login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxFrobeniusAlgebra revision 7 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Editor: Bill Page
Time: 2011/02/12 21:48:03 GMT-8
Note: a more convenient notation

changed:
-An n-dimensional algebra is represented by a tensor $Y=\{ {y_{ij}}^k \} \ i,j,k =1,2, ... n $ viewed as an operator with two inputs 'i,j' and one output 'k'.
An n-dimensional algebra is represented by a (1,2)-tensor
$Y=\{ {y_k}^{ji} \} \ i,j,k =1,2, ... n $
viewed as an operator with two inputs 'i,j' and one
output 'k'. For example in 2 dimensions

added:
)library DEXPR

changed:
-T:=CartesianTensor(1,n,EXPR INT)
-Yijk:=unravel(concat concat
-  [[[script(y,[[i,j],[k]])
-    for k in 1..n]
-      for j in 1..n]
-        for i in 1..n]
-          )$T
-reindex(Yijk,[3,1,2])
-Yijk[1,1,2]
-Yijk[1,2,1]
-Yijk[2,1,1]
-\end{axiom}
-Given two vectors 'U' and 'V'
-\begin{axiom}
-Ui:=unravel([script(u,[[],[i]]) for i in 1..n])$T
-Vj:=unravel([script(v,[[],[i]]) for i in 1..n])$T
-\end{axiom}
-the tensor 'Y' operates on their tensor product to yield a vector 'W'
-\begin{axiom}
-UVij:=product(Ui,Vj)
-UVij[1,2]
-UVij[2,1]
-YUV:=product(Yijk,UVij)
-YUV[1,1,1,1,2]
-YUV[1,1,1,2,1]
-YUV[1,1,2,1,1]
-YUV[1,2,1,1,1]
-YUV[2,1,1,1,1]
-contract(contract(YUV,1,4),1,3)
-contract(contract(Yijk,1,UVij,1),1,3)
-Wk:=(reindex(Yijk,[3,2,1])*Ui)*Vj
-\end{axiom}
-
-Take 2
-
-An n-dimensional algebra is represented by a tensor $Y=\{ {y_k}^{ji} \} \ i,j,k =1,2, ... n $ viewed as an operator with two inputs 'i,j' and one output 'k'.
-\begin{axiom}
-Ykji:=unravel(concat concat
T:=CartesianTensor(1,n,DEXPR INT)
Y:=unravel(concat concat

added:
Given two vectors $U=\{ u_i \}$ and $V=\{ v_j \}$

changed:
-Ui:=unravel([script(u,[[i]]) for i in 1..n])$T
-Vj:=unravel([script(v,[[i]]) for i in 1..n])$T
-contract(contract(Ykji,3,product(Ui,Vj),1),2,3)
-Wk:=(Ykji*Ui)*Vj
U:=unravel([script(u,[[i]]) for i in 1..n])$T
V:=unravel([script(v,[[i]]) for i in 1..n])$T

added:
the tensor 'Y' operates on their tensor product to
yield a vector $W=\{ w_k = {y_k}^{ji} u_i v_j \}$
\begin{axiom}
W:=contract(contract(Y,3,product(U,V),1),2,3)
\end{axiom}
or in a more convenient notation:
\begin{axiom}
W:=(Y*U)*V
\end{axiom}

An n-dimensional algebra is represented by a (1,2)-tensor Y=\{ {y_k}^{ji} \} \ i,j,k =1,2, ... n viewed as an operator with two inputs i,j and one output k. For example in 2 dimensions

axiom
)library DEXPR
DistributedExpression is now explicitly exposed in frame initial DistributedExpression will be automatically loaded when needed from /var/zope2/var/LatexWiki/DEXPR.NRLIB/DEXPR n:=2

\label{eq1}2(1)
Type: PositiveInteger?
axiom
T:=CartesianTensor(1,n,DEXPR INT)

\label{eq2}\hbox{\axiomType{CartesianTensor}\ } (1, 2, \hbox{\axiomType{DistributedExpression}\ } (\hbox{\axiomType{Integer}\ }))(2)
Type: Domain
axiom
Y:=unravel(concat concat
  [[[script(y,[[k],[j,i]])
    for i in 1..n]
      for j in 1..n]
        for k in 1..n]
          )$T

\label{eq3}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cc}
{y_{1}^{1, \: 1}}&{y_{1}^{1, \: 2}}
\
{y_{1}^{2, \: 1}}&{y_{1}^{2, \: 2}}
(3)
Type: CartesianTensor?(1,2,DistributedExpression?(Integer))

Given two vectors U=\{ u_i \} and V=\{ v_j \}

axiom
U:=unravel([script(u,[[i]]) for i in 1..n])$T

\label{eq4}\left[{u_{1}}, \:{u_{2}}\right](4)
Type: CartesianTensor?(1,2,DistributedExpression?(Integer))
axiom
V:=unravel([script(v,[[i]]) for i in 1..n])$T

\label{eq5}\left[{v_{1}}, \:{v_{2}}\right](5)
Type: CartesianTensor?(1,2,DistributedExpression?(Integer))

the tensor Y operates on their tensor product to yield a vector W=\{ w_k = {y_k}^{ji} u_i v_j \}

axiom
W:=contract(contract(Y,3,product(U,V),1),2,3)

\label{eq6}\begin{array}{@{}l}
\displaystyle
\left[{{{y_{1}^{1, \: 1}}\ {u_{1}}\ {v_{1}}}+{{y_{1}^{1, \: 2}}\ {u_{2}}\ {v_{1}}}+{{y_{1}^{2, \: 1}}\ {u_{1}}\ {v_{2}}}+{{y_{1}^{2, \: 2}}\ {u_{2}}\ {v_{2}}}}, \: \right.
\
\
\displaystyle
\left.{{{y_{2}^{1, \: 1}}\ {u_{1}}\ {v_{1}}}+{{y_{2}^{1, \: 2}}\ {u_{2}}\ {v_{1}}}+{{y_{2}^{2, \: 1}}\ {u_{1}}\ {v_{2}}}+{{y_{2}^{2, \: 2}}\ {u_{2}}\ {v_{2}}}}\right] 
(6)
Type: CartesianTensor?(1,2,DistributedExpression?(Integer))

or in a more convenient notation:

axiom
W:=(Y*U)*V

\label{eq7}\begin{array}{@{}l}
\displaystyle
\left[{{{y_{1}^{1, \: 1}}\ {u_{1}}\ {v_{1}}}+{{y_{1}^{1, \: 2}}\ {u_{2}}\ {v_{1}}}+{{y_{1}^{2, \: 1}}\ {u_{1}}\ {v_{2}}}+{{y_{1}^{2, \: 2}}\ {u_{2}}\ {v_{2}}}}, \: \right.
\
\
\displaystyle
\left.{{{y_{2}^{1, \: 1}}\ {u_{1}}\ {v_{1}}}+{{y_{2}^{1, \: 2}}\ {u_{2}}\ {v_{1}}}+{{y_{2}^{2, \: 1}}\ {u_{1}}\ {v_{2}}}+{{y_{2}^{2, \: 2}}\ {u_{2}}\ {v_{2}}}}\right] 
(7)
Type: CartesianTensor?(1,2,DistributedExpression?(Integer))