|
|
last edited 10 months ago by test1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | ||
Editor:
Time: 2007/11/18 18:05:04 GMT-8 |
||
Note: Axiom and Maxima not capable of this integrand |
changed: - Integration Let's do some integration examples: \begin{axiom} integrate(%e**x, x) \end{axiom} \begin{reduce} load_package SPECFN; \end{reduce} \begin{reduce} on ROUNDED,ADJPREC; \end{reduce} \begin{reduce} Ei(1.00000000000000000001); Ei(1.0); Ei(2.0); \end{reduce} Can Reduce compute Ei in arbitrary precision? See http://www.uni-koeln.de/REDUCE/3.6/doc/specfn/ Also http://homepages.inf.ed.ac.uk/mtoussai/publications/toussaint-99-mexico.pdf Reset \begin{reduce} off ROUNDED,ADJPREC; \end{reduce} \begin{reduce} int(cos(x),x,0,pi); \end{reduce} \begin{axiom} integrate(x^2/sqrt(4-x^2),x) \end{axiom} \begin{axiom} integrate(exp(-a*x**2),x=0..%plusInfinity) \end{axiom} The following won't "work", see CommonMistakes: \begin{axiom} integrate(exp(-a::PositiveInteger*x**2),x=0..%plusInfinity) \end{axiom} \begin{axiom} integrate((x^3+x^2+2)/(x*(x^2-1)^2), x) \end{axiom} \begin{axiom} integrate(2*x/sin(x)^2,x) \end{axiom} Comparing Axiom and Reduce: \begin{axiom} integrate(sin(1/x),x) \end{axiom} \begin{reduce} int(sin(1/x),x); \end{reduce} Hell, why does the following blow MathAction?:: !\begin{reduce} load_package algint; int(sin(1/x),x); \end{reduce} A different problem, where Axiom has to give up: \begin{axiom} integrate(sqrt(sin(1/x)),x) \end{axiom} However, in Reduce: Again, why does the following blow MathAction?:: !\begin{reduce} load_package algint; int(sqrt(sin(1/x)),x); \end{reduce} \begin{axiom} integrate(exp(-x^2),x) \end{axiom} \begin{axiom} integrate(sin(x)/x,x) differentiate(%,x) \end{axiom} \begin{axiom} integrate(sin(1/x),x=%minusInfinity..%plusInfinity,"noPole") \end{axiom} \begin{axiom} integrate(2*x/sin(x)^2,x=1/2..1); \end{axiom} \begin{axiom} integrate(sin(x),x=0..%pi/2) \end{axiom} \begin{axiom} integrate(atan(x/a)/x,x) \end{axiom} \begin{axiom} integrate(1/(a+z^3), z=0..1,"noPole") \end{axiom} \begin{axiom} integrate(x^3+x^2/4+x,x) \end{axiom} You cannot integrate Expression Float \begin{axiom} integrate(50*%e^(-0.02*t),t) \end{axiom} But symbolic integration works with integer expressions \begin{axiom} integrate(50*%e^(-0.02*t)::Expression Fraction Integer,t) \end{axiom} \begin{axiom} integrate(exp(cos(x)),x) \end{axiom} \begin{axiom} integrate(sin(x),x) integrate(%,x) \end{axiom} \begin{axiom} integrate(a/h - c*h/12 + (b/h)*r + (c/h)*r^2,r) \end{axiom} \begin{axiom} integrate(exp(-(a+b*t)^2/2),t) \end{axiom} \begin{axiom} integrate(exp(-(a+b*t)^2/t),t) \end{axiom} \begin{axiom} integrate(exp(-1/t),t) \end{axiom} \begin{axiom} integrate(exp(-1/t),t=1..x) \end{axiom} Unfortunately, there is currently no easy way to make "assumptions" about variables. Thus, The following won't work:: !\begin{axiom} assume(x, real) integrate(exp(-1/t),t=1..x) \end{axiom} \begin{axiom} integrate(t*exp(-(a+b*t)^2/2),t) \end{axiom} \begin{axiom} integrate(1/(a+z^3), z=0..1,"noPole") \end{axiom} From the ReduceProblem (what does axiom do?): \begin{axiom} int(1/sqrt(2*PI)*exp(-1/2*log(x)**2),x,0,INFINITY); \end{axiom} From MartinRubey Thu Oct 7 10:18:13 -0500 2004 From: Martin Rubey Date: Thu, 07 Oct 2004 10:18:13 -0500 Subject: Message-ID: <16741.31098.837887.890502@gargle.gargle.HOWL> In-Reply-To: <20041007093033-0500@page.axiom-developer.org> Well, you should use Axiom syntax. Note that 'PI' is a domain, spelled out: 'PositiveInteger' in Axiom, the constant $\pi$ is denoted '%pi'. Furthermore, the operation you want is called 'integrate'. Finally, infinity is denoted '%infinity', but in fact, I wouldn't know how to do such integrals in Axiom anyway. Thus, the best I get is: \begin{axiom} integrate(1/sqrt(2*%pi)*exp(-1/2*log(x)**2),x=0..k) \end{axiom} If you would get a result, you could use limit afterwards, of course. From unknown Thu Feb 10 17:45:57 -0600 2005 From: Date: Thu, 10 Feb 2005 17:45:57 -0600 Subject: Mathematical Paradox? Message-ID: <20050210174557-0600@page.axiom-developer.org> Area under the curve: \begin{axiom} integrate(1/x,x=1..%plusInfinity) \end{axiom} From unknown Thu Feb 10 17:47:59 -0600 2005 From: Date: Thu, 10 Feb 2005 17:47:59 -0600 Subject: Paradox Part2: Message-ID: <20050210174759-0600@page.axiom-developer.org> Volume under that curve: \begin{axiom} integrate(%pi*((1/x)^2), x=1..%plusInfinity) \end{axiom} Curve has an infinite area...but a finite volume (I think I did this correctly)! From unknown Tue May 17 18:52:42 -0500 2005 From: unknown Date: Tue, 17 May 2005 18:52:42 -0500 Subject: Message-ID: <20050517185242-0500@page.axiom-developer.org> \begin{axiom} integrate(1/x,x) \end{axiom} From unknown Tue May 17 18:53:28 -0500 2005 From: unknown Date: Tue, 17 May 2005 18:53:28 -0500 Subject: Message-ID: <20050517185328-0500@page.axiom-developer.org> \begin{axiom} integrate(sqrt(x),x) \end{axiom} From unknown Tue May 17 18:54:19 -0500 2005 From: unknown Date: Tue, 17 May 2005 18:54:19 -0500 Subject: Message-ID: <20050517185419-0500@page.axiom-developer.org> \begin{axiom} integrate(sqrt(x^3+x),x) \end{axiom} From unknown Sun Jun 19 20:16:03 -0500 2005 From: unknown Date: Sun, 19 Jun 2005 20:16:03 -0500 Subject: a turning moving body Message-ID: <20050619201603-0500@page.axiom-developer.org> \begin{axiom} integrate(( a*sin( m + n*t + o*t*t/2 ) )/( n + ot ) + ( b*cos( m + n*t + o*t*t/2 ) )/( n + ot ), t) \end{axiom} From unknown Sun Jun 19 23:16:48 -0500 2005 From: unknown Date: Sun, 19 Jun 2005 23:16:48 -0500 Subject: a turning accelerating body Message-ID: <20050619231648-0500@page.axiom-developer.org> \begin{axiom} integrate(( a*cos( m + n*t + o*t*t/2 ) )- ( b*sin( m + n*t + o*t*t/2 ) ), t) \end{axiom} From unknown Sun Jun 26 16:02:47 -0500 2005 From: unknown Date: Sun, 26 Jun 2005 16:02:47 -0500 Subject: Message-ID: <20050626160247-0500@page.axiom-developer.org> \begin{axiom} integrate(-2*(3-3*t)^2*(3*t),t) \end{axiom} From unknown Sun Oct 30 09:27:40 -0600 2005 From: unknown Date: Sun, 30 Oct 2005 09:27:40 -0600 Subject: Message-ID: <20051030092740-0600@page.axiom-developer.org> integrate(1/(1+x**2),x=-u..u) From unknown Sun Oct 30 09:29:01 -0600 2005 From: unknown Date: Sun, 30 Oct 2005 09:29:01 -0600 Subject: Message-ID: <20051030092901-0600@page.axiom-developer.org> \begin{axiom} integrate(1/(1+x**2),x=-u..u) \end{axiom} From unknown Tue Nov 1 10:35:26 -0600 2005 From: unknown Date: Tue, 01 Nov 2005 10:35:26 -0600 Subject: Message-ID: <20051101103526-0600@www.axiom-developer.org> \begin{axiom} integrate(x**6*exp(-x**2), x=0..%plusInfinity) \end{axiom} From unknown Wed Nov 2 16:59:21 -0600 2005 From: unknown Date: Wed, 02 Nov 2005 16:59:21 -0600 Subject: Message-ID: <20051102165921-0600@www.axiom-developer.org> integrate(1/sqrt(1/x+1),x) From unknown Wed Nov 2 17:00:21 -0600 2005 From: unknown Date: Wed, 02 Nov 2005 17:00:21 -0600 Subject: Message-ID: <20051102170021-0600@www.axiom-developer.org> \begin{axiom} integrate(1/sqrt(1/x+1),x) \end{axiom} From unknown Wed Nov 23 08:30:18 -0600 2005 From: unknown Date: Wed, 23 Nov 2005 08:30:18 -0600 Subject: Message-ID: <20051123083018-0600@www.axiom-developer.org> integrate(sin(sin x), x) From unknown Fri Nov 25 16:28:37 -0600 2005 From: unknown Date: Fri, 25 Nov 2005 16:28:37 -0600 Subject: Message-ID: <20051125162837-0600@www.axiom-developer.org> integrate(a/2*(1-cos(b*t)),t) From unknown Thu Mar 9 09:21:47 -0600 2006 From: unknown Date: Thu, 09 Mar 2006 09:21:47 -0600 Subject: yet another test that shall work but not in maple ? Message-ID: <20060309092147-0600@wiki.axiom-developer.org> integrate(tan(arctan(x)/3),x) From unknown Thu Mar 9 09:22:56 -0600 2006 From: unknown Date: Thu, 09 Mar 2006 09:22:56 -0600 Subject: Message-ID: <20060309092256-0600@wiki.axiom-developer.org> In-Reply-To: <20060309092147-0600@wiki.axiom-developer.org> integrate(tan(arctan(x)/3),x); From unknown Sat Mar 11 12:40:39 -0600 2006 From: unknown Date: Sat, 11 Mar 2006 12:40:39 -0600 Subject: Message-ID: <20060311124039-0600@wiki.axiom-developer.org> integrate(x, x) From unknown Sat Mar 11 12:41:33 -0600 2006 From: unknown Date: Sat, 11 Mar 2006 12:41:33 -0600 Subject: Message-ID: <20060311124133-0600@wiki.axiom-developer.org> \begin{axiom} integrate(x, x) \end{axiom} From unknown Sat Mar 11 12:43:17 -0600 2006 From: unknown Date: Sat, 11 Mar 2006 12:43:17 -0600 Subject: Message-ID: <20060311124317-0600@wiki.axiom-developer.org> \begin{axiom} integrate((1/(2*z))*z^2), z) \end{axiom} From unknown Sat Mar 11 12:44:05 -0600 2006 From: unknown Date: Sat, 11 Mar 2006 12:44:05 -0600 Subject: Message-ID: <20060311124405-0600@wiki.axiom-developer.org> \begin{axiom} integrate((1/(2*z))*z^2, z) \end{axiom} From unknown Sat Mar 11 12:47:35 -0600 2006 From: unknown Date: Sat, 11 Mar 2006 12:47:35 -0600 Subject: Message-ID: <20060311124735-0600@wiki.axiom-developer.org> \begin{axiom} simplify((1/(2*z))*z^2) integrate((1/(2*z))*z^2, z) \end{axiom} From unknown Sat May 6 09:17:11 -0500 2006 From: unknown Date: Sat, 06 May 2006 09:17:11 -0500 Subject: Message-ID: <20060506091711-0500@wiki.axiom-developer.org> integrate(ln(x),x) From unknown Sat May 6 09:20:14 -0500 2006 From: unknown Date: Sat, 06 May 2006 09:20:14 -0500 Subject: Message-ID: <20060506092014-0500@wiki.axiom-developer.org> integrate(1/x,x) From unknown Sat May 6 16:50:37 -0500 2006 From: unknown Date: Sat, 06 May 2006 16:50:37 -0500 Subject: Message-ID: <20060506165037-0500@wiki.axiom-developer.org> \begin{axiom} integrate(0**0,x) \end{axiom} From unknown Tue May 9 09:56:50 -0500 2006 From: unknown Date: Tue, 09 May 2006 09:56:50 -0500 Subject: from fr.sci.maths Message-ID: <20060509095650-0500@wiki.axiom-developer.org> \begin{axiom} integrate( ln(y)^3/(y*(y-1)),y) \end{axiom} From unknown Tue May 9 09:58:11 -0500 2006 From: unknown Date: Tue, 09 May 2006 09:58:11 -0500 Subject: from fr.sci.maths Message-ID: <20060509095811-0500@wiki.axiom-developer.org> \begin{axiom} integrate( log(y)^3/(y*(y-1)),y) \end{axiom} From unknown Mon May 29 14:20:28 -0500 2006 From: unknown Date: Mon, 29 May 2006 14:20:28 -0500 Subject: Message-ID: <20060529142028-0500@wiki.axiom-developer.org> \begin{axiom} integrate(exp(-x^2),x=0..%plusInfinity) \end{axiom} From unknown Mon May 29 14:21:39 -0500 2006 From: unknown Date: Mon, 29 May 2006 14:21:39 -0500 Subject: Message-ID: <20060529142139-0500@wiki.axiom-developer.org> integrate(x**2*exp(-x^2),x=0..%plusInfinity) From unknown Wed Jul 19 11:59:36 -0500 2006 From: unknown Date: Wed, 19 Jul 2006 11:59:36 -0500 Subject: test Message-ID: <20060719115936-0500@wiki.axiom-developer.org> No ; after command or else output is supressed. \begin{axiom} integrate(exp(%i*2*%pi*f*t), t=0..T) \end{axiom} From WinnieThePooh Tue May 29 17:24:44 -0500 2007 From: WinnieThePooh Date: Tue, 29 May 2007 17:24:44 -0500 Subject: Axiom and Maxima not capable of this integrand Message-ID: <20070529172444-0500@wiki.axiom-developer.org> \begin{reduce} int(exp(sin(x)),x) \end{reduce}
Let's do some integration examples:
integrate(%e**x, x)
(1) |
Type: Union(Expression(Integer),...)
load_package SPECFN; | reduce |
on ROUNDED,ADJPREC; | reduce |
Ei(1.00000000000000000001); *** precision increased to 21 | reduce |
Ei(1.0); | reduce |
Ei(2.0); | reduce |
Can Reduce compute Ei in arbitrary precision?
See http://www.uni-koeln.de/REDUCE/3.6/doc/specfn/
Also http://homepages.inf.ed.ac.uk/mtoussai/publications/toussaint-99-mexico.pdf
Reset
off ROUNDED,ADJPREC; | reduce |
int(cos(x),x,0,pi); | reduce |
integrate(x^2/sqrt(4-x^2),x)
(2) |
Type: Union(Expression(Integer),...)
integrate(exp(-a*x**2),x=0..%plusInfinity)
(3) |
Type: Union(fail: failed,...)
The following won't "work", see CommonMistakes?:
integrate(exp(-a::PositiveInteger*x**2),x=0..%plusInfinity)
Cannot convert from type Variable(a) to PositiveInteger for value a
integrate((x^3+x^2+2)/(x*(x^2-1)^2), x)
(4) |
Type: Union(Expression(Integer),...)
integrate(2*x/sin(x)^2,x)
(5) |
Type: Union(Expression(Integer),...)
Comparing Axiom and Reduce:
integrate(sin(1/x),x)
(6) |
Type: Union(Expression(Integer),...)
int(sin(1/x),x); | reduce |
Hell, why does the following blow MathAction??:
\begin{reduce} load_package algint; int(sin(1/x),x); \end{reduce}
A different problem, where Axiom has to give up:
integrate(sqrt(sin(1/x)),x)
>> Error detected within library code: integrate: implementation incomplete (constant residues)
However, in Reduce: Again, why does the following blow MathAction??:
\begin{reduce} load_package algint; int(sqrt(sin(1/x)),x); \end{reduce}
integrate(exp(-x^2),x)
(7) |
Type: Union(Expression(Integer),...)
integrate(sin(x)/x,x)
(8) |
Type: Union(Expression(Integer),...)
differentiate(%,x)
(9) |
Type: Expression(Integer)
integrate(sin(1/x),x=%minusInfinity..%plusInfinity,"noPole")
>> Error detected within library code: integrate: pole in path of integration
integrate(2*x/sin(x)^2,x=1/2..1);
Type: Union(pole: potentialPole,...)
integrate(sin(x),x=0..%pi/2)
(10) |
Type: Union(f1: OrderedCompletion(Expression(Integer)),...)
integrate(atan(x/a)/x,x)
(11) |
Type: Union(Expression(Integer),...)
integrate(1/(a+z^3), z=0..1,"noPole")
(12) |
Type: Union(f1: OrderedCompletion(Expression(Integer)),...)
integrate(x^3+x^2/4+x,x)
(13) |
Type: Polynomial(Fraction(Integer))
You cannot integrate Expression Float
integrate(50*%e^(-0.02*t),t)
There are 11 exposed and 8 unexposed library operations named integrate having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op integrate to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named integrate with argument type(s) Expression(Float) Variable(t)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.
But symbolic integration works with integer expressions
integrate(50*%e^(-0.02*t)::Expression Fraction Integer,t)
(14) |
Type: Union(Expression(Fraction(Integer)),...)
integrate(exp(cos(x)),x)
(15) |
Type: Union(Expression(Integer),...)
integrate(sin(x),x) integrate(%,x)
>> Error detected within library code: Sorry - cannot handle that integrand yet
integrate(a/h - c*h/12 + (b/h)*r + (c/h)*r^2,r)
(16) |
Type: Union(Expression(Integer),...)
integrate(exp(-(a+b*t)^2/2),t)
(17) |
Type: Union(Expression(Integer),...)
integrate(exp(-(a+b*t)^2/t),t)
(18) |
Type: Union(Expression(Integer),...)
integrate(exp(-1/t),t)
(19) |
Type: Union(Expression(Integer),...)
integrate(exp(-1/t),t=1..x)
(20) |
Type: Union(pole: potentialPole,...)
Unfortunately, there is currently no easy way to make "assumptions" about variables. Thus, The following won't work:
\begin{axiom} assume(x, real) integrate(exp(-1/t),t=1..x) \end{axiom}
integrate(t*exp(-(a+b*t)^2/2),t)
(21) |
Type: Union(Expression(Integer),...)
integrate(1/(a+z^3), z=0..1,"noPole")
(22) |
Type: Union(f1: OrderedCompletion(Expression(Integer)),...)
From the ReduceProblem? (what does axiom do?):
int(1/sqrt(2*PI)*exp(-1/2*log(x)**2),x,0,INFINITY);
There are 35 exposed and 22 unexposed library operations named * having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op * to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named * with argument type(s) PositiveInteger Domain
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.
PI
is a domain, spelled out:
PositiveInteger
in Axiom, the constant is denoted %pi
. Furthermore,
the operation you want is called integrate
. Finally, infinity is denoted
%infinity
, but in fact, I wouldn't know how to do such integrals in Axiom
anyway. Thus, the best I get is:
integrate(1/sqrt(2*%pi)*exp(-1/2*log(x)**2),x=0..k)
(23) |
Type: Union(pole: potentialPole,...)
If you would get a result, you could use limit afterwards, of course.
integrate(1/x,x=1..%plusInfinity)
(24) |
Type: Union(f1: OrderedCompletion(Expression(Integer)),...)
integrate(%pi*((1/x)^2), x=1..%plusInfinity)
(25) |
Type: Union(f1: OrderedCompletion(Expression(Integer)),...)
Curve has an infinite area...but a finite volume (I think I did this correctly)!
integrate(1/x,x)
(26) |
Type: Union(Expression(Integer),...)
integrate(sqrt(x),x)
(27) |
Type: Union(Expression(Integer),...)
integrate(sqrt(x^3+x),x)
(28) |
Type: Union(Expression(Integer),...)
integrate(( a*sin( m + n*t + o*t*t/2 ) )/( n + ot ) + ( b*cos( m + n*t + o*t*t/2 ) )/( n + ot ), t)
(29) |
Type: Union(Expression(Integer),...)
integrate(( a*cos( m + n*t + o*t*t/2 ) )- ( b*sin( m + n*t + o*t*t/2 ) ), t)
(30) |
Type: Union(Expression(Integer),...)
integrate(-2*(3-3*t)^2*(3*t),t)
(31) |
Type: Polynomial(Fraction(Integer))
integrate(1/(1+x**2),x=-u..u)
(32) |
Type: Union(pole: potentialPole,...)
integrate(x**6*exp(-x**2), x=0..%plusInfinity)
(33) |
Type: Union(f1: OrderedCompletion(Expression(Integer)),...)
integrate(1/sqrt(1/x+1),x)
(34) |
Type: Union(Expression(Integer),...)
integrate(x, x)
(35) |
Type: Polynomial(Fraction(Integer))
integrate((1/(2*z))*z^2), z)
Line 1: integrate((1/(2*z))*z^2), z) ...........................A Error A: Improper syntax. 1 error(s) parsing
integrate((1/(2*z))*z^2, z)
(36) |
Type: Union(Expression(Integer),...)
simplify((1/(2*z))*z^2)
(37) |
Type: Expression(Integer)
integrate((1/(2*z))*z^2, z)
(38) |
Type: Union(Expression(Integer),...)
integrate(0**0,x)
(39) |
Type: Polynomial(Fraction(Integer))
integrate( ln(y)^3/(y*(y-1)),y)
There are no library operations named ln Use HyperDoc Browse or issue )what op ln to learn if there is any operation containing " ln " in its name.
Cannot find a definition or applicable library operation named ln with argument type(s) Variable(y)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.
integrate( log(y)^3/(y*(y-1)),y)
(40) |
Type: Union(Expression(Integer),...)
integrate(exp(-x^2),x=0..%plusInfinity)
(41) |
Type: Union(f1: OrderedCompletion(Expression(Integer)),...)
integrate(exp(%i*2*%pi*f*t), t=0..T)
(42) |
Type: Union(f1: OrderedCompletion(Expression(Complex(Integer))),...)
int(exp(sin(x)),x) | reduce |