The Algebra of Complex Numbers Is Frobenius In Many Ways
Linear operators over a 2-dimensional vector space representing the algebra of complex numbers
Ref:
We need the Axiom LinearOperator? library.
axiom
)library CARTEN MONAL PROP LIN CALEY
CartesianTensor is now explicitly exposed in frame initial
CartesianTensor will be automatically loaded when needed from
/var/zope2/var/LatexWiki/CARTEN.NRLIB/CARTEN
Monoidal is now explicitly exposed in frame initial
Monoidal will be automatically loaded when needed from
/var/zope2/var/LatexWiki/MONAL.NRLIB/MONAL
Prop is now explicitly exposed in frame initial
Prop will be automatically loaded when needed from
/var/zope2/var/LatexWiki/PROP.NRLIB/PROP
LinearOperator is now explicitly exposed in frame initial
LinearOperator will be automatically loaded when needed from
/var/zope2/var/LatexWiki/LIN.NRLIB/LIN
CaleyDickson is now explicitly exposed in frame initial
CaleyDickson will be automatically loaded when needed from
/var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY
Use the following macros for convenient notation
axiom
-- summation
macro Σ(x,i,n)==reduce(+,[x for i in n])
Type: Void
axiom
-- list
macro Ξ(f,i,n)==[f for i in n]
Type: Void
axiom
-- subscript
macro sb == subscript
Type: Void
𝐋 is the domain of 2-dimensional linear operators over the rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.
axiom
dim:=2
axiom
macro ℒ == List
Type: Void
axiom
macro ℂ == CaleyDickson
Type: Void
axiom
macro ℚ == Expression Integer
Type: Void
axiom
𝐋 := LinearOperator(dim, OVAR [], ℚ)
Type: Type
axiom
𝐞:ℒ 𝐋 := basisVectors()
Type: List(LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer)))
axiom
𝐝:ℒ 𝐋 := basisForms()
Type: List(LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer)))
axiom
o:𝐋:=1 -- identity for product
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
I:𝐋:=[1] -- identity for composition
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
X:𝐋:=[2,1] -- twist
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
Now generate structure constants for Quaternion Algebra
The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.
Split-complex can be specified by Caley-Dickson parameter (q0 = -1)
axiom
q0:=sb('q,[0])
Type: Symbol
axiom
--q0:=1 -- split-complex
QQ := ℂ(ℚ,'i,q0);
Type: Type
Basis: Each B.i is a quaternion number
axiom
B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ)
Type: List(CaleyDickson
?(Expression(Integer),
i,
*01q(0)))
axiom
-- Multiplication table:
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)
Type: Matrix(CaleyDickson
?(Expression(Integer),
i,
*01q(0)))
axiom
-- Function to divide the matrix entries by a basis element
S(y) == map(x +-> real(x/y),M)
Type: Void
axiom
-- The result is a nested list
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ
axiom
Compiling function S with type CaleyDickson(Expression(Integer),i,
*01q(0)) -> Matrix(Expression(Integer))
Type: List(List(List(Expression(Integer))))
axiom
-- structure constants form a tensor operator
Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim)
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
arity Y
Type: Prop(LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer)))
axiom
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)
Type: Matrix(LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer)))
Multiplication of arbitrary quaternions and
axiom
a:=Σ(sb('a,[i])*𝐞.i, i,1..dim)
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
b:=Σ(sb('b,[i])*𝐞.i, i,1..dim)
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
(a*b)/Y
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
A scalar product is denoted by the (2,0)-tensor
axiom
U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim)
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
Definition 1
We say that the scalar product is associative if the tensor
equation holds:
Y = Y
U U
In other words, if the (3,0)-tensor:
(three-point function) is zero.
Using the LinearOperator? domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.
axiom
ω:𝐋 :=
o Y I /
o U -
o I Y /
o U o
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
Note: The only purpose of the o symbols on the left above is to serve as a constant left-side margin as required by Axiom. The symbols on the right describe the relation between row.
Definition 2
An algebra with a non-degenerate associative scalar product
is called a [Frobenius Algebra]?.
We may consider the problem where multiplication Y is given,
and look for all associative scalar products
This problem can be solved using linear algebra.
axiom
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame
initial
J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);
Type: Matrix(Expression(Integer))
axiom
u := transpose matrix [concat map(variables,ravel U)::ℒ Symbol];
Type: Matrix(Polynomial(Integer))
axiom
J::OutputForm * u::OutputForm = 0
Type: Equation(OutputForm
?)
axiom
nrows(J),ncols(J)
Type: Tuple(PositiveInteger
?)
The matrix J
transforms the coefficients of the tensor
into coefficients of the tensor . We are looking for
the general linear family of tensors such that
J
transforms into for any such .
If the null space of the J
matrix is not empty we can use
the basis to find all non-trivial solutions for U:
axiom
Ñ:=nullSpace(J)
Type: List(Vector(Expression(Integer)))
axiom
ℰ:=map((x,y)+->x=y, concat
map(variables,ravel U), entries Σ(sb('p,[i])*Ñ.i, i,1..#Ñ) )
Type: List(Equation(Expression(Integer)))
This defines a family of pre-Frobenius algebras:
axiom
zero? eval(ω,ℰ)
Type: Boolean
In two dimensions the pairing is necessarily symmetric!
axiom
Ų:𝐋 := eval(U,ℰ)
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
matrix Ξ(Ξ((𝐞.i 𝐞.j)/Ų, i,1..dim), j,1..dim)
Type: Matrix(LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer)))
This is the most general form of the "dot product" of two
complex numbers
axiom
(a*b)/Ų
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
(a*a)/Ų
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
The scalar product must be non-degenerate:
axiom
Ů:=determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ų), j,1..dim), i,1..dim)
Type: Expression(Integer)
axiom
factor Ů
Type: Factored(Expression(Integer))
Definition 3
Co-pairing
Solve the [Snake Relation]? as a system of linear equations.
axiom
Ω:𝐋:=Σ(Σ(script('u,[[i,j]])*𝐞.i*𝐞.j, i,1..dim), j,1..dim)
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
d1:=(I*Ω)/(Ų*I);
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
d2:=(Ω*I)/(I*Ų);
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
equate(f,g)==map((x,y)+->(x=y),ravel f, ravel g);
Type: Void
axiom
eq1:=equate(d1,I);
axiom
Compiling function equate with type (LinearOperator(2,
OrderedVariableList([]),Expression(Integer)),LinearOperator(2,
OrderedVariableList([]),Expression(Integer))) -> List(Equation(
Expression(Integer)))
Type: List(Equation(Expression(Integer)))
axiom
eq2:=equate(d2,I);
Type: List(Equation(Expression(Integer)))
axiom
snake:=solve(concat(eq1,eq2),concat Ξ(Ξ(script('u,[[i,j]]), i,1..dim), j,1..dim));
Type: List(List(Equation(Expression(Integer))))
axiom
if #snake ~= 1 then error "no solution"
Type: Void
axiom
Ω:=eval(Ω,snake(1))
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
matrix Ξ(Ξ(Ω/(𝐝.i*𝐝.j), i,1..dim), j,1..dim)
Type: Matrix(LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer)))
Check "dimension" and the snake relations.
axiom
d:𝐋:=
o Ω /
o X /
o Ų o
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
test
( I Ω ) /
( Ų I ) = I
Type: Boolean
axiom
test
( Ω I ) /
( I Ų ) = I
Type: Boolean
Definition 4
Co-algebra
Compute the "three-point" function and use it to define co-multiplication.
axiom
W:=(Y,I)/Ų
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
λ:=(Ω,I,Ω)/(I,W,I)
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
test
( I Ω ) /
( Y I ) = λ
Type: Boolean
axiom
test
( Ω I ) /
( I Y ) = λ
Type: Boolean
Frobenius Condition
axiom
Χ :=
Y /
λ
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
test
( λ I ) /
( I Y ) = Χ
Type: Boolean
axiom
test
( I λ ) /
( Y I ) = Χ
Type: Boolean
i = Unit of the algebra
axiom
i:=𝐞.1
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
test
o i /
o λ = Ω
Type: Boolean
Handle
axiom
H:𝐋 :=
λ /
X /
Y
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
Definition 5
Co-unit
i
U
axiom
ι:𝐋:=
o i I /
o Ų o
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
Y=U
ι
axiom
test
o Y /
o ι o = Ų
Type: Boolean
For example:
axiom
ex1:=[q[0]=1,p[1]=0,p[2]=1]
Type: List(Equation(Polynomial(Integer)))
axiom
Ų0:𝐋 :=eval(Ų,ex1)
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
Ω0:𝐋 :=eval(Ω,ex1)$𝐋
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
λ0:𝐋 :=eval(λ,ex1)$𝐋
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
H0:𝐋 :=eval(H,ex1)$𝐋
Type: LinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))