login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxFrobeniusAlgebra revision 12 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Editor: Bill Page
Time: 2011/02/14 15:12:09 GMT-8
Note: Jacobi identity

added:

The Jacobi identity requires the following tensor to be zero::

  2    3 6   2 5    6   2 6  3   
   \  / /     \ \  /     \ \/   
    \/ /       \ \/       \/\   
     \/    -    \/    -    \/   
      \         /           \   
       4       1             4  

\begin{axiom}
BA := AA - reindex(contract(Y,1,Y,2),[3,1,4,2]); ravel(BA)
BB:=groebner(ravel(BA));
#BB
\end{axiom}


An n-dimensional algebra is represented by a (1,2)-tensor Y=\{ {y_k}^{ji} \} \ i,j,k =1,2, ... n viewed as an operator with two inputs i,j and one output k. For example in 2 dimensions

axiom
)library DEXPR
DistributedExpression is now explicitly exposed in frame initial DistributedExpression will be automatically loaded when needed from /var/zope2/var/LatexWiki/DEXPR.NRLIB/DEXPR n:=2

\label{eq1}2(1)
Type: PositiveInteger?
axiom
--T:=CartesianTensor(1,n,DEXPR INT)
T:=CartesianTensor(1,n,HDMP(concat[concat concat
  [[[script(y,[[k],[j,i]])
    for i in 1..n]
      for j in 1..n]
        for k in 1..n],
          [script(u,[[i]]) for i in 1..n],
            [script(v,[[i]]) for i in 1..n] ],FRAC
INT))

\label{eq2}\hbox{\axiomType{CartesianTensor}\ } (1, 2, \hbox{\axiomType{HomogeneousDistributedMultivariatePolynomial}\ } ([ <em> 012 y 111, </em> 012 y 112, <em> 012 y 121, </em> 012 y 122, <em> 012 y 211, </em> 012 y 212, <em> 012 y 221, </em> 012 y 222, <em> 01 u 1, </em> 01 u 2, <em> 01 v 1, </em> 01 v 2 ] , \hbox{\axiomType{Fraction}\ } (\hbox{\axiomType{Integer}\ })))(2)
Type: Domain
axiom
Y:=unravel(concat concat
  [[[script(y,[[k],[j,i]])
    for i in 1..n]
      for j in 1..n]
        for k in 1..n]
          )$T

\label{eq3}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cc}
{y_{1}^{1, \: 1}}&{y_{1}^{1, \: 2}}
\
{y_{1}^{2, \: 1}}&{y_{1}^{2, \: 2}}
(3)
Type: CartesianTensor?(1,2,HomogeneousDistributedMultivariatePolynomial?([*012y111,*012y112,*012y121,*012y122,*012y211,*012y212,*012y221,*012y222,*01u1,*01u2,*01v1,*01v2],Fraction(Integer)))

Given two vectors U=\{ u_i \} and V=\{ v_j \}

axiom
U:=unravel([script(u,[[i]]) for i in 1..n])$T

\label{eq4}\left[{u_{1}}, \:{u_{2}}\right](4)
Type: CartesianTensor?(1,2,HomogeneousDistributedMultivariatePolynomial?([*012y111,*012y112,*012y121,*012y122,*012y211,*012y212,*012y221,*012y222,*01u1,*01u2,*01v1,*01v2],Fraction(Integer)))
axiom
V:=unravel([script(v,[[i]]) for i in 1..n])$T

\label{eq5}\left[{v_{1}}, \:{v_{2}}\right](5)
Type: CartesianTensor?(1,2,HomogeneousDistributedMultivariatePolynomial?([*012y111,*012y112,*012y121,*012y122,*012y211,*012y212,*012y221,*012y222,*01u1,*01u2,*01v1,*01v2],Fraction(Integer)))

the tensor Y operates on their tensor product to yield a vector W=\{ w_k = {y_k}^{ji} u_i v_j \}

axiom
W:=contract(contract(Y,3,product(U,V),1),2,3)

\label{eq6}\begin{array}{@{}l}
\displaystyle
\left[{{{y_{1}^{1, \: 1}}\ {u_{1}}\ {v_{1}}}+{{y_{1}^{1, \: 2}}\ {u_{2}}\ {v_{1}}}+{{y_{1}^{2, \: 1}}\ {u_{1}}\ {v_{2}}}+{{y_{1}^{2, \: 2}}\ {u_{2}}\ {v_{2}}}}, \: \right.
\
\
\displaystyle
\left.{{{y_{2}^{1, \: 1}}\ {u_{1}}\ {v_{1}}}+{{y_{2}^{1, \: 2}}\ {u_{2}}\ {v_{1}}}+{{y_{2}^{2, \: 1}}\ {u_{1}}\ {v_{2}}}+{{y_{2}^{2, \: 2}}\ {u_{2}}\ {v_{2}}}}\right] 
(6)
Type: CartesianTensor?(1,2,HomogeneousDistributedMultivariatePolynomial?([*012y111,*012y112,*012y121,*012y122,*012y211,*012y212,*012y221,*012y222,*01u1,*01u2,*01v1,*01v2],Fraction(Integer)))

Diagram:

  U   V
  2i  3j
   \ /
    |
    1k
    W

or in a more convenient notation:

axiom
W:=(Y*U)*V

\label{eq7}\begin{array}{@{}l}
\displaystyle
\left[{{{y_{1}^{1, \: 1}}\ {u_{1}}\ {v_{1}}}+{{y_{1}^{1, \: 2}}\ {u_{2}}\ {v_{1}}}+{{y_{1}^{2, \: 1}}\ {u_{1}}\ {v_{2}}}+{{y_{1}^{2, \: 2}}\ {u_{2}}\ {v_{2}}}}, \: \right.
\
\
\displaystyle
\left.{{{y_{2}^{1, \: 1}}\ {u_{1}}\ {v_{1}}}+{{y_{2}^{1, \: 2}}\ {u_{2}}\ {v_{1}}}+{{y_{2}^{2, \: 1}}\ {u_{1}}\ {v_{2}}}+{{y_{2}^{2, \: 2}}\ {u_{2}}\ {v_{2}}}}\right] 
(7)
Type: CartesianTensor?(1,2,HomogeneousDistributedMultivariatePolynomial?([*012y111,*012y112,*012y121,*012y122,*012y211,*012y212,*012y221,*012y222,*01u1,*01u2,*01v1,*01v2],Fraction(Integer)))

The algebra Y is commutative if the following tensor (the commutator) is zero

axiom
K:=Y-reindex(Y,[1,3,2])

\label{eq8}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cc}
0 &{{y_{1}^{1, \: 2}}-{y_{1}^{2, \: 1}}}
\
{-{y_{1}^{1, \: 2}}+{y_{1}^{2, \: 1}}}& 0 
(8)
Type: CartesianTensor?(1,2,HomogeneousDistributedMultivariatePolynomial?([*012y111,*012y112,*012y121,*012y122,*012y211,*012y212,*012y221,*012y222,*01u1,*01u2,*01v1,*01v2],Fraction(Integer)))

A basis for the ideal defined by the coefficients of the commutator is given by:

axiom
C:=groebner(ravel(K))

\label{eq9}\left[{{y_{1}^{1, \: 2}}-{y_{1}^{2, \: 1}}}, \:{{y_{2}^{1, \: 2}}-{y_{2}^{2, \: 1}}}\right](9)
Type: List(HomogeneousDistributedMultivariatePolynomial?([*012y111,*012y112,*012y121,*012y122,*012y211,*012y212,*012y221,*012y222,*01u1,*01u2,*01v1,*01v2],Fraction(Integer)))

An algebra is associative if:

  Y I  =  I Y
   Y       Y

  Note: right figure is mirror image of left!

  2  3 6   2 5  6      2  3  4
   \/ /     \ \/        \ | /
    \/   =   \/    =     \|/
     \       /            |
      4     1             1

In other words an algebra is associative if and only if the following (3,1)-tensor A=\{ {a_s}^{kji} =  {y_s}^{kr} {y_r}^{ji} - {y_r}^{kj} {y_s}^{ri} \} is zero.

axiom
test(Y*Y = contract(product(Y,Y),3,4))

\label{eq10} \mbox{\rm true} (10)
Type: Boolean
axiom
test(Y*Y = contract(Y,3,Y,1))

\label{eq11} \mbox{\rm true} (11)
Type: Boolean
axiom
test(reindex(reindex(Y,[1,3,2])*reindex(Y,[1,3,2]),[1,4,3,2]) =
reindex(contract(product(Y,Y),1,5),[3,1,2,4]))

\label{eq12} \mbox{\rm true} (12)
Type: Boolean
axiom
test(reindex(reindex(Y,[1,3,2])*reindex(Y,[1,3,2]),[1,4,3,2])=reindex(contract(Y,1,Y,2),[3,1,2,4]))

\label{eq13} \mbox{\rm true} (13)
Type: Boolean
axiom
AA := reindex(contract(Y,1,Y,2),[3,1,2,4])-Y*Y; ravel(AA)

\label{eq14}\begin{array}{@{}l}
\displaystyle
\left[{-{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 1}}}+{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 1}}}}, \:{{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}-{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 2}}}}, \right.
\
\
\displaystyle
\left.\:{{{y_{1}^{1, \: 1}}\ {y_{1}^{1, \: 2}}}-{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 1}}}+{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 2}}}-{{y_{1}^{1, \: 2}}\ {y_{2}^{2, \: 1}}}}, \: \right.
\
\
\displaystyle
\left.{{{y_{1}^{1, \: 2}}^2}-{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 2}}}+{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 2}}}-{{y_{1}^{1, \: 2}}\ {y_{2}^{2, \: 2}}}}, \: \right.
\
\
\displaystyle
\left.{-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}+{{y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 1}}}}, \: \right.
\
\
\displaystyle
\left.{-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 2}}}+{{y_{1}^{2, \: 2}}\ {y_{2}^{2, \: 1}}}}, \: \right.
\
\
\displaystyle
\left.{-{{y_{1}^{2, \: 1}}^2}+{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 2}}}-{{y_{1}^{2, \: 2}}\ {y_{2}^{2, \: 1}}}+{{y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 2}}}}, \: \right.
\
\
\displaystyle
\left.{{{y_{1}^{1, \: 2}}\ {y_{1}^{2, \: 2}}}-{{y_{1}^{2, \: 1}}\ {y_{1}^{2, \: 2}}}}, \:{-{{y_{2}^{1, \: 1}}\ {y_{2}^{1, \: 2}}}+{{y_{2}^{1, \: 1}}\ {y_{2}^{2, \: 1}}}}, \right.
\
\
\displaystyle
\left.\:{-{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 1}}}+{{y_{1}^{1, \: 1}}\ {y_{2}^{1, \: 2}}}-{{y_{2}^{1, \: 2}}^2}+{{y_{2}^{1, \: 1}}\ {y_{2}^{2, \: 2}}}}, \: \right.
\
\
\displaystyle
\left.{{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 1}}}-{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 1}}}}, \:{-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}+{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 2}}}}, \right.
\
\
\displaystyle
\left.\:{{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 1}}}-{{y_{1}^{1, \: 1}}\ {y_{2}^{2, \: 1}}}+{{y_{2}^{2, \: 1}}^2}-{{y_{2}^{1, \: 1}}\ {y_{2}^{2, \: 2}}}}, \: \right.
\
\
\displaystyle
\left.{{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 2}}}-{{y_{1}^{1, \: 2}}\ {y_{2}^{2, \: 1}}}-{{y_{2}^{1, \: 2}}\ {y_{2}^{2, \: 2}}}+{{y_{2}^{2, \: 1}}\ {y_{2}^{2, \: 2}}}}, \: \right.
\
\
\displaystyle
\left.{{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}-{{y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 1}}}}, \:{{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 2}}}-{{y_{1}^{2, \: 2}}\ {y_{2}^{2, \: 1}}}}\right] 
(14)
Type: List(HomogeneousDistributedMultivariatePolynomial?([*012y111,*012y112,*012y121,*012y122,*012y211,*012y212,*012y221,*012y222,*01u1,*01u2,*01v1,*01v2],Fraction(Integer)))
axiom
AB:=groebner(ravel(AA))

\label{eq15}\begin{array}{@{}l}
\displaystyle
\left[{
\begin{array}{@{}l}
\displaystyle
{{y_{1}^{1, \: 2}}\ {y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 1}}}-{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 2}}\ {y_{2}^{2, \: 1}}}+{{y_{1}^{2, \: 2}}\ {{y_{2}^{2, \: 1}}^2}}- 
\
\
\displaystyle
{{y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 1}}\ {y_{2}^{2, \: 2}}}
(15)
Type: List(HomogeneousDistributedMultivariatePolynomial?([*012y111,*012y112,*012y121,*012y122,*012y211,*012y212,*012y221,*012y222,*01u1,*01u2,*01v1,*01v2],Fraction(Integer)))
axiom
#AB

\label{eq16}15(16)
Type: PositiveInteger?

The Jacobi identity requires the following tensor to be zero:

  2    3 6   2 5    6   2 6  3   
   \  / /     \ \  /     \ \/   
    \/ /       \ \/       \/\   
     \/    -    \/    -    \/   
      \         /           \   
       4       1             4  

axiom
BA := AA - reindex(contract(Y,1,Y,2),[3,1,4,2]); ravel(BA)

\label{eq17}\begin{array}{@{}l}
\displaystyle
\left[{-{{y_{1}^{1, \: 1}}^2}-{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 1}}}}, \: \right.
\
\
\displaystyle
\left.{-{{y_{1}^{1, \: 1}}\ {y_{1}^{1, \: 2}}}+{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}-{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 2}}}-{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 2}}}}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{-{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 1}}}-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}+{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 2}}}-{{y_{1}^{1, \: 2}}\ {y_{2}^{2, \: 1}}}}, \right.
\
\
\displaystyle
\left.\:{-{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 2}}}-{{y_{1}^{1, \: 2}}\ {y_{2}^{2, \: 2}}}}, \: \right.
\
\
\displaystyle
\left.{-{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 1}}}-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}}, \: \right.
\
\
\displaystyle
\left.{-{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 2}}}-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 2}}}+{{y_{1}^{2, \: 2}}\ {y_{2}^{2, \: 1}}}-{{y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 2}}}}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{
\begin{array}{@{}l}
\displaystyle
-{{y_{1}^{1, \: 2}}\ {y_{1}^{2, \: 1}}}-{{y_{1}^{2, \: 1}}^2}+{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 2}}}-{2 \ {y_{1}^{2, \: 2}}\ {y_{2}^{2, \: 1}}}+ 
\
\
\displaystyle
{{y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 2}}}
(17)
Type: List(HomogeneousDistributedMultivariatePolynomial?([*012y111,*012y112,*012y121,*012y122,*012y211,*012y212,*012y221,*012y222,*01u1,*01u2,*01v1,*01v2],Fraction(Integer)))
axiom
BB:=groebner(ravel(BA));
Type: List(HomogeneousDistributedMultivariatePolynomial?([*012y111,*012y112,*012y121,*012y122,*012y211,*012y212,*012y221,*012y222,*01u1,*01u2,*01v1,*01v2],Fraction(Integer)))
axiom
#BB

\label{eq18}24(18)
Type: PositiveInteger?