Sedenion Algebra is Frobenius in just one way!
Linear operators over a 16-dimensional vector space representing
Sedenion Algebra
Ref:
We need the Axiom LinearOperator library.
fricas
(1) -> )library CARTEN MONAL PROP LOP CALEY
CartesianTensor is now explicitly exposed in frame initial
CartesianTensor will be automatically loaded when needed from
/var/aw/var/LatexWiki/CARTEN.NRLIB/CARTEN
Monoidal is now explicitly exposed in frame initial
Monoidal will be automatically loaded when needed from
/var/aw/var/LatexWiki/MONAL.NRLIB/MONAL
Prop is now explicitly exposed in frame initial
Prop will be automatically loaded when needed from
/var/aw/var/LatexWiki/PROP.NRLIB/PROP
LinearOperator is now explicitly exposed in frame initial
LinearOperator will be automatically loaded when needed from
/var/aw/var/LatexWiki/LOP.NRLIB/LOP
CaleyDickson is now explicitly exposed in frame initial
CaleyDickson will be automatically loaded when needed from
/var/aw/var/LatexWiki/CALEY.NRLIB/CALEY
Use the following macros for convenient notation
fricas
-- summation
macro Σ(x,i,n)==reduce(+,[x for i in n])
Type: Void
fricas
-- subscript
macro sb == subscript
Type: Void
ℒ is the domain of 16-dimensional linear operators over the rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.
fricas
dim:=16
fricas
macro ℂ == CaleyDickson
Type: Void
fricas
macro ℚ == Expression Integer
Type: Void
fricas
ℒ := LinearOperator(OVAR ['0,'1,'2,'3,'4,'5,'6,'7,'8,'9,'10,'11,'12,'13,'14,'15], ℚ)
Type: Type
fricas
ⅇ:List ℒ := basisOut()
Type: List(
LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer)))
fricas
ⅆ:List ℒ := basisIn()
Type: List(
LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer)))
fricas
I:ℒ:=[1]; -- identity for composition
Type: LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer))
fricas
X:ℒ:=[2,1]; -- twist
Type: LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer))
Now generate structure constants for Sedenion Algebra
The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.
Split-complex, co-quaternions, split-octonions and seneions can be specified by Caley-Dickson parameters
fricas
--q0:=sb('q,[0])
q0:=1 -- not split-complex
fricas
--q1:=sb('q,[1])
q1:=1 -- not co-quaternion
fricas
--q2:=sb('q,[2])
q2:=1 -- not split-octonion
fricas
--q3:=sb('q,[3])
q3:=1 -- not split-sedennion
fricas
QQ := ℂ(ℂ(ℂ(ℂ(ℚ,'i,q0),'j,q1),'k,q2),'l,q3);
Type: Type
Basis: Each B.i is a sedennion number
fricas
B:List QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::List List ℚ)
fricas
-- Multiplication table:
M:Matrix QQ := matrix [[B.i*B.j for i in 1..dim] for j in 1..dim]
fricas
-- Function to divide the matrix entries by a basis element
S(y) == map(x +-> real real real real(x/y),M)
Type: Void
fricas
-- The result is a nested list
ѕ :=map(S,B)::List List List ℚ;
fricas
Compiling function S with type CaleyDickson(CaleyDickson(
CaleyDickson(CaleyDickson(Expression(Integer),i,1),j,1),k,1),l,1)
-> Matrix(Expression(Integer))
Type: List(List(List(Expression(Integer))))
fricas
-- structure constants form a tensor operator
Y := Σ(Σ(Σ(ѕ(i)(k)(j)*ⅇ.i*ⅆ.j*ⅆ.k, i,1..dim), j,1..dim), k,1..dim);
Type: LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer))
fricas
arity Y
Type: Prop(
LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer)))
fricas
matrix [[(ⅇ.i*ⅇ.j)/Y for i in 1..dim] for j in 1..dim]
Type: Matrix(
LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer)))
A scalar product is denoted by the (2,0)-tensor
fricas
U:=Σ(Σ(script('u,[[],[i,j]])*ⅆ.i*ⅆ.j, i,1..dim), j,1..dim);
Type: LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer))
Definition 1
We say that the scalar product is associative if the tensor
equation holds:
Y = Y
U U
In other words, if the (3,0)-tensor:
(three-point function) is zero.
Using the LinearOperator domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.
fricas
ω:ℒ :=(Y*I)/U - (I*Y)/U;
Type: LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer))
Definition 2
An algebra with a non-degenerate associative scalar product
is called a [Frobenius Algebra]?.
We may consider the problem where multiplication Y is given,
and look for all associative scalar products
This problem can be solved using linear algebra.
fricas
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame
initial
J := jacobian(ravel ω,concat map(variables,ravel U)::List Symbol);
Type: Matrix(Expression(Integer))
fricas
--u := transpose matrix [concat map(variables,ravel U)::List Symbol];
--J::OutputForm * u::OutputForm = 0
nrows(J),ncols(J)
Type: Tuple(PositiveInteger
?)
The matrix J
transforms the coefficients of the tensor
into coefficients of the tensor
. We are looking for
the general linear family of tensors
such that
J
transforms
into
for any such
.
If the null space of the J
matrix is not empty we can use
the basis to find all non-trivial solutions for U:
fricas
Ñ:=nullSpace(J);
Type: List(Vector(Expression(Integer)))
fricas
ℰ:=map((x,y)+->x=y, concat
map(variables,ravel U), entries Σ(sb('p,[i])*Ñ.i, i,1..#Ñ) )
Type: List(Equation(Expression(Integer)))
This defines a family of Frobenius algebras:
fricas
zero? eval(ω,ℰ)
Type: Boolean
The pairing is necessarily diagonal!
fricas
Ų:ℒ := eval(U,ℰ)
Type: LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer))
fricas
matrix [[(ⅇ.i ⅇ.j)/Ų for i in 1..dim] for j in 1..dim]
Type: Matrix(
LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer)))
The scalar product must be non-degenerate:
fricas
Ů:=determinant [[retract((ⅇ.i * ⅇ.j)/Ų) for j in 1..dim] for i in 1..dim]
Type: Expression(Integer)
fricas
factor Ů
Type: Factored(Expression(Integer))
Definition 3
Co-pairing
Solve the Snake Relation as a system of linear equations.
fricas
Um:=matrix [[(ⅇ.i*ⅇ.j)/Ų for i in 1..dim] for j in 1..dim];
Type: Matrix(
LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer)))
fricas
mU:=transpose inverse map(retract,Um);
Type: Matrix(Expression(Integer))
fricas
Ω:=Σ(Σ(mU(i,j)*(ⅇ.i*ⅇ.j), i,1..dim), j,1..dim)
Type: LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer))
fricas
matrix [[Ω/(ⅆ.i*ⅆ.j) for i in 1..dim] for j in 1..dim]
Type: Matrix(
LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer)))
Check "dimension" and the snake relations.
fricas
d:ℒ:=
Ω /
X /
Ų
Type: LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer))
fricas
test
( I Ω ) /
( Ų I ) = I
Type: Boolean
fricas
test
( Ω I ) /
( I Ų ) = I
Type: Boolean
Definition 4
Co-algebra
Compute the "three-point" function and use it to define co-multiplication.
Too slow:
\begin{axiom}
W:=(Y,I)/Ų;
λ:=(Ω,I,Ω)/(I,W,I)
\end{axiom}
fricas
λ:= (I,Ω) / (Y,I)
Type: LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer))
fricas
test( (Ω,I) / (I,Y) = λ )
Type: Boolean
Frobenius Condition
Like Octonion algebra Sedenion algebra also fails the Frobenius
Condition!
Too slow to complete here:
\begin{axiom}
Χ := Y / λ ;
Χr := (λ,I)/(I,Y)
test(Χr = Χ )
Χl := (I,λ)/(Y,I);
--test( Χl = Χ )
test( Χr = Χl )
\end{axiom}
Perhaps this is not too surprising since like Octonion Seden
algebra is non-associative (in fact also non-alternative).
Nevertheless Sedenions are "Frobenius" in a more general sense
just because there is a non-degenerate associative pairing.
i = Unit of the algebra
fricas
i:=ⅇ.1
Type: LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer))
fricas
test
i /
λ = Ω
Type: Boolean
Handle
fricas
H:ℒ :=
λ /
X /
Y
Type: LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer))
Definition 5
Co-unit
i
U
fricas
ι:ℒ:=
( i I ) /
( Ų )
Type: LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer))
Y=U
ι
fricas
test
Y /
ι = Ų
Type: Boolean
For example:
fricas
ex1:=[q[3]=1,p[1]=1]
Type: List(Equation(Polynomial(Integer)))
fricas
Ų0:ℒ :=eval(Ų,ex1)
Type: LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer))
fricas
Ω0:ℒ :=eval(Ω,ex1)$ℒ
Type: LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer))
fricas
λ0:ℒ :=eval(λ,ex1)$ℒ
Type: LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer))
fricas
H0:ℒ :=eval(H,ex1)$ℒ
Type: LinearOperator(
OrderedVariableList([0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15]),
Expression(Integer))