login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxFrobeniusAlgebra revision 2 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Editor: Bill Page
Time: 2011/02/11 19:58:11 GMT-8
Note: index ordering

changed:
-Y:=unravel(concat concat
Yijk:=unravel(concat concat

changed:
-    for i in 1..n]
    for k in 1..n]

changed:
-        for k in 1..n]
        for i in 1..n]

added:
Y.[1,1,2]
Y.[1,2,1]
Y.[2,1,1]

changed:
-U:=unravel([script(u,[[],[i]]) for i in 1..n])$T
-V:=unravel([script(v,[[],[i]]) for i in 1..n])$T
Ui:=unravel([script(u,[[],[i]]) for i in 1..n])$T
Vj:=unravel([script(v,[[],[i]]) for i in 1..n])$T

changed:
-UV:=product(U,V)
-YUV:=product(Y,UV)
UVij:=product(Ui,Vj)
UVij.[1,2]
UVij.[2,1]
YUV:=product(Yijk,UVij)

changed:
-Y*U*V
contract(contract(YUV,1,4),1,3)
contract(contract(Yijk,1,UVij,1),1,3)

An n-dimensional algebra is represented by a tensor Y=\{ y_{ij}^k \} \ i,j,k =1,2, ... n viewed as an operator with two inputs i,j and one output k.

axiom
n:=2

\label{eq1}2(1)
Type: PositiveInteger?
axiom
T:=CartesianTensor(1,n,EXPR INT)

\label{eq2}\hbox{\axiomType{CartesianTensor}\ } (1, 2, \hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }))(2)
Type: Domain
axiom
Yijk:=unravel(concat concat
  [[[script(y,[[i,j],[k]])
    for k in 1..n]
      for j in 1..n]
        for i in 1..n]
          )$T

\label{eq3}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cc}
{y_{1, \: 1}^{1}}&{y_{1, \: 1}^{2}}
\
{y_{1, \: 2}^{1}}&{y_{1, \: 2}^{2}}
(3)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
Y.[1,1,2]

\label{eq4}Y_{1, \: 1, \: 2}(4)
Type: Symbol
axiom
Y.[1,2,1]

\label{eq5}Y_{1, \: 2, \: 1}(5)
Type: Symbol
axiom
Y.[2,1,1]

\label{eq6}Y_{2, \: 1, \: 1}(6)
Type: Symbol

Given two vectors U and V

axiom
Ui:=unravel([script(u,[[],[i]]) for i in
1..n])$T

\label{eq7}\left[{u^{1}}, \:{u^{2}}\right](7)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
Vj:=unravel([script(v,[[],[i]]) for i in
1..n])$T

\label{eq8}\left[{v^{1}}, \:{v^{2}}\right](8)
Type: CartesianTensor?(1,2,Expression(Integer))

the tensor Y operates on their tensor product

axiom
UVij:=product(Ui,Vj)

\label{eq9}\left[ 
\begin{array}{cc}
{{u^{1}}\ {v^{1}}}&{{u^{1}}\ {v^{2}}}
\
{{u^{2}}\ {v^{1}}}&{{u^{2}}\ {v^{2}}}
(9)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
UVij.[1,2]

\label{eq10}{u^{1}}\ {v^{2}}(10)
Type: Expression(Integer)
axiom
UVij.[2,1]

\label{eq11}{u^{2}}\ {v^{1}}(11)
Type: Expression(Integer)
axiom
YUV:=product(Yijk,UVij)

\label{eq12}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cc}
{\left[ 
\begin{array}{cc}
{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}&{{u^{1}}\ {v^{2}}\ {y_{1, \: 1}^{1}}}
\
{{u^{2}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}&{{u^{2}}\ {v^{2}}\ {y_{1, \: 1}^{1}}}
(12)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
YUV.[1,1,1,1,2]

\label{eq13}{u^{1}}\ {v^{2}}\ {y_{1, \: 1}^{1}}(13)
Type: Expression(Integer)
axiom
YUV.[1,1,1,2,1]

\label{eq14}{u^{2}}\ {v^{1}}\ {y_{1, \: 1}^{1}}(14)
Type: Expression(Integer)
axiom
YUV.[1,1,2,1,1]

\label{eq15}{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{2}}(15)
Type: Expression(Integer)
axiom
YUV.[1,2,1,1,1]

\label{eq16}{u^{1}}\ {v^{1}}\ {y_{1, \: 2}^{1}}(16)
Type: Expression(Integer)
axiom
YUV.[2,1,1,1,1]

\label{eq17}{u^{1}}\ {v^{1}}\ {y_{2, \: 1}^{1}}(17)
Type: Expression(Integer)
axiom
contract(contract(YUV,1,4),1,3)

\label{eq18}\begin{array}{@{}l}
\displaystyle
\left[{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{1}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{1}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{1}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}}, \: \right.
\
\
\displaystyle
\left.{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{2}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{2}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{2}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{2}}}}\right] 
(18)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
contract(contract(Yijk,1,UVij,1),1,3)

\label{eq19}\begin{array}{@{}l}
\displaystyle
\left[{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{1}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{1}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{1}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}}, \: \right.
\
\
\displaystyle
\left.{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{2}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{2}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{2}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{2}}}}\right] 
(19)
Type: CartesianTensor?(1,2,Expression(Integer))