An n-dimensional algebra is represented by a (1,2)-tensor
viewed as an operator with two inputs i,j
and one
output k
. For example in 2 dimensions
axiom
)library DEXPR
DistributedExpression is now explicitly exposed in frame initial
DistributedExpression will be automatically loaded when needed from
/var/zope2/var/LatexWiki/DEXPR.NRLIB/DEXPR
n:=2
axiom
T:=CartesianTensor(1,n,DEXPR INT)
Type: Domain
axiom
--T:=CartesianTensor(1,n,HDMP(concat[concat concat
-- [[[script(y,[[k],[j,i]])
-- for i in 1..n]
-- for j in 1..n]
-- for k in 1..n],
-- [script(u,[[i]]) for i in 1..n],
-- [script(v,[[i]]) for i in 1..n] ],FRAC
INT))
Y:=unravel(concat concat
[[[script(y,[[k],[j,i]])
for i in 1..n]
for j in 1..n]
for k in 1..n]
)$T
Type: CartesianTensor
?(1,
2,
DistributedExpression
?(Integer))
Given two vectors and
axiom
U:=unravel([script(u,[[i]]) for i in 1..n])$T
Type: CartesianTensor
?(1,
2,
DistributedExpression
?(Integer))
axiom
V:=unravel([script(v,[[i]]) for i in 1..n])$T
Type: CartesianTensor
?(1,
2,
DistributedExpression
?(Integer))
the tensor Y
operates on their tensor product to
yield a vector
axiom
W:=contract(contract(Y,3,product(U,V),1),2,3)
Type: CartesianTensor
?(1,
2,
DistributedExpression
?(Integer))
Diagram:
U V
2i 3j
\ /
|
1k
W
or in a more convenient notation:
axiom
W:=(Y*U)*V
Type: CartesianTensor
?(1,
2,
DistributedExpression
?(Integer))
The algebra Y
is commutative if the following tensor
(the commutator) is zero
axiom
K:=Y-reindex(Y,[1,3,2])
Type: CartesianTensor
?(1,
2,
DistributedExpression
?(Integer))
A basis for the ideal defined by the coefficients of the
commutator is given by:
axiom
C:=groebner(ravel(K))
Type: List(Polynomial(Integer))
An algebra is associative if:
Y I = I Y
Y Y
Note: right figure is mirror image of left!
2 3 6 2 5 6 2 3 4
\/ / \ \/ \ | /
\/ = \/ = \|/
\ / |
4 1 1
In other words an algebra is associative if and only
if the following (3,1)-tensor
is zero.
axiom
test(Y*Y = contract(product(Y,Y),3,4))
Type: Boolean
axiom
test(Y*Y = contract(Y,3,Y,1))
Type: Boolean
axiom
test(reindex(reindex(Y,[1,3,2])*reindex(Y,[1,3,2]),[1,4,3,2]) =
reindex(contract(product(Y,Y),1,5),[3,1,2,4]))
Type: Boolean
axiom
test(reindex(reindex(Y,[1,3,2])*reindex(Y,[1,3,2]),[1,4,3,2]) = reindex(contract(Y,1,Y,2),[3,1,2,4]))
Type: Boolean
axiom
AA := reindex(reindex(Y,[1,3,2])*reindex(Y,[1,3,2]),[1,4,3,2])-Y*Y;
ravel(AA)
Type: List(DistributedExpression
?(Integer))
axiom
AB:=groebner(ravel(AA))
Type: List(Polynomial(Integer))
axiom
#AB
The Jacobi identity requires the following tensor to be zero:
2 3 6 2 5 6 2 6 3
\ / / \ \ / \ \/
\/ / \ \/ \/\
\/ - \/ - \/
\ / \
4 1 4
axiom
BA := AA - reindex(contract(Y,1,Y,2),[3,1,4,2]); ravel(BA)
Type: List(DistributedExpression
?(Integer))
axiom
BB:=groebner(ravel(BA));
Type: List(Polynomial(Integer))
axiom
#BB
A scalar product is denoted by
axiom
U:=unravel(concat
[[script(u,[[],[j,i]])
for i in 1..n]
for j in 1..n]
)$T
Type: CartesianTensor
?(1,
2,
DistributedExpression
?(Integer))
We say that the scalar product is "associative" if the following tensor equation holds:
Y I = I Y
U U
axiom
UA := reindex(reindex(U,[2,1])*reindex(Y,[1,3,2]),[3,2,1])-U*Y; ravel(UA)
Type: List(DistributedExpression
?(Integer))