login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxFrobeniusAlgebra revision 4 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Editor: Bill Page
Time: 2011/02/11 20:25:29 GMT-8
Note: reindex

changed:
-Y.[1,1,2]
-Y.[1,2,1]
-Y.[2,1,1]
Yijk[1,1,2]
Yijk[1,2,1]
Yijk[2,1,1]

changed:
-UVij.[1,2]
-UVij.[2,1]
UVij[1,2]
UVij[2,1]

changed:
-YUV.[1,1,1,1,2]
-YUV.[1,1,1,2,1]
-YUV.[1,1,2,1,1]
-YUV.[1,2,1,1,1]
-YUV.[2,1,1,1,1]
YUV[1,1,1,1,2]
YUV[1,1,1,2,1]
YUV[1,1,2,1,1]
YUV[1,2,1,1,1]
YUV[2,1,1,1,1]

changed:
-reindex(Yijk,[3,1,2])*Ui*Vj
reindex(Yijk,[3,2,1])*Ui*Vj

added:

Take 2

An n-dimensional algebra is represented by a tensor $Y=\{ {y^k}_{ji} \} \ i,j,k =1,2, ... n $ viewed as an operator with two inputs 'i,j' and output 'k'.
\begin{axiom}
n:=2
T:=CartesianTensor(1,n,EXPR INT)
Ykji:=unravel(concat concat
  [[[script(y,[[i,j],[k]])
    for i in 1..n]
      for j in 1..n]
        for k in 1..n]
          )$T
Ykji[1,1,2]
Ykji[1,2,1]
Ykji[2,1,1]
\end{axiom}
Given two vectors 'U' and 'V'
\begin{axiom}
Ui:=unravel([script(u,[[],[i]]) for i in 1..n])$T
Vj:=unravel([script(v,[[],[i]]) for i in 1..n])$T
\end{axiom}
the tensor 'Y' operates on their tensor product
\begin{axiom}
UVij:=product(Ui,Vj)
UVij[1,2]
UVij[2,1]
YUV:=product(Ykji,UVij)
YUV[1,1,1,1,2]
YUV[1,1,1,2,1]
YUV[1,1,2,1,1]
YUV[1,2,1,1,1]
YUV[2,1,1,1,1]
contract(contract(YUV,3,4),2,3)
contract(contract(Ykji,3,UVij,1),2,3)
Ykji*Ui*Vj
\end{axiom}

An n-dimensional algebra is represented by a tensor Y=\{ {y_{ij}}^k \} \ i,j,k =1,2, ... n viewed as an operator with two inputs i,j and one output k.

axiom
n:=2

\label{eq1}2(1)
Type: PositiveInteger?
axiom
T:=CartesianTensor(1,n,EXPR INT)

\label{eq2}\hbox{\axiomType{CartesianTensor}\ } (1, 2, \hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }))(2)
Type: Domain
axiom
Yijk:=unravel(concat concat
  [[[script(y,[[i,j],[k]])
    for k in 1..n]
      for j in 1..n]
        for i in 1..n]
          )$T

\label{eq3}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cc}
{y_{1, \: 1}^{1}}&{y_{1, \: 1}^{2}}
\
{y_{1, \: 2}^{1}}&{y_{1, \: 2}^{2}}
(3)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
reindex(Yijk,[3,1,2])

\label{eq4}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cc}
{y_{1, \: 1}^{1}}&{y_{1, \: 2}^{1}}
\
{y_{2, \: 1}^{1}}&{y_{2, \: 2}^{1}}
(4)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
Yijk[1,1,2]

\label{eq5}y_{1, \: 1}^{2}(5)
Type: Expression(Integer)
axiom
Yijk[1,2,1]

\label{eq6}y_{1, \: 2}^{1}(6)
Type: Expression(Integer)
axiom
Yijk[2,1,1]

\label{eq7}y_{2, \: 1}^{1}(7)
Type: Expression(Integer)

Given two vectors U and V

axiom
Ui:=unravel([script(u,[[],[i]]) for i in
1..n])$T

\label{eq8}\left[{u^{1}}, \:{u^{2}}\right](8)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
Vj:=unravel([script(v,[[],[i]]) for i in
1..n])$T

\label{eq9}\left[{v^{1}}, \:{v^{2}}\right](9)
Type: CartesianTensor?(1,2,Expression(Integer))

the tensor Y operates on their tensor product

axiom
UVij:=product(Ui,Vj)

\label{eq10}\left[ 
\begin{array}{cc}
{{u^{1}}\ {v^{1}}}&{{u^{1}}\ {v^{2}}}
\
{{u^{2}}\ {v^{1}}}&{{u^{2}}\ {v^{2}}}
(10)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
UVij[1,2]

\label{eq11}{u^{1}}\ {v^{2}}(11)
Type: Expression(Integer)
axiom
UVij[2,1]

\label{eq12}{u^{2}}\ {v^{1}}(12)
Type: Expression(Integer)
axiom
YUV:=product(Yijk,UVij)

\label{eq13}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cc}
{\left[ 
\begin{array}{cc}
{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}&{{u^{1}}\ {v^{2}}\ {y_{1, \: 1}^{1}}}
\
{{u^{2}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}&{{u^{2}}\ {v^{2}}\ {y_{1, \: 1}^{1}}}
(13)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
YUV[1,1,1,1,2]

\label{eq14}{u^{1}}\ {v^{2}}\ {y_{1, \: 1}^{1}}(14)
Type: Expression(Integer)
axiom
YUV[1,1,1,2,1]

\label{eq15}{u^{2}}\ {v^{1}}\ {y_{1, \: 1}^{1}}(15)
Type: Expression(Integer)
axiom
YUV[1,1,2,1,1]

\label{eq16}{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{2}}(16)
Type: Expression(Integer)
axiom
YUV[1,2,1,1,1]

\label{eq17}{u^{1}}\ {v^{1}}\ {y_{1, \: 2}^{1}}(17)
Type: Expression(Integer)
axiom
YUV[2,1,1,1,1]

\label{eq18}{u^{1}}\ {v^{1}}\ {y_{2, \: 1}^{1}}(18)
Type: Expression(Integer)
axiom
contract(contract(YUV,1,4),1,3)

\label{eq19}\begin{array}{@{}l}
\displaystyle
\left[{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{1}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{1}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{1}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}}, \: \right.
\
\
\displaystyle
\left.{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{2}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{2}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{2}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{2}}}}\right] 
(19)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
contract(contract(Yijk,1,UVij,1),1,3)

\label{eq20}\begin{array}{@{}l}
\displaystyle
\left[{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{1}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{1}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{1}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}}, \: \right.
\
\
\displaystyle
\left.{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{2}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{2}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{2}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{2}}}}\right] 
(20)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
reindex(Yijk,[3,2,1])*Ui*Vj

\label{eq21}\begin{array}{@{}l}
\displaystyle
\left[{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{1}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{1}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{1}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}}, \: \right.
\
\
\displaystyle
\left.{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{2}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{2}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{2}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{2}}}}\right] 
(21)
Type: CartesianTensor?(1,2,Expression(Integer))

Take 2

An n-dimensional algebra is represented by a tensor Y=\{ {y^k}_{ji} \} \ i,j,k =1,2, ... n viewed as an operator with two inputs i,j and output k.

axiom
n:=2

\label{eq22}2(22)
Type: PositiveInteger?
axiom
T:=CartesianTensor(1,n,EXPR INT)

\label{eq23}\hbox{\axiomType{CartesianTensor}\ } (1, 2, \hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }))(23)
Type: Domain
axiom
Ykji:=unravel(concat concat
  [[[script(y,[[i,j],[k]])
    for i in 1..n]
      for j in 1..n]
        for k in 1..n]
          )$T

\label{eq24}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cc}
{y_{1, \: 1}^{1}}&{y_{2, \: 1}^{1}}
\
{y_{1, \: 2}^{1}}&{y_{2, \: 2}^{1}}
(24)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
Ykji[1,1,2]

\label{eq25}y_{2, \: 1}^{1}(25)
Type: Expression(Integer)
axiom
Ykji[1,2,1]

\label{eq26}y_{1, \: 2}^{1}(26)
Type: Expression(Integer)
axiom
Ykji[2,1,1]

\label{eq27}y_{1, \: 1}^{2}(27)
Type: Expression(Integer)

Given two vectors U and V

axiom
Ui:=unravel([script(u,[[],[i]]) for i in
1..n])$T

\label{eq28}\left[{u^{1}}, \:{u^{2}}\right](28)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
Vj:=unravel([script(v,[[],[i]]) for i in
1..n])$T

\label{eq29}\left[{v^{1}}, \:{v^{2}}\right](29)
Type: CartesianTensor?(1,2,Expression(Integer))

the tensor Y operates on their tensor product

axiom
UVij:=product(Ui,Vj)

\label{eq30}\left[ 
\begin{array}{cc}
{{u^{1}}\ {v^{1}}}&{{u^{1}}\ {v^{2}}}
\
{{u^{2}}\ {v^{1}}}&{{u^{2}}\ {v^{2}}}
(30)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
UVij[1,2]

\label{eq31}{u^{1}}\ {v^{2}}(31)
Type: Expression(Integer)
axiom
UVij[2,1]

\label{eq32}{u^{2}}\ {v^{1}}(32)
Type: Expression(Integer)
axiom
YUV:=product(Ykji,UVij)

\label{eq33}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cc}
{\left[ 
\begin{array}{cc}
{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}&{{u^{1}}\ {v^{2}}\ {y_{1, \: 1}^{1}}}
\
{{u^{2}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}&{{u^{2}}\ {v^{2}}\ {y_{1, \: 1}^{1}}}
(33)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
YUV[1,1,1,1,2]

\label{eq34}{u^{1}}\ {v^{2}}\ {y_{1, \: 1}^{1}}(34)
Type: Expression(Integer)
axiom
YUV[1,1,1,2,1]

\label{eq35}{u^{2}}\ {v^{1}}\ {y_{1, \: 1}^{1}}(35)
Type: Expression(Integer)
axiom
YUV[1,1,2,1,1]

\label{eq36}{u^{1}}\ {v^{1}}\ {y_{2, \: 1}^{1}}(36)
Type: Expression(Integer)
axiom
YUV[1,2,1,1,1]

\label{eq37}{u^{1}}\ {v^{1}}\ {y_{1, \: 2}^{1}}(37)
Type: Expression(Integer)
axiom
YUV[2,1,1,1,1]

\label{eq38}{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{2}}(38)
Type: Expression(Integer)
axiom
contract(contract(YUV,3,4),2,3)

\label{eq39}\begin{array}{@{}l}
\displaystyle
\left[{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{1}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{1}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{1}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}}, \: \right.
\
\
\displaystyle
\left.{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{2}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{2}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{2}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{2}}}}\right] 
(39)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
contract(contract(Ykji,3,UVij,1),2,3)

\label{eq40}\begin{array}{@{}l}
\displaystyle
\left[{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{1}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{1}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{1}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}}, \: \right.
\
\
\displaystyle
\left.{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{2}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{2}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{2}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{2}}}}\right] 
(40)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
Ykji*Ui*Vj

\label{eq41}\begin{array}{@{}l}
\displaystyle
\left[{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{1}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{1}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{1}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}}, \: \right.
\
\
\displaystyle
\left.{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{2}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{2}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{2}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{2}}}}\right] 
(41)
Type: CartesianTensor?(1,2,Expression(Integer))