label{eq14}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: 1, \: 0, \: 0, \: - 1, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \: 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: - 1, \: 1, \: 0, \: 0, \: 0, \: 0, \: 1, \: 0, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \: - 1, \: 0, \: 0, \: - 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: - 1, \: 0, \: 0, \: 1, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ - 1, \: 0, \: 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: 1 \right]}\right] (14)
Type: List(Vector(Expression(Integer)))
axiom
SS:=map((x,y)+->x=y,concat map(variables,ravel U),
  entries reduce(+,[p[i]*NJ.i for i in 1..#NJ]))

\label{eq15}\begin{array}{@{}l}
\displaystyle
\left[{{u^{1, \: 1}}= -{p_{4}}}, \:{{u^{1, \: 2}}= -{p_{3}}}, \:{{u^{1, \: 3}}={p_{2}}}, \:{{u^{1, \: 4}}={p_{1}}}, \: \right.
\
\
\displaystyle
\left.{{u^{2, \: 1}}= -{p_{3}}}, \:{{u^{2, \: 2}}={p_{4}}}, \:{{u^{2, \: 3}}={p_{1}}}, \:{{u^{2, \: 4}}= -{p_{2}}}, \: \right.
\
\
\displaystyle
\left.{{u^{3, \: 1}}={p_{2}}}, \:{{u^{3, \: 2}}= -{p_{1}}}, \:{{u^{3, \: 3}}={p_{4}}}, \:{{u^{3, \: 4}}= -{p_{3}}}, \: \right.
\
\
\displaystyle
\left.{{u^{4, \: 1}}={p_{1}}}, \:{{u^{4, \: 2}}={p_{2}}}, \:{{u^{4, \: 3}}={p_{3}}}, \:{{u^{4, \: 4}}={p_{4}}}\right] 
(15)
Type: List(Equation(Expression(Integer)))
axiom
Ug:T := unravel(map(x+->subst(x,SS),ravel U))

\label{eq16}\left[ 
\begin{array}{cccc}
-{p_{4}}& -{p_{3}}&{p_{2}}&{p_{1}}
\
-{p_{3}}&{p_{4}}&{p_{1}}& -{p_{2}}
\
{p_{2}}& -{p_{1}}&{p_{4}}& -{p_{3}}
\
{p_{1}}&{p_{2}}&{p_{3}}&{p_{4}}
(16)
Type: CartesianTensor?(1,4,Expression(Integer))

This defines a family of pre-Frobenius algebras:

axiom
test(unravel(map(x+->subst(x,SS),ravel ω))$T=0*ω)

\label{eq17} \mbox{\rm true} (17)
Type: Boolean

The scalar product must be non-degenerate:

axiom
Ud:DMP([p[i] for i in 1..#NJ],INT) := determinant [[Ug[i,j] for j in 1..dim] for i in 1..dim]

\label{eq18}\begin{array}{@{}l}
\displaystyle
-{{p_{1}}^4}-{2 \ {{p_{1}}^2}\ {{p_{2}}^2}}-{2 \ {{p_{1}}^2}\ {{p_{3}}^2}}-{2 \ {{p_{1}}^2}\ {{p_{4}}^2}}-{{p_{2}}^4}- 
\
\
\displaystyle
{2 \ {{p_{2}}^2}\ {{p_{3}}^2}}-{2 \ {{p_{2}}^2}\ {{p_{4}}^2}}-{{p_{3}}^4}-{2 \ {{p_{3}}^2}\ {{p_{4}}^2}}-{{p_{4}}^4}
(18)
Type: DistributedMultivariatePolynomial?([*01p1,*01p2,*01p3,*01p4],Integer)
axiom
factor Ud

\label{eq19}-{{\left({{p_{1}}^2}+{{p_{2}}^2}+{{p_{3}}^2}+{{p_{4}}^2}\right)}^2}(19)
Type: Factored(DistributedMultivariatePolynomial?([*01p1,*01p2,*01p3,*01p4],Integer))

Definition 3

Co-pairing

axiom
Ωg:T:=unravel concat(transpose(1/Ud*adjoint([[Ug[i,j] for j in 1..dim] for i in 1..dim]).adjMat)::List List FRAC POLY INT)

\label{eq20}\left[ 
\begin{array}{cccc}
-{{p_{4}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}& -{{p_{3}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}&{{p_{2}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}&{{p_{1}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}
\
-{{p_{3}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}&{{p_{4}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}&{{p_{1}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}& -{{p_{2}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}
\
{{p_{2}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}& -{{p_{1}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}&{{p_{4}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}& -{{p_{3}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}
\
{{p_{1}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}&{{p_{2}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}&{{p_{3}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}&{{p_{4}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}
(20)
Type: CartesianTensor?(1,4,Expression(Integer))

dimension
Ω
U
axiom
contract(contract(Ωg,1,Ug,1),1,2)

\label{eq21}4(21)
Type: CartesianTensor?(1,4,Expression(Integer))

Definition 4

Co-multiplication

axiom
λg:=reindex(contract(contract(Ug*Yg,1,Ωg,1),1,Ωg,1),[2,3,1]);
Type: CartesianTensor?(1,4,Expression(Integer))
axiom
-- just for display
reindex(λg,[3,1,2])

\label{eq22}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cccc}
-{{p_{4}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}& -{{p_{3}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}&{{p_{2}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}&{{p_{1}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}
\
-{{p_{3}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}&{{p_{4}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}&{{p_{1}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}& -{{p_{2}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}
\
{{p_{2}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}& -{{p_{1}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}&{{p_{4}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}& -{{p_{3}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}
\
{{p_{1}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}&{{p_{2}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}&{{p_{3}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}&{{p_{4}}\over{{{p_{4}}^2}+{{p_{3}}^2}+{{p_{2}}^2}+{{p_{1}}^2}}}
(22)
Type: CartesianTensor?(1,4,Expression(Integer))

i  
λ=Ω
axiom
test(λg*X(1)=Ωg)

\label{eq23} \mbox{\rm true} (23)
Type: Boolean

Definition 5

Co-unit
  i 
  U
  

axiom
ιg:=X(1)*Ug

\label{eq24}\left[ -{p_{4}}, \: -{p_{3}}, \:{p_{2}}, \:{p_{1}}\right](24)
Type: CartesianTensor?(1,4,Expression(Integer))

Y=U
ι  
axiom
test(ιg * Yg = Ug)

\label{eq25} \mbox{\rm true} (25)
Type: Boolean

For example:

axiom
Ug0:T:=unravel eval(ravel Ug,[p[1]=1,p[2]=0,p[3]=0,p[4]=1])

\label{eq26}\left[ 
\begin{array}{cccc}
- 1 & 0 & 0 & 1 
\
0 & 1 & 1 & 0 
\
0 & - 1 & 1 & 0 
\
1 & 0 & 0 & 1 
(26)
Type: CartesianTensor?(1,4,Expression(Integer))
axiom
Ωg0:T:=unravel eval(ravel Ωg,[p[1]=1,p[2]=0,p[3]=0,p[4]=1])

\label{eq27}\left[ 
\begin{array}{cccc}
-{1 \over 2}& 0 & 0 &{1 \over 2}
\
0 &{1 \over 2}&{1 \over 2}& 0 
\
0 & -{1 \over 2}&{1 \over 2}& 0 
\
{1 \over 2}& 0 & 0 &{1 \over 2}
(27)
Type: CartesianTensor?(1,4,Expression(Integer))
axiom
λg0:T:=unravel eval(ravel λg,[p[1]=1,p[2]=0,p[3]=0,p[4]=1]);
Type: CartesianTensor?(1,4,Expression(Integer))
axiom
reindex(λg0,[3,1,2])

\label{eq28}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cccc}
-{1 \over 2}& 0 & 0 &{1 \over 2}
\
0 &{1 \over 2}&{1 \over 2}& 0 
\
0 & -{1 \over 2}&{1 \over 2}& 0 
\
{1 \over 2}& 0 & 0 &{1 \over 2}
(28)
Type: CartesianTensor?(1,4,Expression(Integer))

S_3-permuted Frobenius Algebras

Zbigniew Oziewicz, Gregory Peter Wene (26 Mar 2011) http://arxiv.org/abs/1103.5113

axiom
test( Yg = reindex(reindex(  reindex(Ug*Yg,[1,2,3]),  [2,3,1])*Ωg,[3,1,2]) )

\label{eq29} \mbox{\rm true} (29)
Type: Boolean
axiom
Yg213 := reindex(reindex(  reindex(Ug*Yg,[2,1,3]),  [2,3,1])*Ωg,[3,1,2]);
Type: CartesianTensor?(1,4,Expression(Integer))
axiom
ω213  := reindex(reindex(U,[2,1])*reindex(Yg213,[1,3,2]),[3,2,1])-U*Yg213;
Type: CartesianTensor?(1,4,Expression(Integer))
axiom
J213  := jacobian(ravel ω213,concat(map(variables,ravel U))::List Symbol);
Type: Matrix(Expression(Integer))
axiom
NJ213 := nullSpace(J213)

\label{eq30}\left[ \right](30)
Type: List(Vector(Expression(Integer)))
axiom
-- opposite algebra
Yg132 := reindex(reindex(  reindex(Ug*Yg,[1,3,2]),  [2,3,1])*Ωg,[3,1,2]);
Type: CartesianTensor?(1,4,Expression(Integer))
axiom
ω132  := reindex(reindex(U,[2,1])*reindex(Yg132,[1,3,2]),[3,2,1])-U*Yg132;
Type: CartesianTensor?(1,4,Expression(Integer))
axiom
J132  := jacobian(ravel ω132,concat(map(variables,ravel U))::List Symbol);
Type: Matrix(Expression(Integer))
axiom
NJ132 := nullSpace(J132)

\label{eq31}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: - 1, \: 0, \: 0, \: 1, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \: 0, \: - 1, \: 0, \: 0, \: 0, \: 0, \: - 1, \: - 1, \: 0, \: 0, \: 0, \: 0, \: 1, \: 0, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \: 1, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: - 1, \: 0, \: 0, \: 1, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ - 1, \: 0, \: 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: 1 \right]}\right] (31)
Type: List(Vector(Expression(Integer)))
axiom
Yg321 := reindex(reindex(  reindex(Ug*Yg,[3,2,1]),  [2,3,1])*Ωg,[3,1,2]);
Type: CartesianTensor?(1,4,Expression(Integer))
axiom
ω321  := reindex(reindex(U,[2,1])*reindex(Yg321,[1,3,2]),[3,2,1])-U*Yg321;
Type: CartesianTensor?(1,4,Expression(Integer))
axiom
J321  := jacobian(ravel ω321,concat(map(variables,ravel U))::List Symbol);
Type: Matrix(Expression(Integer))
axiom
NJ321 := nullSpace(J321)

\label{eq32}\left[ \right](32)
Type: List(Vector(Expression(Integer)))
axiom
Yg312 := reindex(reindex(  reindex(Ug*Yg,[3,1,2]),  [2,3,1])*Ωg,[3,1,2]);
Type: CartesianTensor?(1,4,Expression(Integer))
axiom
ω312  := reindex(reindex(U,[2,1])*reindex(Yg312,[1,3,2]),[3,2,1])-U*Yg312;
Type: CartesianTensor?(1,4,Expression(Integer))
axiom
J312  := jacobian(ravel ω312,concat(map(variables,ravel U))::List Symbol);
Type: Matrix(Expression(Integer))
axiom
NJ312 := nullSpace(J312)

\label{eq33}\left[ \right](33)
Type: List(Vector(Expression(Integer)))
axiom
Yg231 := reindex(reindex(  reindex(Ug*Yg,[2,3,1]),  [2,3,1])*Ωg,[3,1,2]);
Type: CartesianTensor?(1,4,Expression(Integer))
axiom
ω231  := reindex(reindex(U,[2,1])*reindex(Yg231,[1,3,2]),[3,2,1])-U*Yg231;
Type: CartesianTensor?(1,4,Expression(Integer))
axiom
J231  := jacobian(ravel ω231,concat(map(variables,ravel U))::List Symbol);
Type: Matrix(Expression(Integer))
axiom
NJ231 := nullSpace(J231)

\label{eq34}\left[ \right](34)
Type: List(Vector(Expression(Integer)))