login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox Integration revision 5 of 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Editor: test1
Time: 2013/04/30 15:16:48 GMT+0
Note:

changed:
-integrate(%e**x, x)
-\end{axiom}
integrate(%e^x, x)
\end{axiom}

changed:
-integrate(exp(-a*x**2),x=0..%plusInfinity)
-\end{axiom}
integrate(exp(-a*x^2),x=0..%plusInfinity)
\end{axiom}

changed:
-integrate(exp(-a::PositiveInteger*x**2),x=0..%plusInfinity)
-\end{axiom}
integrate(exp(-a::PositiveInteger*x^2),x=0..%plusInfinity)
\end{axiom}

changed:
-integrate(2*x/sin(x)^2,x=1/2..1);
-\end{axiom}
integrate(2*x/sin(x)^2,x=1/2..1)
\end{axiom}

changed:
-From the ReduceProblem (what does axiom do?):
-
-\begin{axiom}
-int(1/sqrt(2*PI)*exp(-1/2*log(x)**2),x,0,INFINITY);
-\end{axiom}
-
-From MartinRubey Thu Oct 7 10:18:13 -0500 2004
-From: Martin Rubey
-Date: Thu, 07 Oct 2004 10:18:13 -0500
-Subject: 
-Message-ID: <16741.31098.837887.890502@gargle.gargle.HOWL>
-In-Reply-To: <20041007093033-0500@page.axiom-developer.org>
-
-Well, you should use Axiom syntax. Note that 'PI' is a domain, spelled out:
-'PositiveInteger' in Axiom, the constant $\pi$ is denoted '%pi'. Furthermore,
-the operation you want is called 'integrate'. Finally, infinity is denoted
-'%infinity', but in fact, I wouldn't know how to do such integrals in Axiom
-anyway. Thus, the best I get is:
-
-\begin{axiom}
- integrate(1/sqrt(2*%pi)*exp(-1/2*log(x)**2),x=0..k)
-\end{axiom}
From the ReduceProblem:

\begin{axiom}
integrate(1/sqrt(2*%pi)*exp(-1/2*log(x)^2),x=0..%plusInfinity)
integrate(1/sqrt(2*%pi)*exp(-1/2*log(x)^2),x)
\end{axiom}

changed:
-  integrate(1/x,x)
-\end{axiom}
-
-From unknown Tue May 17 18:53:28 -0500 2005
-From: unknown
-Date: Tue, 17 May 2005 18:53:28 -0500
-Subject: 
-Message-ID: <20050517185328-0500@page.axiom-developer.org>
-
-\begin{axiom}
integrate(1/x,x)

removed:
-\end{axiom}
-
-From unknown Tue May 17 18:54:19 -0500 2005
-From: unknown
-Date: Tue, 17 May 2005 18:54:19 -0500
-Subject: 
-Message-ID: <20050517185419-0500@page.axiom-developer.org>
-
-\begin{axiom}

removed:
-
-From unknown Sun Oct 30 09:27:40 -0600 2005
-From: unknown
-Date: Sun, 30 Oct 2005 09:27:40 -0600
-Subject: 
-Message-ID: <20051030092740-0600@page.axiom-developer.org>
-
-integrate(1/(1+x**2),x=-u..u)
-

changed:
-integrate(1/(1+x**2),x=-u..u)
-\end{axiom}
integrate(1/(1+x^2),x=-u..u)
integrate(1/(1+x^2),x=-u..u, "noPole")
\end{axiom}

changed:
-  integrate(x**6*exp(-x**2), x=0..%plusInfinity)
-\end{axiom}
-
-
-
-From unknown Wed Nov 2 16:59:21 -0600 2005
-From: unknown
-Date: Wed, 02 Nov 2005 16:59:21 -0600
-Subject: 
-Message-ID: <20051102165921-0600@www.axiom-developer.org>
-
  integrate(x^6*exp(-x^2), x=0..%plusInfinity)
\end{axiom}

From unknown Wed Nov 2 17:00:21 -0600 2005
From: unknown
Date: Wed, 02 Nov 2005 17:00:21 -0600
Subject: 
Message-ID: <20051102170021-0600@www.axiom-developer.org>

\begin{axiom}

changed:
-
-From unknown Wed Nov 2 17:00:21 -0600 2005
-From: unknown
-Date: Wed, 02 Nov 2005 17:00:21 -0600
-Subject: 
-Message-ID: <20051102170021-0600@www.axiom-developer.org>
-
-\begin{axiom}
-integrate(1/sqrt(1/x+1),x)
-\end{axiom}
\end{axiom}

added:
\begin{axiom}

added:
\end{axiom}

added:
\begin{axiom}

added:
\end{axiom}

changed:
-integrate(tan(arctan(x)/3),x)
-
-From unknown Thu Mar 9 09:22:56 -0600 2006
-From: unknown
-Date: Thu, 09 Mar 2006 09:22:56 -0600
-Subject: 
-Message-ID: <20060309092256-0600@wiki.axiom-developer.org>
-In-Reply-To: <20060309092147-0600@wiki.axiom-developer.org>
-
-integrate(tan(arctan(x)/3),x);
-
-From unknown Sat Mar 11 12:40:39 -0600 2006
-From: unknown
-Date: Sat, 11 Mar 2006 12:40:39 -0600
-Subject: 
-Message-ID: <20060311124039-0600@wiki.axiom-developer.org>
-
\begin{axiom}
integrate(tan(atan(x)/3),x)
\end{axiom}

From unknown Sat Mar 11 12:41:33 -0600 2006
From: unknown
Date: Sat, 11 Mar 2006 12:41:33 -0600
Subject: 
Message-ID: <20060311124133-0600@wiki.axiom-developer.org>

\begin{axiom}

removed:
-
-From unknown Sat Mar 11 12:41:33 -0600 2006
-From: unknown
-Date: Sat, 11 Mar 2006 12:41:33 -0600
-Subject: 
-Message-ID: <20060311124133-0600@wiki.axiom-developer.org>
-
-\begin{axiom}
-integrate(x, x)
-\end{axiom}
-
-
-From unknown Sat Mar 11 12:43:17 -0600 2006
-From: unknown
-Date: Sat, 11 Mar 2006 12:43:17 -0600
-Subject: 
-Message-ID: <20060311124317-0600@wiki.axiom-developer.org>
-
-\begin{axiom}
-integrate((1/(2*z))*z^2), z)
-\end{axiom}
-
-
-From unknown Sat Mar 11 12:44:05 -0600 2006
-From: unknown
-Date: Sat, 11 Mar 2006 12:44:05 -0600
-Subject: 
-Message-ID: <20060311124405-0600@wiki.axiom-developer.org>
-
-\begin{axiom}
-integrate((1/(2*z))*z^2, z)
-\end{axiom}
-
-
-From unknown Sat Mar 11 12:47:35 -0600 2006
-From: unknown
-Date: Sat, 11 Mar 2006 12:47:35 -0600
-Subject: 
-Message-ID: <20060311124735-0600@wiki.axiom-developer.org>
-
-\begin{axiom}

changed:
-\end{axiom}
-
-
-From unknown Sat May 6 09:17:11 -0500 2006
-From: unknown
-Date: Sat, 06 May 2006 09:17:11 -0500
-Subject: 
-Message-ID: <20060506091711-0500@wiki.axiom-developer.org>
-
-integrate(ln(x),x)
-
-From unknown Sat May 6 09:20:14 -0500 2006
-From: unknown
-Date: Sat, 06 May 2006 09:20:14 -0500
-Subject: 
-Message-ID: <20060506092014-0500@wiki.axiom-developer.org>
-
integrate(log(x),x)

changed:
-
-From unknown Sat May 6 16:50:37 -0500 2006
-From: unknown
-Date: Sat, 06 May 2006 16:50:37 -0500
-Subject: 
-Message-ID: <20060506165037-0500@wiki.axiom-developer.org>
-
-\begin{axiom}
-integrate(0**0,x)
-\end{axiom}
-
-From unknown Tue May 9 09:56:50 -0500 2006
-From: unknown
-Date: Tue, 09 May 2006 09:56:50 -0500
-Subject: from fr.sci.maths
-Message-ID: <20060509095650-0500@wiki.axiom-developer.org>
-
-\begin{axiom}
-integrate( ln(y)^3/(y*(y-1)),y)
-\end{axiom}
-
integrate(0^0,x)
\end{axiom}

changed:
-integrate(x**2*exp(-x^2),x=0..%plusInfinity)
\begin{axiom}
integrate(x^2*exp(-x^2),x=0..%plusInfinity)
\end{axiom}

Integration

Let's do some integration examples:

fricas
integrate(%e^x, x)

\label{eq1}{e}^{x}(1)
Type: Union(Expression(Integer),...)

load_package SPECFN;
reduce

on ROUNDED,ADJPREC;
reduce

Ei(1.00000000000000000001);
*** precision increased to 21
reduce
\displaylines{\qdd
euler<em>constant
+1.31790215145440389489
\cr}
 
Ei(1.0);
reduce
\displaylines{\qdd
euler<em>constant
+1.31790215145440389486
\cr}
 
Ei(2.0);
reduce
\displaylines{\qdd
euler<em>constant
+4.37701869110035730277
\cr}
 

Can Reduce compute Ei in arbitrary precision?

See http://www.uni-koeln.de/REDUCE/3.6/doc/specfn/

Also http://homepages.inf.ed.ac.uk/mtoussai/publications/toussaint-99-mexico.pdf

Reset

off ROUNDED,ADJPREC;
reduce

int(cos(x),x,0,pi);
reduce
\displaylines{\qdd
0
\cr}
 

fricas
integrate(x^2/sqrt(4-x^2),x)

\label{eq2}{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
-{{32}\ {\sqrt{-{{x}^{2}}+ 4}}}- 
\
\
\displaystyle
{8 \ {{x}^{2}}}+{64}
(2)
Type: Union(Expression(Integer),...)

fricas
integrate(exp(-a*x^2),x=0..%plusInfinity)

\label{eq3}\mbox{\tt "failed"}(3)
Type: Union(fail: failed,...)

The following won't "work", see CommonMistakes?:

fricas
integrate(exp(-a::PositiveInteger*x^2),x=0..%plusInfinity)
Cannot convert from type Variable(a) to PositiveInteger for value a

fricas
integrate((x^3+x^2+2)/(x*(x^2-1)^2), x)

\label{eq4}{\left(
\begin{array}{@{}l}
\displaystyle
{{\left(-{5 \ {{x}^{2}}}+ 5 \right)}\ {\log \left({x + 1}\right)}}+{{\left({8 \ {{x}^{2}}}- 8 \right)}\ {\log \left({x}\right)}}+ 
\
\
\displaystyle
{{\left(-{3 \ {{x}^{2}}}+ 3 \right)}\ {\log \left({x - 1}\right)}}-{2 \  x}- 6 
(4)
Type: Union(Expression(Integer),...)

fricas
integrate(2*x/sin(x)^2,x)

\label{eq5}{\left(
\begin{array}{@{}l}
\displaystyle
{2 \ {\sin \left({x}\right)}\ {\log \left({{\sin \left({x}\right)}\over{{\cos \left({x}\right)}+ 1}}\right)}}-{2 \ {\sin \left({x}\right)}\ {\log \left({2 \over{{\cos \left({x}\right)}+ 1}}\right)}}- 
\
\
\displaystyle
{2 \  x \ {\cos \left({x}\right)}}
(5)
Type: Union(Expression(Integer),...)

Comparing Axiom and Reduce:

fricas
integrate(sin(1/x),x)

\label{eq6}\int^{
\displaystyle
x}{{\sin \left({1 \over \%A}\right)}\ {d \%A}}(6)
Type: Union(Expression(Integer),...)

int(sin(1/x),x);
reduce
\displaylines{\qdd
\int {\sin 
      \(\frac{1}{
              x}
       

Hell, why does the following blow MathAction??:

  \begin{reduce}
  load_package algint;
  int(sin(1/x),x);
  \end{reduce}

A different problem, where Axiom has to give up:

fricas
integrate(sqrt(sin(1/x)),x)
>> Error detected within library code: integrate: implementation incomplete (constant residues)

However, in Reduce: Again, why does the following blow MathAction??:

  \begin{reduce}
  load_package algint;
  int(sqrt(sin(1/x)),x);
  \end{reduce}

fricas
integrate(exp(-x^2),x)

\label{eq7}{{\erf \left({x}\right)}\ {\sqrt{\pi}}}\over 2(7)
Type: Union(Expression(Integer),...)

fricas
integrate(sin(x)/x,x)

\label{eq8}Si \left({x}\right)(8)
Type: Union(Expression(Integer),...)
fricas
differentiate(%,x)

\label{eq9}{\sin \left({x}\right)}\over x(9)
Type: Expression(Integer)

fricas
integrate(sin(1/x),x=%minusInfinity..%plusInfinity,"noPole")
>> Error detected within library code: integrate: pole in path of integration

fricas
integrate(2*x/sin(x)^2,x=1/2..1)

\label{eq10}potentialPole(10)
Type: Union(pole: potentialPole,...)

fricas
integrate(sin(x),x=0..%pi/2)

\label{eq11}1(11)
Type: Union(f1: OrderedCompletion?(Expression(Integer)),...)

fricas
integrate(atan(x/a)/x,x)

\label{eq12}\int^{
\displaystyle
x}{{{\arctan \left({\%A \over a}\right)}\over \%A}\ {d \%A}}(12)
Type: Union(Expression(Integer),...)

fricas
integrate(1/(a+z^3), z=0..1,"noPole")

\label{eq13}{\left(
\begin{array}{@{}l}
\displaystyle
-{{\sqrt{3}}\ {\log{\left({{3 \ {{a}^{2}}\ {{\root{3}\of{{a}^{2}}}^{2}}}+{{\left(-{2 \ {{a}^{3}}}+{{a}^{2}}\right)}\ {\root{3}\of{{a}^{2}}}}+{{a}^{4}}-{2 \ {{a}^{3}}}}\right)}}}+{2 \ {\sqrt{3}}\ {\log \left({{{\root{3}\of{{a}^{2}}}^{2}}+{2 \  a \ {\root{3}\of{{a}^{2}}}}+{{a}^{2}}}\right)}}+ 
\
\
\displaystyle
{{12}\ {\arctan \left({{{2 \ {\sqrt{3}}\ {\root{3}\of{{a}^{2}}}}-{a \ {\sqrt{3}}}}\over{3 \  a}}\right)}}+{2 \  \pi}
(13)
Type: Union(f1: OrderedCompletion?(Expression(Integer)),...)

fricas
integrate(x^3+x^2/4+x,x)

\label{eq14}{{1 \over 4}\ {{x}^{4}}}+{{1 \over{12}}\ {{x}^{3}}}+{{1 \over 2}\ {{x}^{2}}}(14)
Type: Polynomial(Fraction(Integer))

You cannot integrate Expression Float

fricas
integrate(50*%e^(-0.02*t),t)
There are 12 exposed and 10 unexposed library operations named integrate having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op integrate to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named integrate with argument type(s) Expression(Float) Variable(t)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

But symbolic integration works with integer expressions

fricas
integrate(50*%e^(-0.02*t)::Expression Fraction Integer,t)

\label{eq15}-{{2500}\ {{e}^{-{{1 \over{50}}\  t}}}}(15)
Type: Union(Expression(Fraction(Integer)),...)

fricas
integrate(exp(cos(x)),x)

\label{eq16}\int^{
\displaystyle
x}{{{e}^{\cos \left({\%A}\right)}}\ {d \%A}}(16)
Type: Union(Expression(Integer),...)

fricas
integrate(sin(x),x)
  integrate(%,x)
>> Error detected within library code: Sorry - cannot handle that integrand yet

fricas
integrate(a/h - c*h/12 + (b/h)*r + (c/h)*r^2,r)

\label{eq17}{{4 \  c \ {{r}^{3}}}+{6 \  b \ {{r}^{2}}}+{{\left(-{c \ {{h}^{2}}}+{{12}\  a}\right)}\  r}}\over{{12}\  h}(17)
Type: Union(Expression(Integer),...)

fricas
integrate(exp(-(a+b*t)^2/2),t)

\label{eq18}{{\erf \left({{{b \  t}+ a}\over{\sqrt{2}}}\right)}\ {\sqrt{\pi}}}\over{b \ {\sqrt{2}}}(18)
Type: Union(Expression(Integer),...)

fricas
integrate(exp(-(a+b*t)^2/t),t)

\label{eq19}\int^{
\displaystyle
t}{{{e}^{{-{{{\%A}^{2}}\ {{b}^{2}}}-{2 \  \%A \  a \  b}-{{a}^{2}}}\over \%A}}\ {d \%A}}(19)
Type: Union(Expression(Integer),...)

fricas
integrate(exp(-1/t),t)

\label{eq20}\int^{
\displaystyle
t}{{{e}^{-{1 \over \%A}}}\ {d \%A}}(20)
Type: Union(Expression(Integer),...)

fricas
integrate(exp(-1/t),t=1..x)

\label{eq21}potentialPole(21)
Type: Union(pole: potentialPole,...)

Unfortunately, there is currently no easy way to make "assumptions" about variables. Thus, The following won't work:

  \begin{axiom}
   assume(x, real)
   integrate(exp(-1/t),t=1..x)
   \end{axiom}

fricas
integrate(t*exp(-(a+b*t)^2/2),t)

\label{eq22}{-{a \ {\erf \left({{{b \  t}+ a}\over{\sqrt{2}}}\right)}\ {\sqrt{\pi}}}-{{\sqrt{2}}\ {{e}^{{-{{{b}^{2}}\ {{t}^{2}}}-{2 \  a \  b \  t}-{{a}^{2}}}\over 2}}}}\over{{{b}^{2}}\ {\sqrt{2}}}(22)
Type: Union(Expression(Integer),...)

fricas
integrate(1/(a+z^3), z=0..1,"noPole")

\label{eq23}{\left(
\begin{array}{@{}l}
\displaystyle
-{{\sqrt{3}}\ {\log{\left({{3 \ {{a}^{2}}\ {{\root{3}\of{{a}^{2}}}^{2}}}+{{\left(-{2 \ {{a}^{3}}}+{{a}^{2}}\right)}\ {\root{3}\of{{a}^{2}}}}+{{a}^{4}}-{2 \ {{a}^{3}}}}\right)}}}+{2 \ {\sqrt{3}}\ {\log \left({{{\root{3}\of{{a}^{2}}}^{2}}+{2 \  a \ {\root{3}\of{{a}^{2}}}}+{{a}^{2}}}\right)}}+ 
\
\
\displaystyle
{{12}\ {\arctan \left({{{2 \ {\sqrt{3}}\ {\root{3}\of{{a}^{2}}}}-{a \ {\sqrt{3}}}}\over{3 \  a}}\right)}}+{2 \  \pi}
(23)
Type: Union(f1: OrderedCompletion?(Expression(Integer)),...)

From the ReduceProblem?:

fricas
integrate(1/sqrt(2*%pi)*exp(-1/2*log(x)^2),x=0..%plusInfinity)

\label{eq24}\mbox{\tt "failed"}(24)
Type: Union(fail: failed,...)
fricas
integrate(1/sqrt(2*%pi)*exp(-1/2*log(x)^2),x)

\label{eq25}\int^{
\displaystyle
x}{{{{e}^{-{{{\log \left({\%A}\right)}^{2}}\over 2}}}\over{\sqrt{2 \  \pi}}}\ {d \%A}}(25)
Type: Union(Expression(Integer),...)

If you would get a result, you could use limit afterwards, of course.

Mathematical Paradox?
Thu, 10 Feb 2005 17:45:57 -0600 reply
Area under the curve:
fricas
integrate(1/x,x=1..%plusInfinity)

\label{eq26}+ \infty(26)
Type: Union(f1: OrderedCompletion?(Expression(Integer)),...)
Paradox Part2:
Thu, 10 Feb 2005 17:47:59 -0600 reply
Volume under that curve:
fricas
integrate(%pi*((1/x)^2), x=1..%plusInfinity)

\label{eq27}\pi(27)
Type: Union(f1: OrderedCompletion?(Expression(Integer)),...)

Curve has an infinite area...but a finite volume (I think I did this correctly)!

fricas
integrate(1/x,x)

\label{eq28}\log \left({x}\right)(28)
Type: Union(Expression(Integer),...)
fricas
integrate(sqrt(x),x)

\label{eq29}{2 \  x \ {\sqrt{x}}}\over 3(29)
Type: Union(Expression(Integer),...)
fricas
integrate(sqrt(x^3+x),x)

\label{eq30}\int^{
\displaystyle
x}{{\sqrt{{{\%A}^{3}}+ \%A}}\ {d \%A}}(30)
Type: Union(Expression(Integer),...)

a turning moving body --unknown, Sun, 19 Jun 2005 20:16:03 -0500 reply
fricas
integrate(( a*sin( m + n*t + o*t*t/2 ) )/( n + ot ) + ( b*cos( m + n*t + o*t*t/2 ) )/( n + ot ), t)

\label{eq31}\int^{
\displaystyle
t}{{{{a \ {\sin \left({{{{{\%A}^{2}}\  o}+{2 \  \%A \  n}+{2 \  m}}\over 2}\right)}}+{b \ {\cos \left({{{{{\%A}^{2}}\  o}+{2 \  \%A \  n}+{2 \  m}}\over 2}\right)}}}\over{ot + n}}\ {d \%A}}(31)
Type: Union(Expression(Integer),...)

a turning accelerating body --unknown, Sun, 19 Jun 2005 23:16:48 -0500 reply
fricas
integrate(( a*cos( m + n*t + o*t*t/2 ) )- ( b*sin( m + n*t + o*t*t/2 ) ), t)

\label{eq32}\int^{
\displaystyle
t}{{\left(-{b \ {\sin \left({{{{{\%A}^{2}}\  o}+{2 \  \%A \  n}+{2 \  m}}\over 2}\right)}}+{a \ {\cos \left({{{{{\%A}^{2}}\  o}+{2 \  \%A \  n}+{2 \  m}}\over 2}\right)}}\right)}\ {d \%A}}(32)
Type: Union(Expression(Integer),...)

fricas
integrate(-2*(3-3*t)^2*(3*t),t)

\label{eq33}-{{{27}\over 2}\ {{t}^{4}}}+{{36}\ {{t}^{3}}}-{{27}\ {{t}^{2}}}(33)
Type: Polynomial(Fraction(Integer))

fricas
integrate(1/(1+x^2),x=-u..u)

\label{eq34}potentialPole(34)
Type: Union(pole: potentialPole,...)
fricas
integrate(1/(1+x^2),x=-u..u, "noPole")

\label{eq35}2 \ {\arctan \left({u}\right)}(35)
Type: Union(f1: OrderedCompletion?(Expression(Integer)),...)

fricas
integrate(x^6*exp(-x^2), x=0..%plusInfinity)

\label{eq36}{\Gamma \left({7 \over 2}\right)}\over 2(36)
Type: Union(f1: OrderedCompletion?(Expression(Integer)),...)

fricas
integrate(1/sqrt(1/x+1),x)

\label{eq37}{-{\log \left({{\sqrt{{x + 1}\over x}}+ 1}\right)}+{\log \left({{\sqrt{{x + 1}\over x}}- 1}\right)}+{2 \  x \ {\sqrt{{x + 1}\over x}}}}\over 2(37)
Type: Union(Expression(Integer),...)

fricas
integrate(sin(sin x), x)

\label{eq38}\int^{
\displaystyle
x}{{\sin \left({\sin \left({\%A}\right)}\right)}\ {d \%A}}(38)
Type: Union(Expression(Integer),...)

fricas
integrate(a/2*(1-cos(b*t)),t)

\label{eq39}{-{a \ {\sin \left({b \  t}\right)}}+{a \  b \  t}}\over{2 \  b}(39)
Type: Union(Expression(Integer),...)

yet another test that shall work but not in maple ? --unknown, Thu, 09 Mar 2006 09:21:47 -0600 reply
fricas
integrate(tan(atan(x)/3),x)

\label{eq40}{\left(
\begin{array}{@{}l}
\displaystyle
{8 \ {\log \left({{3 \ {{\tan \left({{\arctan \left({x}\right)}\over 3}\right)}^{2}}}- 1}\right)}}-{3 \ {{\tan \left({{\arctan \left({x}\right)}\over 3}\right)}^{2}}}+ 
\
\
\displaystyle
{{18}\  x \ {\tan \left({{\arctan \left({x}\right)}\over 3}\right)}}
(40)
Type: Union(Expression(Integer),...)

fricas
integrate(x, x)

\label{eq41}{1 \over 2}\ {{x}^{2}}(41)
Type: Polynomial(Fraction(Integer))
fricas
simplify((1/(2*z))*z^2)

\label{eq42}z \over 2(42)
Type: Expression(Integer)
fricas
integrate((1/(2*z))*z^2, z)

\label{eq43}{{z}^{2}}\over 4(43)
Type: Union(Expression(Integer),...)
fricas
integrate(log(x),x)

\label{eq44}{x \ {\log \left({x}\right)}}- x(44)
Type: Union(Expression(Integer),...)
fricas
integrate(1/x,x)

\label{eq45}\log \left({x}\right)(45)
Type: Union(Expression(Integer),...)
fricas
integrate(0^0,x)

\label{eq46}x(46)
Type: Polynomial(Fraction(Integer))

from fr.sci.maths --unknown, Tue, 09 May 2006 09:58:11 -0500 reply
fricas
integrate( log(y)^3/(y*(y-1)),y)

\label{eq47}\int^{
\displaystyle
y}{{{{\log \left({\%A}\right)}^{3}}\over{{{\%A}^{2}}- \%A}}\ {d \%A}}(47)
Type: Union(Expression(Integer),...)

fricas
integrate(exp(-x^2),x=0..%plusInfinity)

\label{eq48}{\sqrt{\pi}}\over 2(48)
Type: Union(f1: OrderedCompletion?(Expression(Integer)),...)

fricas
integrate(x^2*exp(-x^2),x=0..%plusInfinity)

\label{eq49}{\Gamma \left({3 \over 2}\right)}\over 2(49)
Type: Union(f1: OrderedCompletion?(Expression(Integer)),...)

No ; after command or else output is supressed.
fricas
integrate(exp(%i*2*%pi*f*t), t=0..T)

\label{eq50}{-{i \ {{e}^{2 \  i \  T \  f \  \pi}}}+ i}\over{2 \  f \  \pi}(50)
Type: Union(f1: OrderedCompletion?(Expression(Complex(Integer))),...)

Axiom and Maxima not capable of this integrand --WinnieThePooh?, Tue, 29 May 2007 17:24:44 -0500 reply
int(exp(sin(x)),x);
reduce
\displaylines{\qdd
\int {e^{\sin 
         \(x
          

fricas
integrate(exp(sin(x)),x)

\label{eq51}\int^{
\displaystyle
x}{{{e}^{\sin \left({\%A}\right)}}\ {d \%A}}(51)
Type: Union(Expression(Integer),...)

An integral which Maxima can't do, but Axiom can --amca01, Tue, 05 Jan 2010 15:08:53 -0800 reply
fricas
integrate(sqrt(x+sqrt(1+x^2))/x,x)

\label{eq52}\begin{array}{@{}l}
\displaystyle
-{\log \left({{\sqrt{{\sqrt{{{x}^{2}}+ 1}}+ x}}+ 1}\right)}+{\log \left({{\sqrt{{\sqrt{{{x}^{2}}+ 1}}+ x}}- 1}\right)}- 
\
\
\displaystyle
{2 \ {\arctan \left({\sqrt{{\sqrt{{{x}^{2}}+ 1}}+ x}}\right)}}+{2 \ {\sqrt{{\sqrt{{{x}^{2}}+ 1}}+ x}}}
(52)
Type: Union(Expression(Integer),...)