login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox Sedenion Algebra is Frobenius In Just One Way revision 3 of 5

1 2 3 4 5
Editor: Bill Page
Time: 2011/04/27 20:28:22 GMT-7
Note: update

changed:
-q3:=sb('q,[3])
---q3:=1  -- split-sedennion
--q3:=sb('q,[3])
q3:=1  -- not split-sedennion

changed:
-\begin{axiom}
-W:=(Y,I)/Ų;
---λ:=(Ω,I,Ω)/(I,W,I)
-\end{axiom}
-
-\begin{axiom}

Too slow::

  !\begin{axiom}
  W:=(Y,I)/Ų;
  λ:=(Ω,I,Ω)/(I,W,I)
  \end{axiom}

\begin{axiom}

changed:
-test( (Ω,I) / (I,Y) = λ)
-
-\end{axiom}
test( (Ω,I) / (I,Y) = λ )

\end{axiom}

changed:
-Slow:
-
-\begin{axiom}
-
-Χ := Y / λ ;
-
-Χr := (λ,I)/(I,Y)
-test(Χr = Χ )
-
-Χl := (I,λ)/(Y,I);
---test( Χl = Χ )
-test( Χr = Χl )
-
-\end{axiom}
Too slow to complete here::

  !\begin{axiom}

  Χ := Y / λ ;

  Χr := (λ,I)/(I,Y)
  test(Χr = Χ )

  Χl := (I,λ)/(Y,I);
  --test( Χl = Χ )
  test( Χr = Χl )

  \end{axiom}

Sedenion Algebra is Frobenius in just one way!

Linear operators over a 16-dimensional vector space representing Sedenion Algebra

Ref:

We need the Axiom LinearOperator? library.

axiom
)library CARTEN MONAL PROP LIN CALEY
CartesianTensor is now explicitly exposed in frame initial CartesianTensor will be automatically loaded when needed from /var/zope2/var/LatexWiki/CARTEN.NRLIB/CARTEN Monoidal is now explicitly exposed in frame initial Monoidal will be automatically loaded when needed from /var/zope2/var/LatexWiki/MONAL.NRLIB/MONAL Prop is now explicitly exposed in frame initial Prop will be automatically loaded when needed from /var/zope2/var/LatexWiki/PROP.NRLIB/PROP LinearOperator is now explicitly exposed in frame initial LinearOperator will be automatically loaded when needed from /var/zope2/var/LatexWiki/LIN.NRLIB/LIN CaleyDickson is now explicitly exposed in frame initial CaleyDickson will be automatically loaded when needed from /var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY

Use the following macros for convenient notation

axiom
-- summation
macro Σ(x,i,n)==reduce(+,[x for i in n])
Type: Void
axiom
-- list
macro Ξ(f,i,n)==[f for i in n]
Type: Void
axiom
-- subscript
macro sb == subscript
Type: Void

𝐋 is the domain of 16-dimensional linear operators over the rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.

axiom
dim:=16

\label{eq1}16(1)
Type: PositiveInteger?
axiom
macro ℒ == List
Type: Void
axiom
macro ℂ == CaleyDickson
Type: Void
axiom
macro ℚ == Expression Integer
Type: Void
axiom
𝐋 := LinearOperator(dim, OVAR [], ℚ)

\label{eq2}\hbox{\axiomType{LinearOperator}\ } (16, \hbox{\axiomType{OrderedVariableList}\ } ([ ]) , \hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }))(2)
Type: Type
axiom
𝐞:ℒ 𝐋      := basisVectors()

\label{eq3}\left[{|_{1}}, \:{|_{2}}, \:{|_{3}}, \:{|_{4}}, \:{|_{5}}, \:{|_{6}}, \:{|_{7}}, \:{|_{8}}, \:{|_{9}}, \:{|_{10}}, \:{|_{11}}, \:{|_{12}}, \:{|_{13}}, \:{|_{14}}, \:{|_{15}}, \:{|_{16}}\right](3)
Type: List(LinearOperator?(16,OrderedVariableList?([]),Expression(Integer)))
axiom
𝐝:ℒ 𝐋      := basisForms()

\label{eq4}\begin{array}{@{}l}
\displaystyle
\left[{|_{\ }^{1}}, \:{|_{\ }^{2}}, \:{|_{\ }^{3}}, \:{|_{\ }^{4}}, \:{|_{\ }^{5}}, \:{|_{\ }^{6}}, \:{|_{\ }^{7}}, \:{|_{\ }^{8}}, \:{|_{\ }^{9}}, \:{|_{\ }^{10}}, \:{|_{\ }^{11}}, \:{|_{\ }^{12}}, \:{|_{\ }^{13}}, \:{|_{\ }^{14}}, \: \right.
\
\
\displaystyle
\left.{|_{\ }^{15}}, \:{|_{\ }^{16}}\right] 
(4)
Type: List(LinearOperator?(16,OrderedVariableList?([]),Expression(Integer)))
axiom
I:𝐋:=[1];   -- identity for composition
Type: LinearOperator?(16,OrderedVariableList?([]),Expression(Integer))
axiom
X:𝐋:=[2,1]; -- twist
Type: LinearOperator?(16,OrderedVariableList?([]),Expression(Integer))

Now generate structure constants for Sedenion Algebra

The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.

Split-complex, co-quaternions, split-octonions and seneions can be specified by Caley-Dickson parameters

axiom
--q0:=sb('q,[0])
q0:=1  -- not split-complex

\label{eq5}1(5)
Type: PositiveInteger?
axiom
--q1:=sb('q,[1])
q1:=1  -- not co-quaternion

\label{eq6}1(6)
Type: PositiveInteger?
axiom
--q2:=sb('q,[2])
q2:=1  -- not split-octonion

\label{eq7}1(7)
Type: PositiveInteger?
axiom
--q3:=sb('q,[3])
q3:=1  -- not split-sedennion

\label{eq8}1(8)
Type: PositiveInteger?
axiom
QQ := ℂ(ℂ(ℂ(ℂ(ℚ,'i,q0),'j,q1),'k,q2),'l,q3);
Type: Type

Basis: Each B.i is a sedennion number

axiom
B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ)

\label{eq9}\left[ 1, \: i , \: j , \:{ij}, \: k , \:{ik}, \:{jk}, \:{{ij}k}, \: l , \:{il}, \:{jl}, \:{{ij}l}, \:{kl}, \:{{ik}l}, \:{{jk}l}, \:{{{ij}k}l}\right](9)
Type: List(CaleyDickson?(CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),k,1),l,1))
axiom
-- Multiplication table:
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)

\label{eq10}\left[ 
\begin{array}{cccccccccccccccc}
1 & i & j &{ij}& k &{ik}&{jk}&{{ij}k}& l &{il}&{jl}&{{ij}l}&{kl}&{{ik}l}&{{jk}l}&{{{ij}k}l}
\
i & - 1 & -{ij}& j &{- ik}& k &{{ij}k}& -{jk}&{- il}& l &{{ij}l}&{- jl}&{{ik}l}& -{kl}&{{-{ij}k}l}&{{jk}l}
\
j &{ij}& - 1 & - i & -{jk}&{-{ij}k}& k &{ik}&{- jl}&{-{ij}l}& l &{il}&{{jk}l}&{{{ij}k}l}& -{kl}&{{- ik}l}
\
{ij}& - j & i & - 1 &{-{ij}k}&{jk}&{- ik}& k &{-{ij}l}&{jl}&{- il}& l &{{{ij}k}l}&{-{jk}l}&{{ik}l}& -{kl}
\
k &{ik}&{jk}&{{ij}k}& - 1 & - i & - j & -{ij}& -{kl}&{{- ik}l}&{-{jk}l}&{{-{ij}k}l}& l &{il}&{jl}&{{ij}l}
\
{ik}& - k &{{ij}k}& -{jk}& i & - 1 &{ij}& - j &{{- ik}l}&{kl}&{{-{ij}k}l}&{{jk}l}&{- il}& l &{-{ij}l}&{jl}
\
{jk}&{-{ij}k}& - k &{ik}& j & -{ij}& - 1 & i &{-{jk}l}&{{{ij}k}l}&{kl}&{{- ik}l}&{- jl}&{{ij}l}& l &{- il}
\
{{ij}k}&{jk}&{- ik}& - k &{ij}& j & - i & - 1 &{{-{ij}k}l}&{-{jk}l}&{{ik}l}&{kl}&{-{ij}l}&{- jl}&{il}& l 
\
l &{il}&{jl}&{{ij}l}&{kl}&{{ik}l}&{{jk}l}&{{{ij}k}l}& - 1 & - i & - j & -{ij}& - k &{- ik}& -{jk}&{-{ij}k}
\
{il}& - l &{{ij}l}&{- jl}&{{ik}l}& -{kl}&{{-{ij}k}l}&{{jk}l}& i & - 1 &{ij}& - j &{ik}& - k &{-{ij}k}&{jk}
\
{jl}&{-{ij}l}& - l &{il}&{{jk}l}&{{{ij}k}l}& -{kl}&{{- ik}l}& j & -{ij}& - 1 & i &{jk}&{{ij}k}& - k &{- ik}
\
{{ij}l}&{jl}&{- il}& - l &{{{ij}k}l}&{-{jk}l}&{{ik}l}& -{kl}&{ij}& j & - i & - 1 &{{ij}k}& -{jk}&{ik}& - k 
\
{kl}&{{- ik}l}&{-{jk}l}&{{-{ij}k}l}& - l &{il}&{jl}&{{ij}l}& k &{- ik}& -{jk}&{-{ij}k}& - 1 & i & j &{ij}
\
{{ik}l}&{kl}&{{-{ij}k}l}&{{jk}l}&{- il}& - l &{-{ij}l}&{jl}&{ik}& k &{-{ij}k}&{jk}& - i & - 1 & -{ij}& j 
\
{{jk}l}&{{{ij}k}l}&{kl}&{{- ik}l}&{- jl}&{{ij}l}& - l &{- il}&{jk}&{{ij}k}& k &{- ik}& - j &{ij}& - 1 & - i 
\
{{{ij}k}l}&{-{jk}l}&{{ik}l}&{kl}&{-{ij}l}&{- jl}&{il}& - l &{{ij}k}& -{jk}&{ik}& k & -{ij}& - j & i & - 1 
(10)
Type: Matrix(CaleyDickson?(CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),k,1),l,1))
axiom
-- Function to divide the matrix entries by a basis element
S(y) == map(x +-> real real real real(x/y),M)
Type: Void
axiom
-- The result is a nested list
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ;
axiom
Compiling function S with type CaleyDickson(CaleyDickson(
      CaleyDickson(CaleyDickson(Expression(Integer),i,1),j,1),k,1),l,1)
       -> Matrix(Expression(Integer))
Type: List(List(List(Expression(Integer))))
axiom
-- structure constants form a tensor operator
Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim);
Type: LinearOperator?(16,OrderedVariableList?([]),Expression(Integer))
axiom
arity Y

\label{eq11}2 \over 1(11)
Type: Prop(LinearOperator?(16,OrderedVariableList?([]),Expression(Integer)))
axiom
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)

\label{eq12}\left[ 
\begin{array}{cccccccccccccccc}
{|_{1}}&{|_{2}}&{|_{3}}&{|_{4}}&{|_{5}}&{|_{6}}&{|_{7}}&{|_{8}}&{|_{9}}&{|_{10}}&{|_{11}}&{|_{12}}&{|_{13}}&{|_{14}}&{|_{15}}&{|_{16}}
\
{|_{2}}& -{|_{1}}& -{|_{4}}&{|_{3}}& -{|_{6}}&{|_{5}}&{|_{8}}& -{|_{7}}& -{|_{10}}&{|_{9}}&{|_{12}}& -{|_{11}}&{|_{14}}& -{|_{13}}& -{|_{16}}&{|_{15}}
\
{|_{3}}&{|_{4}}& -{|_{1}}& -{|_{2}}& -{|_{7}}& -{|_{8}}&{|_{5}}&{|_{6}}& -{|_{11}}& -{|_{12}}&{|_{9}}&{|_{10}}&{|_{15}}&{|_{16}}& -{|_{13}}& -{|_{14}}
\
{|_{4}}& -{|_{3}}&{|_{2}}& -{|_{1}}& -{|_{8}}&{|_{7}}& -{|_{6}}&{|_{5}}& -{|_{12}}&{|_{11}}& -{|_{10}}&{|_{9}}&{|_{16}}& -{|_{15}}&{|_{14}}& -{|_{13}}
\
{|_{5}}&{|_{6}}&{|_{7}}&{|_{8}}& -{|_{1}}& -{|_{2}}& -{|_{3}}& -{|_{4}}& -{|_{13}}& -{|_{14}}& -{|_{15}}& -{|_{16}}&{|_{9}}&{|_{10}}&{|_{11}}&{|_{12}}
\
{|_{6}}& -{|_{5}}&{|_{8}}& -{|_{7}}&{|_{2}}& -{|_{1}}&{|_{4}}& -{|_{3}}& -{|_{14}}&{|_{13}}& -{|_{16}}&{|_{15}}& -{|_{10}}&{|_{9}}& -{|_{12}}&{|_{11}}
\
{|_{7}}& -{|_{8}}& -{|_{5}}&{|_{6}}&{|_{3}}& -{|_{4}}& -{|_{1}}&{|_{2}}& -{|_{15}}&{|_{16}}&{|_{13}}& -{|_{14}}& -{|_{11}}&{|_{1
2}}&{|_{9}}& -{|_{10}}
\
{|_{8}}&{|_{7}}& -{|_{6}}& -{|_{5}}&{|_{4}}&{|_{3}}& -{|_{2}}& -{|_{1}}& -{|_{16}}& -{|_{15}}&{|_{14}}&{|_{13}}& -{|_{12}}& -{|_{11}}&{|_{10}}&{|_{9}}
\
{|_{9}}&{|_{10}}&{|_{11}}&{|_{12}}&{|_{13}}&{|_{14}}&{|_{15}}&{|_{16}}& -{|_{1}}& -{|_{2}}& -{|_{3}}& -{|_{4}}& -{|_{5}}& -{|_{6}}& -{|_{7}}& -{|_{8}}
\
{|_{10}}& -{|_{9}}&{|_{12}}& -{|_{11}}&{|_{14}}& -{|_{13}}& -{|_{16}}&{|_{15}}&{|_{2}}& -{|_{1}}&{|_{4}}& -{|_{3}}&{|_{6}}& -{|_{5}}& -{|_{8}}&{|_{7}}
\
{|_{11}}& -{|_{12}}& -{|_{9}}&{|_{10}}&{|_{15}}&{|_{16}}& -{|_{13}}& -{|_{14}}&{|_{3}}& -{|_{4}}& -{|_{1}}&{|_{2}}&{|_{7}}&{|_{8}}& -{|_{5}}& -{|_{6}}
\
{|_{12}}&{|_{11}}& -{|_{10}}& -{|_{9}}&{|_{16}}& -{|_{15}}&{|_{14}}& -{|_{13}}&{|_{4}}&{|_{3}}& -{|_{2}}& -{|_{1}}&{|_{8}}& -{|_{7}}&{|_{6}}& -{|_{5}}
\
{|_{13}}& -{|_{14}}& -{|_{15}}& -{|_{16}}& -{|_{9}}&{|_{10}}&{|_{11}}&{|_{12}}&{|_{5}}& -{|_{6}}& -{|_{7}}& -{|_{8}}& -{|_{1}}&{|_{2}}&{|_{3}}&{|_{4}}
\
{|_{14}}&{|_{13}}& -{|_{16}}&{|_{15}}& -{|_{10}}& -{|_{9}}& -{|_{12}}&{|_{11}}&{|_{6}}&{|_{5}}& -{|_{8}}&{|_{7}}& -{|_{2}}& -{|_{1}}& -{|_{4}}&{|_{3}}
\
{|_{15}}&{|_{16}}&{|_{13}}& -{|_{14}}& -{|_{11}}&{|_{12}}& -{|_{9}}& -{|_{10}}&{|_{7}}&{|_{8}}&{|_{5}}& -{|_{6}}& -{|_{3}}&{|_{4}}& -{|_{1}}& -{|_{2}}
\
{|_{16}}& -{|_{15}}&{|_{14}}&{|_{13}}& -{|_{12}}& -{|_{11}}&{|_{10}}& -{|_{9}}&{|_{8}}& -{|_{7}}&{|_{6}}&{|_{5}}& -{|_{4}}& -{|_{3}}&{|_{2}}& -{|_{1}}
(12)
Type: Matrix(LinearOperator?(16,OrderedVariableList?([]),Expression(Integer)))

A scalar product is denoted by the (2,0)-tensor U = \{ u_{ij} \}

axiom
U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim);
Type: LinearOperator?(16,OrderedVariableList?([]),Expression(Integer))

Definition 1

We say that the scalar product is associative if the tensor equation holds:

    Y   =   Y
     U     U

In other words, if the (3,0)-tensor:


\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-0.92)(4.82,0.92)
\psbezier[linewidth=0.04](2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9)
\psline[linewidth=0.04cm](2.4,0.3)(2.4,-0.1)
\psbezier[linewidth=0.04](2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1)
\psline[linewidth=0.04cm](3.0,-0.1)(3.0,0.9)
\psbezier[linewidth=0.04](4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9)
\psline[linewidth=0.04cm](4.6,0.3)(4.6,-0.1)
\psbezier[linewidth=0.04](4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1)
\psline[linewidth=0.04cm](4.0,-0.1)(4.0,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(3.4948437,0.205){-}
\psline[linewidth=0.04cm](0.6,-0.7)(0.6,0.9)
\psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1)
\psline[linewidth=0.04cm](0.0,-0.1)(0.0,0.9)
\psline[linewidth=0.04cm](1.2,-0.1)(1.2,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(1.6948438,0.205){=}
\end{pspicture} 
}
 


\label{eq13}
  \Phi = \{ \phi^{ijk} = {y^e}_{ij} u_{ek} - u_{ie} {y_e}^{jk} \}
  (13)
(three-point function) is zero.

Using the LinearOperator? domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.

axiom
ω:𝐋 :=(Y*I)/U  - (I*Y)/U;
Type: LinearOperator?(16,OrderedVariableList?([]),Expression(Integer))

Definition 2

An algebra with a non-degenerate associative scalar product is called a [Frobenius Algebra]?.

We may consider the problem where multiplication Y is given, and look for all associative scalar products U = U(Y)

This problem can be solved using linear algebra.

axiom
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame initial J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);
Type: Matrix(Expression(Integer))
axiom
--u := transpose matrix [concat map(variables,ravel U)::ℒ Symbol];
--J::OutputForm * u::OutputForm = 0
nrows(J),ncols(J)

\label{eq14}\left[{4096}, \:{256}\right](14)
Type: Tuple(PositiveInteger?)

The matrix J transforms the coefficients of the tensor U into coefficients of the tensor \Phi. We are looking for the general linear family of tensors U=U(Y,p_i) such that J transforms U into \Phi=0 for any such U.

If the null space of the J matrix is not empty we can use the basis to find all non-trivial solutions for U:

axiom
Ñ:=nullSpace(J);
Type: List(Vector(Expression(Integer)))
axiom
ℰ:=map((x,y)+->x=y, concat
       map(variables,ravel U), entries Σ(sb('p,[i])*Ñ.i, i,1..#Ñ) )

\label{eq15}\begin{array}{@{}l}
\displaystyle
\left[{{u^{1, \: 1}}= -{p_{1}}}, \:{{u^{1, \: 2}}= 0}, \:{{u^{1, \: 3}}= 0}, \:{{u^{1, \: 4}}= 0}, \:{{u^{1, \: 5}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{1, \: 6}}= 0}, \:{{u^{1, \: 7}}= 0}, \:{{u^{1, \: 8}}= 0}, \:{{u^{1, \: 9}}= 0}, \:{{u^{1, \:{10}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{1, \:{11}}}= 0}, \:{{u^{1, \:{12}}}= 0}, \:{{u^{1, \:{13}}}= 0}, \:{{u^{1, \:{14}}}= 0}, \:{{u^{1, \:{15}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{1, \:{16}}}= 0}, \:{{u^{2, \: 1}}= 0}, \:{{u^{2, \: 2}}={p_{1}}}, \:{{u^{2, \: 3}}= 0}, \:{{u^{2, \: 4}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{2, \: 5}}= 0}, \:{{u^{2, \: 6}}= 0}, \:{{u^{2, \: 7}}= 0}, \:{{u^{2, \: 8}}= 0}, \:{{u^{2, \: 9}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{2, \:{10}}}= 0}, \:{{u^{2, \:{11}}}= 0}, \:{{u^{2, \:{12}}}= 0}, \:{{u^{2, \:{13}}}= 0}, \:{{u^{2, \:{14}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{2, \:{15}}}= 0}, \:{{u^{2, \:{16}}}= 0}, \:{{u^{3, \: 1}}= 0}, \:{{u^{3, \: 2}}= 0}, \:{{u^{3, \: 3}}={p_{1}}}, \: \right.
\
\
\displaystyle
\left.{{u^{3, \: 4}}= 0}, \:{{u^{3, \: 5}}= 0}, \:{{u^{3, \: 6}}= 0}, \:{{u^{3, \: 7}}= 0}, \:{{u^{3, \: 8}}= 0}, \:{{u^{3, \: 9}}= 0}, \right.
\
\
\displaystyle
\left.\:{{u^{3, \:{10}}}= 0}, \:{{u^{3, \:{11}}}= 0}, \:{{u^{3, \:{12}}}= 0}, \:{{u^{3, \:{13}}}= 0}, \:{{u^{3, \:{14}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{3, \:{15}}}= 0}, \:{{u^{3, \:{16}}}= 0}, \:{{u^{4, \: 1}}= 0}, \:{{u^{4, \: 2}}= 0}, \:{{u^{4, \: 3}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{4, \: 4}}={p_{1}}}, \:{{u^{4, \: 5}}= 0}, \:{{u^{4, \: 6}}= 0}, \:{{u^{4, \: 7}}= 0}, \:{{u^{4, \: 8}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{4, \: 9}}= 0}, \:{{u^{4, \:{10}}}= 0}, \:{{u^{4, \:{1
1}}}= 0}, \:{{u^{4, \:{12}}}= 0}, \:{{u^{4, \:{13}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{4, \:{14}}}= 0}, \:{{u^{4, \:{15}}}= 0}, \:{{u^{4, \:{16}}}= 0}, \:{{u^{5, \: 1}}= 0}, \:{{u^{5, \: 2}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{5, \: 3}}= 0}, \:{{u^{5, \: 4}}= 0}, \:{{u^{5, \: 5}}={p_{1}}}, \:{{u^{5, \: 6}}= 0}, \:{{u^{5, \: 7}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{5, \: 8}}= 0}, \:{{u^{5, \: 9}}= 0}, \:{{u^{5, \:{1
0}}}= 0}, \:{{u^{5, \:{11}}}= 0}, \:{{u^{5, \:{12}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{5, \:{13}}}= 0}, \:{{u^{5, \:{14}}}= 0}, \:{{u^{5, \:{15}}}= 0}, \:{{u^{5, \:{16}}}= 0}, \:{{u^{6, \: 1}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{6, \: 2}}= 0}, \:{{u^{6, \: 3}}= 0}, \:{{u^{6, \: 4}}= 0}, \:{{u^{6, \: 5}}= 0}, \:{{u^{6, \: 6}}={p_{1}}}, \: \right.
\
\
\displaystyle
\left.{{u^{6, \: 7}}= 0}, \:{{u^{6, \: 8}}= 0}, \:{{u^{6, \: 9}}= 0}, \:{{u^{6, \:{10}}}= 0}, \:{{u^{6, \:{11}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{6, \:{12}}}= 0}, \:{{u^{6, \:{13}}}= 0}, \:{{u^{6, \:{14}}}= 0}, \:{{u^{6, \:{15}}}= 0}, \:{{u^{6, \:{16}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{7, \: 1}}= 0}, \:{{u^{7, \: 2}}= 0}, \:{{u^{7, \: 3}}= 0}, \:{{u^{7, \: 4}}= 0}, \:{{u^{7, \: 5}}= 0}, \:{{u^{7, \: 6}}= 0}, \right.
\
\
\displaystyle
\left.\:{{u^{7, \: 7}}={p_{1}}}, \:{{u^{7, \: 8}}= 0}, \:{{u^{7, \: 9}}= 0}, \:{{u^{7, \:{10}}}= 0}, \:{{u^{7, \:{11}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{7, \:{12}}}= 0}, \:{{u^{7, \:{13}}}= 0}, \:{{u^{7, \:{14}}}= 0}, \:{{u^{7, \:{15}}}= 0}, \:{{u^{7, \:{16}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{8, \: 1}}= 0}, \:{{u^{8, \: 2}}= 0}, \:{{u^{8, \: 3}}= 0}, \:{{u^{8, \: 4}}= 0}, \:{{u^{8, \: 5}}= 0}, \:{{u^{8, \: 6}}= 0}, \right.
\
\
\displaystyle
\left.\:{{u^{8, \: 7}}= 0}, \:{{u^{8, \: 8}}={p_{1}}}, \:{{u^{8, \: 9}}= 0}, \:{{u^{8, \:{10}}}= 0}, \:{{u^{8, \:{11}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{8, \:{12}}}= 0}, \:{{u^{8, \:{13}}}= 0}, \:{{u^{8, \:{14}}}= 0}, \:{{u^{8, \:{15}}}= 0}, \:{{u^{8, \:{16}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{9, \: 1}}= 0}, \:{{u^{9, \: 2}}= 0}, \:{{u^{9, \: 3}}= 0}, \:{{u^{9, \: 4}}= 0}, \:{{u^{9, \: 5}}= 0}, \:{{u^{9, \: 6}}= 0}, \right.
\
\
\displaystyle
\left.\:{{u^{9, \: 7}}= 0}, \:{{u^{9, \: 8}}= 0}, \:{{u^{9, \: 9}}={p_{1}}}, \:{{u^{9, \:{10}}}= 0}, \:{{u^{9, \:{11}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{9, \:{12}}}= 0}, \:{{u^{9, \:{13}}}= 0}, \:{{u^{9, \:{14}}}= 0}, \:{{u^{9, \:{15}}}= 0}, \:{{u^{9, \:{16}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{10}, \: 1}}= 0}, \:{{u^{{10}, \: 2}}= 0}, \:{{u^{{1
0}, \: 3}}= 0}, \:{{u^{{10}, \: 4}}= 0}, \:{{u^{{10}, \: 5}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{10}, \: 6}}= 0}, \:{{u^{{10}, \: 7}}= 0}, \:{{u^{{1
0}, \: 8}}= 0}, \:{{u^{{10}, \: 9}}= 0}, \:{{u^{{10}, \:{10}}}={p_{1}}}, \: \right.
\
\
\displaystyle
\left.{{u^{{10}, \:{11}}}= 0}, \:{{u^{{10}, \:{12}}}= 0}, \:{{u^{{10}, \:{13}}}= 0}, \:{{u^{{10}, \:{14}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{10}, \:{15}}}= 0}, \:{{u^{{10}, \:{16}}}= 0}, \:{{u^{{11}, \: 1}}= 0}, \:{{u^{{11}, \: 2}}= 0}, \:{{u^{{11}, \: 3}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{11}, \: 4}}= 0}, \:{{u^{{11}, \: 5}}= 0}, \:{{u^{{1
1}, \: 6}}= 0}, \:{{u^{{11}, \: 7}}= 0}, \:{{u^{{11}, \: 8}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{11}, \: 9}}= 0}, \:{{u^{{11}, \:{10}}}= 0}, \:{{u^{{11}, \:{11}}}={p_{1}}}, \:{{u^{{11}, \:{12}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{11}, \:{13}}}= 0}, \:{{u^{{11}, \:{14}}}= 0}, \:{{u^{{11}, \:{15}}}= 0}, \:{{u^{{11}, \:{16}}}= 0}, \:{{u^{{12}, \: 1}}= 0}, \right.
\
\
\displaystyle
\left.\:{{u^{{12}, \: 2}}= 0}, \:{{u^{{12}, \: 3}}= 0}, \:{{u^{{12}, \: 4}}= 0}, \:{{u^{{12}, \: 5}}= 0}, \:{{u^{{12}, \: 6}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{12}, \: 7}}= 0}, \:{{u^{{12}, \: 8}}= 0}, \:{{u^{{1
2}, \: 9}}= 0}, \:{{u^{{12}, \:{10}}}= 0}, \:{{u^{{12}, \:{11}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{12}, \:{12}}}={p_{1}}}, \:{{u^{{12}, \:{13}}}= 0}, \:{{u^{{12}, \:{14}}}= 0}, \:{{u^{{12}, \:{15}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{12}, \:{16}}}= 0}, \:{{u^{{13}, \: 1}}= 0}, \:{{u^{{13}, \: 2}}= 0}, \:{{u^{{13}, \: 3}}= 0}, \:{{u^{{13}, \: 4}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{13}, \: 5}}= 0}, \:{{u^{{13}, \: 6}}= 0}, \:{{u^{{1
3}, \: 7}}= 0}, \:{{u^{{13}, \: 8}}= 0}, \:{{u^{{13}, \: 9}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{13}, \:{10}}}= 0}, \:{{u^{{13}, \:{11}}}= 0}, \:{{u^{{13}, \:{12}}}= 0}, \:{{u^{{13}, \:{13}}}={p_{1}}}, \: \right.
\
\
\displaystyle
\left.{{u^{{13}, \:{14}}}= 0}, \:{{u^{{13}, \:{15}}}= 0}, \:{{u^{{13}, \:{16}}}= 0}, \:{{u^{{14}, \: 1}}= 0}, \:{{u^{{14}, \: 2}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{14}, \: 3}}= 0}, \:{{u^{{14}, \: 4}}= 0}, \:{{u^{{1
4}, \: 5}}= 0}, \:{{u^{{14}, \: 6}}= 0}, \:{{u^{{14}, \: 7}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{14}, \: 8}}= 0}, \:{{u^{{14}, \: 9}}= 0}, \:{{u^{{1
4}, \:{10}}}= 0}, \:{{u^{{14}, \:{11}}}= 0}, \:{{u^{{14}, \:{1
2}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{14}, \:{13}}}= 0}, \:{{u^{{14}, \:{14}}}={p_{1}}}, \:{{u^{{14}, \:{15}}}= 0}, \:{{u^{{14}, \:{16}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{15}, \: 1}}= 0}, \:{{u^{{15}, \: 2}}= 0}, \:{{u^{{1
5}, \: 3}}= 0}, \:{{u^{{15}, \: 4}}= 0}, \:{{u^{{15}, \: 5}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{15}, \: 6}}= 0}, \:{{u^{{15}, \: 7}}= 0}, \:{{u^{{1
5}, \: 8}}= 0}, \:{{u^{{15}, \: 9}}= 0}, \:{{u^{{15}, \:{10}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{15}, \:{11}}}= 0}, \:{{u^{{15}, \:{12}}}= 0}, \:{{u^{{15}, \:{13}}}= 0}, \:{{u^{{15}, \:{14}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{15}, \:{15}}}={p_{1}}}, \:{{u^{{15}, \:{16}}}= 0}, \:{{u^{{16}, \: 1}}= 0}, \:{{u^{{16}, \: 2}}= 0}, \:{{u^{{16}, \: 3}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{16}, \: 4}}= 0}, \:{{u^{{16}, \: 5}}= 0}, \:{{u^{{1
6}, \: 6}}= 0}, \:{{u^{{16}, \: 7}}= 0}, \:{{u^{{16}, \: 8}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{{16}, \: 9}}= 0}, \:{{u^{{16}, \:{10}}}= 0}, \:{{u^{{16}, \:{11}}}= 0}, \:{{u^{{16}, \:{12}}}= 0}, \:{{u^{{16}, \:{13}}}= 0}, \right.
\
\
\displaystyle
\left.\:{{u^{{16}, \:{14}}}= 0}, \:{{u^{{16}, \:{15}}}= 0}, \:{{u^{{16}, \:{16}}}={p_{1}}}\right] 
(15)
Type: List(Equation(Expression(Integer)))

This defines a family of Frobenius algebras:

axiom
zero? eval(ω,ℰ)

\label{eq16} \mbox{\rm true} (16)
Type: Boolean

The pairing is necessarily diagonal!

axiom
Ų:𝐋 := eval(U,ℰ)

\label{eq17}\begin{array}{@{}l}
\displaystyle
-{{p_{1}}\ {|_{\ }^{1 \  1}}}+{{p_{1}}\ {|_{\ }^{2 \  2}}}+{{p_{1}}\ {|_{\ }^{3 \  3}}}+{{p_{1}}\ {|_{\ }^{4 \  4}}}+{{p_{1}}\ {|_{\ }^{5 \  5}}}+ 
\
\
\displaystyle
{{p_{1}}\ {|_{\ }^{6 \  6}}}+{{p_{1}}\ {|_{\ }^{7 \  7}}}+{{p_{1}}\ {|_{\ }^{8 \  8}}}+{{p_{1}}\ {|_{\ }^{9 \  9}}}+{{p_{1}}\ {|_{\ }^{{10}\ {10}}}}+ 
\
\
\displaystyle
{{p_{1}}\ {|_{\ }^{{11}\ {11}}}}+{{p_{1}}\ {|_{\ }^{{12}\ {12}}}}+{{p_{1}}\ {|_{\ }^{{13}\ {13}}}}+{{p_{1}}\ {|_{\ }^{{14}\ {14}}}}+{{p_{1}}\ {|_{\ }^{{15}\ {15}}}}+ 
\
\
\displaystyle
{{p_{1}}\ {|_{\ }^{{16}\ {16}}}}
(17)
Type: LinearOperator?(16,OrderedVariableList?([]),Expression(Integer))
axiom
matrix Ξ(Ξ((𝐞.i 𝐞.j)/Ų, i,1..dim), j,1..dim)

\label{eq18}\left[ 
\begin{array}{cccccccccccccccc}
-{p_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 &{p_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 &{p_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 &{p_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 &{p_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 &{p_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 &{p_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 &{p_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{p_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{p_{1}}& 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{p_{1}}& 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{p_{1}}& 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{p_{1}}& 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{p_{1}}& 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{p_{1}}& 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{p_{1}}
(18)
Type: Matrix(LinearOperator?(16,OrderedVariableList?([]),Expression(Integer)))

The scalar product must be non-degenerate:

axiom
Ů:=determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ų), j,1..dim), i,1..dim)

\label{eq19}-{{p_{1}}^{16}}(19)
Type: Expression(Integer)
axiom
factor Ů

\label{eq20}-{{p_{1}}^{16}}(20)
Type: Factored(Expression(Integer))

Definition 3

Co-pairing

Solve the [Snake Relation]? as a system of linear equations.

axiom
Um:=matrix Ξ(Ξ((𝐞.i*𝐞.j)/Ų, i,1..dim), j,1..dim);
Type: Matrix(LinearOperator?(16,OrderedVariableList?([]),Expression(Integer)))
axiom
mU:=transpose inverse map(retract,Um);
Type: Matrix(Expression(Integer))
axiom
Ω:=Σ(Σ(mU(i,j)*(𝐞.i*𝐞.j), i,1..dim), j,1..dim)

\label{eq21}\begin{array}{@{}l}
\displaystyle
-{{1 \over{p_{1}}}\ {|_{1 \  1}}}+{{1 \over{p_{1}}}\ {|_{2 \  2}}}+{{1 \over{p_{1}}}\ {|_{3 \  3}}}+{{1 \over{p_{1}}}\ {|_{4 \  4}}}+{{1 \over{p_{1}}}\ {|_{5 \  5}}}+{{1 \over{p_{1}}}\ {|_{6 \  6}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{7 \  7}}}+{{1 \over{p_{1}}}\ {|_{8 \  8}}}+{{1 \over{p_{1}}}\ {|_{9 \  9}}}+{{1 \over{p_{1}}}\ {|_{{1
0}\ {10}}}}+{{1 \over{p_{1}}}\ {|_{{11}\ {11}}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{12}\ {12}}}}+{{1 \over{p_{1}}}\ {|_{{1
3}\ {13}}}}+{{1 \over{p_{1}}}\ {|_{{14}\ {14}}}}+{{1 \over{p_{1}}}\ {|_{{15}\ {15}}}}+{{1 \over{p_{1}}}\ {|_{{16}\ {16}}}}
(21)
Type: LinearOperator?(16,OrderedVariableList?([]),Expression(Integer))
axiom
matrix Ξ(Ξ(Ω/(𝐝.i*𝐝.j), i,1..dim), j,1..dim)

\label{eq22}\left[ 
\begin{array}{cccccccccccccccc}
-{1 \over{p_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 &{1 \over{p_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 &{1 \over{p_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 &{1 \over{p_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}
(22)
Type: Matrix(LinearOperator?(16,OrderedVariableList?([]),Expression(Integer)))

Check "dimension" and the snake relations.

axiom
d:𝐋:=
       Ω    /
       X    /
       Ų

\label{eq23}16(23)
Type: LinearOperator?(16,OrderedVariableList?([]),Expression(Integer))
axiom
test
    (    I Ω     )  /
    (     Ų I    )  =  I

\label{eq24} \mbox{\rm true} (24)
Type: Boolean
axiom
test
    (     Ω I    )  /
    (    I Ų     )  =  I

\label{eq25} \mbox{\rm true} (25)
Type: Boolean

Definition 4

Co-algebra

Compute the "three-point" function and use it to define co-multiplication.

Too slow:

  \begin{axiom}
  W:=(Y,I)/Ų;
  λ:=(Ω,I,Ω)/(I,W,I)
  \end{axiom}

axiom
λ:= (I,Ω) / (Y,I)

\label{eq26}\begin{array}{@{}l}
\displaystyle
-{{1 \over{p_{1}}}\ {|_{1 \  1}^{1}}}+{{1 \over{p_{1}}}\ {|_{2 \  2}^{1}}}+{{1 \over{p_{1}}}\ {|_{3 \  3}^{1}}}+{{1 \over{p_{1}}}\ {|_{4 \  4}^{1}}}+{{1 \over{p_{1}}}\ {|_{5 \  5}^{1}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{6 \  6}^{1}}}+{{1 \over{p_{1}}}\ {|_{7 \  7}^{1}}}+{{1 \over{p_{1}}}\ {|_{8 \  8}^{1}}}+{{1 \over{p_{1}}}\ {|_{9 \  9}^{1}}}+{{1 \over{p_{1}}}\ {|_{{10}\ {10}}^{1}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{11}\ {11}}^{1}}}+{{1 \over{p_{1}}}\ {|_{{12}\ {12}}^{1}}}+{{1 \over{p_{1}}}\ {|_{{13}\ {13}}^{1}}}+{{1 \over{p_{1}}}\ {|_{{14}\ {14}}^{1}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{15}\ {15}}^{1}}}+{{1 \over{p_{1}}}\ {|_{{16}\ {16}}^{1}}}-{{1 \over{p_{1}}}\ {|_{1 \  2}^{2}}}-{{1 \over{p_{1}}}\ {|_{2 \  1}^{2}}}-{{1 \over{p_{1}}}\ {|_{3 \  4}^{2}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{4 \  3}^{2}}}-{{1 \over{p_{1}}}\ {|_{5 \  6}^{2}}}+{{1 \over{p_{1}}}\ {|_{6 \  5}^{2}}}+{{1 \over{p_{1}}}\ {|_{7 \  8}^{2}}}-{{1 \over{p_{1}}}\ {|_{8 \  7}^{2}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{9 \ {10}}^{2}}}+{{1 \over{p_{1}}}\ {|_{{10}\  9}^{2}}}+{{1 \over{p_{1}}}\ {|_{{11}\ {12}}^{2}}}-{{1 \over{p_{1}}}\ {|_{{12}\ {11}}^{2}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{13}\ {14}}^{2}}}-{{1 \over{p_{1}}}\ {|_{{14}\ {13}}^{2}}}-{{1 \over{p_{1}}}\ {|_{{15}\ {16}}^{2}}}+{{1 \over{p_{1}}}\ {|_{{16}\ {15}}^{2}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{1 \  3}^{3}}}+{{1 \over{p_{1}}}\ {|_{2 \  4}^{3}}}-{{1 \over{p_{1}}}\ {|_{3 \  1}^{3}}}-{{1 \over{p_{1}}}\ {|_{4 \  2}^{3}}}-{{1 \over{p_{1}}}\ {|_{5 \  7}^{3}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{6 \  8}^{3}}}+{{1 \over{p_{1}}}\ {|_{7 \  5}^{3}}}+{{1 \over{p_{1}}}\ {|_{8 \  6}^{3}}}-{{1 \over{p_{1}}}\ {|_{9 \ {11}}^{3}}}-{{1 \over{p_{1}}}\ {|_{{10}\ {12}}^{3}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{11}\  9}^{3}}}+{{1 \over{p_{1}}}\ {|_{{12}\ {10}}^{3}}}+{{1 \over{p_{1}}}\ {|_{{13}\ {15}}^{3}}}+{{1 \over{p_{1}}}\ {|_{{14}\ {16}}^{3}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{15}\ {13}}^{3}}}-{{1 \over{p_{1}}}\ {|_{{16}\ {14}}^{3}}}-{{1 \over{p_{1}}}\ {|_{1 \  4}^{4}}}-{{1 \over{p_{1}}}\ {|_{2 \  3}^{4}}}+{{1 \over{p_{1}}}\ {|_{3 \  2}^{4}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{4 \  1}^{4}}}-{{1 \over{p_{1}}}\ {|_{5 \  8}^{4}}}+{{1 \over{p_{1}}}\ {|_{6 \  7}^{4}}}-{{1 \over{p_{1}}}\ {|_{7 \  6}^{4}}}+{{1 \over{p_{1}}}\ {|_{8 \  5}^{4}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{9 \ {12}}^{4}}}+{{1 \over{p_{1}}}\ {|_{{10}\ {11}}^{4}}}-{{1 \over{p_{1}}}\ {|_{{11}\ {10}}^{4}}}+{{1 \over{p_{1}}}\ {|_{{12}\  9}^{4}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{13}\ {16}}^{4}}}-{{1 \over{p_{1}}}\ {|_{{14}\ {15}}^{4}}}+{{1 \over{p_{1}}}\ {|_{{15}\ {14}}^{4}}}-{{1 \over{p_{1}}}\ {|_{{16}\ {13}}^{4}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{1 \  5}^{5}}}+{{1 \over{p_{1}}}\ {|_{2 \  6}^{5}}}+{{1 \over{p_{1}}}\ {|_{3 \  7}^{5}}}+{{1 \over{p_{1}}}\ {|_{4 \  8}^{5}}}-{{1 \over{p_{1}}}\ {|_{5 \  1}^{5}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{6 \  2}^{5}}}-{{1 \over{p_{1}}}\ {|_{7 \  3}^{5}}}-{{1 \over{p_{1}}}\ {|_{8 \  4}^{5}}}-{{1 \over{p_{1}}}\ {|_{9 \ {13}}^{5}}}-{{1 \over{p_{1}}}\ {|_{{10}\ {14}}^{5}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{11}\ {15}}^{5}}}-{{1 \over{p_{1}}}\ {|_{{12}\ {16}}^{5}}}+{{1 \over{p_{1}}}\ {|_{{13}\  9}^{5}}}+{{1 \over{p_{1}}}\ {|_{{14}\ {10}}^{5}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{15}\ {11}}^{5}}}+{{1 \over{p_{1}}}\ {|_{{16}\ {12}}^{5}}}-{{1 \over{p_{1}}}\ {|_{1 \  6}^{6}}}-{{1 \over{p_{1}}}\ {|_{2 \  5}^{6}}}+{{1 \over{p_{1}}}\ {|_{3 \  8}^{6}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{4 \  7}^{6}}}+{{1 \over{p_{1}}}\ {|_{5 \  2}^{6}}}-{{1 \over{p_{1}}}\ {|_{6 \  1}^{6}}}+{{1 \over{p_{1}}}\ {|_{7 \  4}^{6}}}-{{1 \over{p_{1}}}\ {|_{8 \  3}^{6}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{9 \ {14}}^{6}}}+{{1 \over{p_{1}}}\ {|_{{10}\ {13}}^{6}}}-{{1 \over{p_{1}}}\ {|_{{11}\ {16}}^{6}}}+{{1 \over{p_{1}}}\ {|_{{12}\ {15}}^{6}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{13}\ {10}}^{6}}}+{{1 \over{p_{1}}}\ {|_{{14}\  9}^{6}}}-{{1 \over{p_{1}}}\ {|_{{15}\ {12}}^{6}}}+{{1 \over{p_{1}}}\ {|_{{16}\ {11}}^{6}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{1 \  7}^{7}}}-{{1 \over{p_{1}}}\ {|_{2 \  8}^{7}}}-{{1 \over{p_{1}}}\ {|_{3 \  5}^{7}}}+{{1 \over{p_{1}}}\ {|_{4 \  6}^{7}}}+{{1 \over{p_{1}}}\ {|_{5 \  3}^{7}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{6 \  4}^{7}}}-{{1 \over{p_{1}}}\ {|_{7 \  1}^{7}}}+{{1 \over{p_{1}}}\ {|_{8 \  2}^{7}}}-{{1 \over{p_{1}}}\ {|_{9 \ {15}}^{7}}}+{{1 \over{p_{1}}}\ {|_{{10}\ {16}}^{7}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{11}\ {13}}^{7}}}-{{1 \over{p_{1}}}\ {|_{{12}\ {14}}^{7}}}-{{1 \over{p_{1}}}\ {|_{{13}\ {11}}^{7}}}+{{1 \over{p_{1}}}\ {|_{{14}\ {12}}^{7}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{15}\  9}^{7}}}-{{1 \over{p_{1}}}\ {|_{{16}\ {10}}^{7}}}-{{1 \over{p_{1}}}\ {|_{1 \  8}^{8}}}+{{1 \over{p_{1}}}\ {|_{2 \  7}^{8}}}-{{1 \over{p_{1}}}\ {|_{3 \  6}^{8}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{4 \  5}^{8}}}+{{1 \over{p_{1}}}\ {|_{5 \  4}^{8}}}+{{1 \over{p_{1}}}\ {|_{6 \  3}^{8}}}-{{1 \over{p_{1}}}\ {|_{7 \  2}^{8}}}-{{1 \over{p_{1}}}\ {|_{8 \  1}^{8}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{9 \ {16}}^{8}}}-{{1 \over{p_{1}}}\ {|_{{10}\ {15}}^{8}}}+{{1 \over{p_{1}}}\ {|_{{11}\ {14}}^{8}}}+{{1 \over{p_{1}}}\ {|_{{12}\ {13}}^{8}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{13}\ {12}}^{8}}}-{{1 \over{p_{1}}}\ {|_{{14}\ {11}}^{8}}}+{{1 \over{p_{1}}}\ {|_{{15}\ {10}}^{8}}}+{{1 \over{p_{1}}}\ {|_{{16}\  9}^{8}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{1 \  9}^{9}}}+{{1 \over{p_{1}}}\ {|_{2 \ {10}}^{9}}}+{{1 \over{p_{1}}}\ {|_{3 \ {11}}^{9}}}+{{1 \over{p_{1}}}\ {|_{4 \ {12}}^{9}}}+{{1 \over{p_{1}}}\ {|_{5 \ {13}}^{9}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{6 \ {14}}^{9}}}+{{1 \over{p_{1}}}\ {|_{7 \ {15}}^{9}}}+{{1 \over{p_{1}}}\ {|_{8 \ {16}}^{9}}}-{{1 \over{p_{1}}}\ {|_{9 \  1}^{9}}}-{{1 \over{p_{1}}}\ {|_{{10}\  2}^{9}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{11}\  3}^{9}}}-{{1 \over{p_{1}}}\ {|_{{12}\  4}^{9}}}-{{1 \over{p_{1}}}\ {|_{{13}\  5}^{9}}}-{{1 \over{p_{1}}}\ {|_{{14}\  6}^{9}}}-{{1 \over{p_{1}}}\ {|_{{15}\  7}^{9}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{16}\  8}^{9}}}-{{1 \over{p_{1}}}\ {|_{1 \ {10}}^{10}}}-{{1 \over{p_{1}}}\ {|_{2 \  9}^{10}}}+{{1 \over{p_{1}}}\ {|_{3 \ {12}}^{10}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{4 \ {11}}^{10}}}+{{1 \over{p_{1}}}\ {|_{5 \ {14}}^{10}}}-{{1 \over{p_{1}}}\ {|_{6 \ {13}}^{10}}}-{{1 \over{p_{1}}}\ {|_{7 \ {16}}^{10}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{8 \ {15}}^{10}}}+{{1 \over{p_{1}}}\ {|_{9 \  2}^{10}}}-{{1 \over{p_{1}}}\ {|_{{10}\  1}^{10}}}+{{1 \over{p_{1}}}\ {|_{{11}\  4}^{10}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{12}\  3}^{10}}}+{{1 \over{p_{1}}}\ {|_{{13}\  6}^{10}}}-{{1 \over{p_{1}}}\ {|_{{14}\  5}^{10}}}-{{1 \over{p_{1}}}\ {|_{{15}\  8}^{10}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{16}\  7}^{10}}}-{{1 \over{p_{1}}}\ {|_{1 \ {11}}^{11}}}-{{1 \over{p_{1}}}\ {|_{2 \ {12}}^{11}}}-{{1 \over{p_{1}}}\ {|_{3 \  9}^{11}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{4 \ {10}}^{11}}}+{{1 \over{p_{1}}}\ {|_{5 \ {15}}^{11}}}+{{1 \over{p_{1}}}\ {|_{6 \ {16}}^{11}}}-{{1 \over{p_{1}}}\ {|_{7 \ {13}}^{11}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{8 \ {14}}^{11}}}+{{1 \over{p_{1}}}\ {|_{9 \  3}^{11}}}-{{1 \over{p_{1}}}\ {|_{{10}\  4}^{11}}}-{{1 \over{p_{1}}}\ {|_{{11}\  1}^{11}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{12}\  2}^{11}}}+{{1 \over{p_{1}}}\ {|_{{13}\  7}^{11}}}+{{1 \over{p_{1}}}\ {|_{{14}\  8}^{11}}}-{{1 \over{p_{1}}}\ {|_{{15}\  5}^{11}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{16}\  6}^{11}}}-{{1 \over{p_{1}}}\ {|_{1 \ {12}}^{12}}}+{{1 \over{p_{1}}}\ {|_{2 \ {11}}^{12}}}-{{1 \over{p_{1}}}\ {|_{3 \ {10}}^{12}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{4 \  9}^{12}}}+{{1 \over{p_{1}}}\ {|_{5 \ {16}}^{12}}}-{{1 \over{p_{1}}}\ {|_{6 \ {15}}^{12}}}+{{1 \over{p_{1}}}\ {|_{7 \ {14}}^{12}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{8 \ {13}}^{12}}}+{{1 \over{p_{1}}}\ {|_{9 \  4}^{12}}}+{{1 \over{p_{1}}}\ {|_{{10}\  3}^{12}}}-{{1 \over{p_{1}}}\ {|_{{11}\  2}^{12}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{12}\  1}^{12}}}+{{1 \over{p_{1}}}\ {|_{{13}\  8}^{12}}}-{{1 \over{p_{1}}}\ {|_{{14}\  7}^{12}}}+{{1 \over{p_{1}}}\ {|_{{15}\  6}^{12}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{16}\  5}^{12}}}-{{1 \over{p_{1}}}\ {|_{1 \ {13}}^{13}}}-{{1 \over{p_{1}}}\ {|_{2 \ {14}}^{13}}}-{{1 \over{p_{1}}}\ {|_{3 \ {15}}^{13}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{4 \ {16}}^{13}}}-{{1 \over{p_{1}}}\ {|_{5 \  9}^{13}}}+{{1 \over{p_{1}}}\ {|_{6 \ {10}}^{13}}}+{{1 \over{p_{1}}}\ {|_{7 \ {11}}^{13}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{8 \ {12}}^{13}}}+{{1 \over{p_{1}}}\ {|_{9 \  5}^{13}}}-{{1 \over{p_{1}}}\ {|_{{10}\  6}^{13}}}-{{1 \over{p_{1}}}\ {|_{{11}\  7}^{13}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{12}\  8}^{13}}}-{{1 \over{p_{1}}}\ {|_{{13}\  1}^{13}}}+{{1 \over{p_{1}}}\ {|_{{14}\  2}^{13}}}+{{1 \over{p_{1}}}\ {|_{{15}\  3}^{13}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{16}\  4}^{13}}}-{{1 \over{p_{1}}}\ {|_{1 \ {14}}^{14}}}+{{1 \over{p_{1}}}\ {|_{2 \ {13}}^{14}}}-{{1 \over{p_{1}}}\ {|_{3 \ {16}}^{14}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{4 \ {15}}^{14}}}-{{1 \over{p_{1}}}\ {|_{5 \ {10}}^{14}}}-{{1 \over{p_{1}}}\ {|_{6 \  9}^{14}}}-{{1 \over{p_{1}}}\ {|_{7 \ {12}}^{14}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{8 \ {11}}^{14}}}+{{1 \over{p_{1}}}\ {|_{9 \  6}^{14}}}+{{1 \over{p_{1}}}\ {|_{{10}\  5}^{14}}}-{{1 \over{p_{1}}}\ {|_{{11}\  8}^{14}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{12}\  7}^{14}}}-{{1 \over{p_{1}}}\ {|_{{13}\  2}^{14}}}-{{1 \over{p_{1}}}\ {|_{{14}\  1}^{14}}}-{{1 \over{p_{1}}}\ {|_{{15}\  4}^{14}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{16}\  3}^{14}}}-{{1 \over{p_{1}}}\ {|_{1 \ {15}}^{15}}}+{{1 \over{p_{1}}}\ {|_{2 \ {16}}^{15}}}+{{1 \over{p_{1}}}\ {|_{3 \ {13}}^{15}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{4 \ {14}}^{15}}}-{{1 \over{p_{1}}}\ {|_{5 \ {11}}^{15}}}+{{1 \over{p_{1}}}\ {|_{6 \ {12}}^{15}}}-{{1 \over{p_{1}}}\ {|_{7 \  9}^{15}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{8 \ {10}}^{15}}}+{{1 \over{p_{1}}}\ {|_{9 \  7}^{15}}}+{{1 \over{p_{1}}}\ {|_{{10}\  8}^{15}}}+{{1 \over{p_{1}}}\ {|_{{11}\  5}^{15}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{12}\  6}^{15}}}-{{1 \over{p_{1}}}\ {|_{{13}\  3}^{15}}}+{{1 \over{p_{1}}}\ {|_{{14}\  4}^{15}}}-{{1 \over{p_{1}}}\ {|_{{15}\  1}^{15}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{16}\  2}^{15}}}-{{1 \over{p_{1}}}\ {|_{1 \ {16}}^{16}}}-{{1 \over{p_{1}}}\ {|_{2 \ {15}}^{16}}}+{{1 \over{p_{1}}}\ {|_{3 \ {14}}^{16}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{4 \ {13}}^{16}}}-{{1 \over{p_{1}}}\ {|_{5 \ {12}}^{16}}}-{{1 \over{p_{1}}}\ {|_{6 \ {11}}^{16}}}+{{1 \over{p_{1}}}\ {|_{7 \ {10}}^{16}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{8 \  9}^{16}}}+{{1 \over{p_{1}}}\ {|_{9 \  8}^{16}}}-{{1 \over{p_{1}}}\ {|_{{10}\  7}^{16}}}+{{1 \over{p_{1}}}\ {|_{{11}\  6}^{16}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{12}\  5}^{16}}}-{{1 \over{p_{1}}}\ {|_{{13}\  4}^{16}}}-{{1 \over{p_{1}}}\ {|_{{14}\  3}^{16}}}+{{1 \over{p_{1}}}\ {|_{{15}\  2}^{16}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{{16}\  1}^{16}}}
(26)
Type: LinearOperator?(16,OrderedVariableList?([]),Expression(Integer))
axiom
test( (Ω,I) / (I,Y) = λ )

\label{eq27} \mbox{\rm true} (27)
Type: Boolean

Frobenius Condition

Like Octonion algebra Sedenion algebra also fails the Frobenius Condition!

Too slow to complete here:

  \begin{axiom}

  Χ := Y / λ ;

  Χr := (λ,I)/(I,Y)
  test(Χr = Χ )

  Χl := (I,λ)/(Y,I);
  --test( Χl = Χ )
  test( Χr = Χl )

  \end{axiom}

Perhaps this is not too surprising since like Octonion Seden algebra is non-associative (in fact also non-alternative). Nevertheless Sedenions are "Frobenius" in a more general sense just because there is a non-degenerate associative pairing.

i = Unit of the algebra

axiom
i:=𝐞.1

\label{eq28}|_{1}(28)
Type: LinearOperator?(16,OrderedVariableList?([]),Expression(Integer))
axiom
test
         i     /
         λ     =    Ω

\label{eq29} \mbox{\rm true} (29)
Type: Boolean

Handle

axiom
H:𝐋 :=
         λ     /
         X     /
         Y

\label{eq30}\begin{array}{@{}l}
\displaystyle
-{{{16}\over{p_{1}}}\ {|_{1}^{1}}}+{{{12}\over{p_{1}}}\ {|_{2}^{2}}}+{{{12}\over{p_{1}}}\ {|_{3}^{3}}}+{{{12}\over{p_{1}}}\ {|_{4}^{4}}}+{{{12}\over{p_{1}}}\ {|_{5}^{5}}}+{{{12}\over{p_{1}}}\ {|_{6}^{6}}}+ 
\
\
\displaystyle
{{{12}\over{p_{1}}}\ {|_{7}^{7}}}+{{{12}\over{p_{1}}}\ {|_{8}^{8}}}+{{{12}\over{p_{1}}}\ {|_{9}^{9}}}+{{{12}\over{p_{1}}}\ {|_{10}^{10}}}+{{{12}\over{p_{1}}}\ {|_{11}^{11}}}+{{{12}\over{p_{1}}}\ {|_{12}^{12}}}+ 
\
\
\displaystyle
{{{12}\over{p_{1}}}\ {|_{13}^{13}}}+{{{12}\over{p_{1}}}\ {|_{1
4}^{14}}}+{{{12}\over{p_{1}}}\ {|_{15}^{15}}}+{{{12}\over{p_{1}}}\ {|_{16}^{16}}}
(30)
Type: LinearOperator?(16,OrderedVariableList?([]),Expression(Integer))

Definition 5

Co-unit
  i 
  U
  

axiom
ι:𝐋:=
    (    i I    ) /
    (     Ų     )

\label{eq31}-{{p_{1}}\ {|_{\ }^{1}}}(31)
Type: LinearOperator?(16,OrderedVariableList?([]),Expression(Integer))

Y=U
ι  
axiom
test
        Y    /
        ι       = Ų

\label{eq32} \mbox{\rm true} (32)
Type: Boolean

For example:

axiom
ex1:=[q[3]=1,p[1]=1]

\label{eq33}\left[{{q_{3}}= 1}, \:{{p_{1}}= 1}\right](33)
Type: List(Equation(Polynomial(Integer)))
axiom
Ų0:𝐋  :=eval(Ų,ex1)

\label{eq34}\begin{array}{@{}l}
\displaystyle
-{|_{\ }^{1 \  1}}+{|_{\ }^{2 \  2}}+{|_{\ }^{3 \  3}}+{|_{\ }^{4 \  4}}+{|_{\ }^{5 \  5}}+{|_{\ }^{6 \  6}}+{|_{\ }^{7 \  7}}+{|_{\ }^{8 \  8}}+ 
\
\
\displaystyle
{|_{\ }^{9 \  9}}+{|_{\ }^{{10}\ {10}}}+{|_{\ }^{{11}\ {11}}}+{|_{\ }^{{12}\ {12}}}+{|_{\ }^{{13}\ {13}}}+{|_{\ }^{{14}\ {1
4}}}+ 
\
\
\displaystyle
{|_{\ }^{{15}\ {15}}}+{|_{\ }^{{16}\ {16}}}
(34)
Type: LinearOperator?(16,OrderedVariableList?([]),Expression(Integer))
axiom
Ω0:𝐋  :=eval(Ω,ex1)$𝐋

\label{eq35}\begin{array}{@{}l}
\displaystyle
-{|_{1 \  1}}+{|_{2 \  2}}+{|_{3 \  3}}+{|_{4 \  4}}+{|_{5 \  5}}+{|_{6 \  6}}+{|_{7 \  7}}+{|_{8 \  8}}+{|_{9 \  9}}+ 
\
\
\displaystyle
{|_{{10}\ {10}}}+{|_{{11}\ {11}}}+{|_{{12}\ {12}}}+{|_{{13}\ {1
3}}}+{|_{{14}\ {14}}}+{|_{{15}\ {15}}}+{|_{{16}\ {16}}}
(35)
Type: LinearOperator?(16,OrderedVariableList?([]),Expression(Integer))
axiom
λ0:𝐋  :=eval(λ,ex1)$𝐋

\label{eq36}\begin{array}{@{}l}
\displaystyle
-{|_{1 \  1}^{1}}+{|_{2 \  2}^{1}}+{|_{3 \  3}^{1}}+{|_{4 \  4}^{1}}+{|_{5 \  5}^{1}}+{|_{6 \  6}^{1}}+{|_{7 \  7}^{1}}+ 
\
\
\displaystyle
{|_{8 \  8}^{1}}+{|_{9 \  9}^{1}}+{|_{{10}\ {10}}^{1}}+{|_{{1
1}\ {11}}^{1}}+{|_{{12}\ {12}}^{1}}+{|_{{13}\ {13}}^{1}}+ 
\
\
\displaystyle
{|_{{14}\ {14}}^{1}}+{|_{{15}\ {15}}^{1}}+{|_{{16}\ {16}}^{1}}-{|_{1 \  2}^{2}}-{|_{2 \  1}^{2}}-{|_{3 \  4}^{2}}+{|_{4 \  3}^{2}}- 
\
\
\displaystyle
{|_{5 \  6}^{2}}+{|_{6 \  5}^{2}}+{|_{7 \  8}^{2}}-{|_{8 \  7}^{2}}-{|_{9 \ {10}}^{2}}+{|_{{10}\  9}^{2}}+{|_{{11}\ {12}}^{2}}- 
\
\
\displaystyle
{|_{{12}\ {11}}^{2}}+{|_{{13}\ {14}}^{2}}-{|_{{14}\ {13}}^{2}}-{|_{{15}\ {16}}^{2}}+{|_{{16}\ {15}}^{2}}-{|_{1 \  3}^{3}}+ 
\
\
\displaystyle
{|_{2 \  4}^{3}}-{|_{3 \  1}^{3}}-{|_{4 \  2}^{3}}-{|_{5 \  7}^{3}}-{|_{6 \  8}^{3}}+{|_{7 \  5}^{3}}+{|_{8 \  6}^{3}}-{|_{9 \ {11}}^{3}}- 
\
\
\displaystyle
{|_{{10}\ {12}}^{3}}+{|_{{11}\  9}^{3}}+{|_{{12}\ {10}}^{3}}+{|_{{13}\ {15}}^{3}}+{|_{{14}\ {16}}^{3}}-{|_{{15}\ {13}}^{3}}- 
\
\
\displaystyle
{|_{{16}\ {14}}^{3}}-{|_{1 \  4}^{4}}-{|_{2 \  3}^{4}}+{|_{3 \  2}^{4}}-{|_{4 \  1}^{4}}-{|_{5 \  8}^{4}}+{|_{6 \  7}^{4}}- 
\
\
\displaystyle
{|_{7 \  6}^{4}}+{|_{8 \  5}^{4}}-{|_{9 \ {12}}^{4}}+{|_{{10}\ {1
1}}^{4}}-{|_{{11}\ {10}}^{4}}+{|_{{12}\  9}^{4}}+{|_{{13}\ {1
6}}^{4}}- 
\
\
\displaystyle
{|_{{14}\ {15}}^{4}}+{|_{{15}\ {14}}^{4}}-{|_{{16}\ {13}}^{4}}-{|_{1 \  5}^{5}}+{|_{2 \  6}^{5}}+{|_{3 \  7}^{5}}+{|_{4 \  8}^{5}}- 
\
\
\displaystyle
{|_{5 \  1}^{5}}-{|_{6 \  2}^{5}}-{|_{7 \  3}^{5}}-{|_{8 \  4}^{5}}-{|_{9 \ {13}}^{5}}-{|_{{10}\ {14}}^{5}}-{|_{{11}\ {15}}^{5}}- 
\
\
\displaystyle
{|_{{12}\ {16}}^{5}}+{|_{{13}\  9}^{5}}+{|_{{14}\ {10}}^{5}}+{|_{{15}\ {11}}^{5}}+{|_{{16}\ {12}}^{5}}-{|_{1 \  6}^{6}}- 
\
\
\displaystyle
{|_{2 \  5}^{6}}+{|_{3 \  8}^{6}}-{|_{4 \  7}^{6}}+{|_{5 \  2}^{6}}-{|_{6 \  1}^{6}}+{|_{7 \  4}^{6}}-{|_{8 \  3}^{6}}-{|_{9 \ {14}}^{6}}+ 
\
\
\displaystyle
{|_{{10}\ {13}}^{6}}-{|_{{11}\ {16}}^{6}}+{|_{{12}\ {15}}^{6}}-{|_{{13}\ {10}}^{6}}+{|_{{14}\  9}^{6}}-{|_{{15}\ {12}}^{6}}+ 
\
\
\displaystyle
{|_{{16}\ {11}}^{6}}-{|_{1 \  7}^{7}}-{|_{2 \  8}^{7}}-{|_{3 \  5}^{7}}+{|_{4 \  6}^{7}}+{|_{5 \  3}^{7}}-{|_{6 \  4}^{7}}- 
\
\
\displaystyle
{|_{7 \  1}^{7}}+{|_{8 \  2}^{7}}-{|_{9 \ {15}}^{7}}+{|_{{10}\ {1
6}}^{7}}+{|_{{11}\ {13}}^{7}}-{|_{{12}\ {14}}^{7}}- 
\
\
\displaystyle
{|_{{13}\ {11}}^{7}}+{|_{{14}\ {12}}^{7}}+{|_{{15}\  9}^{7}}-{|_{{16}\ {10}}^{7}}-{|_{1 \  8}^{8}}+{|_{2 \  7}^{8}}-{|_{3 \  6}^{8}}- 
\
\
\displaystyle
{|_{4 \  5}^{8}}+{|_{5 \  4}^{8}}+{|_{6 \  3}^{8}}-{|_{7 \  2}^{8}}-{|_{8 \  1}^{8}}-{|_{9 \ {16}}^{8}}-{|_{{10}\ {15}}^{8}}+ 
\
\
\displaystyle
{|_{{11}\ {14}}^{8}}+{|_{{12}\ {13}}^{8}}-{|_{{13}\ {12}}^{8}}-{|_{{14}\ {11}}^{8}}+{|_{{15}\ {10}}^{8}}+{|_{{16}\  9}^{8}}- 
\
\
\displaystyle
{|_{1 \  9}^{9}}+{|_{2 \ {10}}^{9}}+{|_{3 \ {11}}^{9}}+{|_{4 \ {12}}^{9}}+{|_{5 \ {13}}^{9}}+{|_{6 \ {14}}^{9}}+{|_{7 \ {1
5}}^{9}}+ 
\
\
\displaystyle
{|_{8 \ {16}}^{9}}-{|_{9 \  1}^{9}}-{|_{{10}\  2}^{9}}-{|_{{1
1}\  3}^{9}}-{|_{{12}\  4}^{9}}-{|_{{13}\  5}^{9}}-{|_{{14}\  6}^{9}}- 
\
\
\displaystyle
{|_{{15}\  7}^{9}}-{|_{{16}\  8}^{9}}-{|_{1 \ {10}}^{10}}-{|_{2 \  9}^{10}}+{|_{3 \ {12}}^{10}}-{|_{4 \ {11}}^{10}}+ 
\
\
\displaystyle
{|_{5 \ {14}}^{10}}-{|_{6 \ {13}}^{10}}-{|_{7 \ {16}}^{10}}+{|_{8 \ {15}}^{10}}+{|_{9 \  2}^{10}}-{|_{{10}\  1}^{10}}+ 
\
\
\displaystyle
{|_{{11}\  4}^{10}}-{|_{{12}\  3}^{10}}+{|_{{13}\  6}^{10}}-{|_{{14}\  5}^{10}}-{|_{{15}\  8}^{10}}+{|_{{16}\  7}^{10}}- 
\
\
\displaystyle
{|_{1 \ {11}}^{11}}-{|_{2 \ {12}}^{11}}-{|_{3 \  9}^{11}}+{|_{4 \ {10}}^{11}}+{|_{5 \ {15}}^{11}}+{|_{6 \ {16}}^{11}}- 
\
\
\displaystyle
{|_{7 \ {13}}^{11}}-{|_{8 \ {14}}^{11}}+{|_{9 \  3}^{11}}-{|_{{10}\  4}^{11}}-{|_{{11}\  1}^{11}}+{|_{{12}\  2}^{11}}+ 
\
\
\displaystyle
{|_{{13}\  7}^{11}}+{|_{{14}\  8}^{11}}-{|_{{15}\  5}^{11}}-{|_{{16}\  6}^{11}}-{|_{1 \ {12}}^{12}}+{|_{2 \ {11}}^{12}}- 
\
\
\displaystyle
{|_{3 \ {10}}^{12}}-{|_{4 \  9}^{12}}+{|_{5 \ {16}}^{12}}-{|_{6 \ {15}}^{12}}+{|_{7 \ {14}}^{12}}-{|_{8 \ {13}}^{12}}+ 
\
\
\displaystyle
{|_{9 \  4}^{12}}+{|_{{10}\  3}^{12}}-{|_{{11}\  2}^{12}}-{|_{{12}\  1}^{12}}+{|_{{13}\  8}^{12}}-{|_{{14}\  7}^{12}}+ 
\
\
\displaystyle
{|_{{15}\  6}^{12}}-{|_{{16}\  5}^{12}}-{|_{1 \ {13}}^{13}}-{|_{2 \ {14}}^{13}}-{|_{3 \ {15}}^{13}}-{|_{4 \ {16}}^{13}}- 
\
\
\displaystyle
{|_{5 \  9}^{13}}+{|_{6 \ {10}}^{13}}+{|_{7 \ {11}}^{13}}+{|_{8 \ {12}}^{13}}+{|_{9 \  5}^{13}}-{|_{{10}\  6}^{13}}- 
\
\
\displaystyle
{|_{{11}\  7}^{13}}-{|_{{12}\  8}^{13}}-{|_{{13}\  1}^{13}}+{|_{{14}\  2}^{13}}+{|_{{15}\  3}^{13}}+{|_{{16}\  4}^{13}}- 
\
\
\displaystyle
{|_{1 \ {14}}^{14}}+{|_{2 \ {13}}^{14}}-{|_{3 \ {16}}^{14}}+{|_{4 \ {15}}^{14}}-{|_{5 \ {10}}^{14}}-{|_{6 \  9}^{14}}- 
\
\
\displaystyle
{|_{7 \ {12}}^{14}}+{|_{8 \ {11}}^{14}}+{|_{9 \  6}^{14}}+{|_{{10}\  5}^{14}}-{|_{{11}\  8}^{14}}+{|_{{12}\  7}^{14}}- 
\
\
\displaystyle
{|_{{13}\  2}^{14}}-{|_{{14}\  1}^{14}}-{|_{{15}\  4}^{14}}+{|_{{16}\  3}^{14}}-{|_{1 \ {15}}^{15}}+{|_{2 \ {16}}^{15}}+ 
\
\
\displaystyle
{|_{3 \ {13}}^{15}}-{|_{4 \ {14}}^{15}}-{|_{5 \ {11}}^{15}}+{|_{6 \ {12}}^{15}}-{|_{7 \  9}^{15}}-{|_{8 \ {10}}^{15}}+ 
\
\
\displaystyle
{|_{9 \  7}^{15}}+{|_{{10}\  8}^{15}}+{|_{{11}\  5}^{15}}-{|_{{12}\  6}^{15}}-{|_{{13}\  3}^{15}}+{|_{{14}\  4}^{15}}- 
\
\
\displaystyle
{|_{{15}\  1}^{15}}-{|_{{16}\  2}^{15}}-{|_{1 \ {16}}^{16}}-{|_{2 \ {15}}^{16}}+{|_{3 \ {14}}^{16}}+{|_{4 \ {13}}^{16}}- 
\
\
\displaystyle
{|_{5 \ {12}}^{16}}-{|_{6 \ {11}}^{16}}+{|_{7 \ {10}}^{16}}-{|_{8 \  9}^{16}}+{|_{9 \  8}^{16}}-{|_{{10}\  7}^{16}}+ 
\
\
\displaystyle
{|_{{11}\  6}^{16}}+{|_{{12}\  5}^{16}}-{|_{{13}\  4}^{16}}-{|_{{14}\  3}^{16}}+{|_{{15}\  2}^{16}}-{|_{{16}\  1}^{16}}
(36)
Type: LinearOperator?(16,OrderedVariableList?([]),Expression(Integer))
axiom
H0:𝐋 :=eval(H,ex1)$𝐋

\label{eq37}\begin{array}{@{}l}
\displaystyle
-{{16}\ {|_{1}^{1}}}+{{12}\ {|_{2}^{2}}}+{{12}\ {|_{3}^{3}}}+{{12}\ {|_{4}^{4}}}+{{12}\ {|_{5}^{5}}}+{{12}\ {|_{6}^{6}}}+ \
\
\displaystyle
{{12}\ {|_{7}^{7}}}+{{12}\ {|_{8}^{8}}}+{{12}\ {|_{9}^{9}}}+{{1
2}\ {|_{10}^{10}}}+{{12}\ {|_{11}^{11}}}+{{12}\ {|_{12}^{12}}}+ 
\
\
\displaystyle
{{12}\ {|_{13}^{13}}}+{{12}\ {|_{14}^{14}}}+{{12}\ {|_{15}^{1
5}}}+{{12}\ {|_{16}^{16}}}
(37)
Type: LinearOperator?(16,OrderedVariableList?([]),Expression(Integer))