login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox Sedenion Algebra is Frobenius In Just One Way revision 2 of 5

1 2 3 4 5
Editor: Bill Page
Time: 2011/04/27 19:44:52 GMT-7
Note: update

changed:
-  16-dimensional vector space representing Sedenion Algebra
-
-Ref: http://en.wikipedia.org/wiki/Sedenion
-
-\begin{axiom}
-)set output tex off
-)set output algebra on
-\end{axiom}
  Linear operators over a 16-dimensional vector space representing
  Sedenion Algebra

Ref:

- http://arxiv.org/abs/1103.5113

  $S_3$-permuted Frobenius Algebras

  *Zbigniew Oziewicz (UNAM), Gregory Peter Wene (UTSA)*

- http://mat.uab.es/~kock/TQFT.html

  Frobenius algebras and 2D topological quantum field theories

  *Joachim Kock*

- http://en.wikipedia.org/wiki/Frobenius_algebra

- http://en.wikipedia.org/wiki/Sedenion

We need the Axiom LinearOperator library.
\begin{axiom}
)library CARTEN MONAL PROP LIN CALEY
\end{axiom}

Use the following macros for convenient notation
\begin{axiom}
-- summation
macro Σ(x,i,n)==reduce(+,[x for i in n])
-- list
macro Ξ(f,i,n)==[f for i in n]
-- subscript
macro sb == subscript
\end{axiom}

𝐋 is the domain of 16-dimensional linear operators over the rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.

changed:
-R ==> EXPR INT
-T ==> CartesianTensor(1,dim,EXPR INT)
-X:List T := [unravel [(i=j => 1;0) for j in 1..dim] for i in 1..dim]
-X(1),X(2)
-\end{axiom}
-
-Generate structure constants for Sedenion Algebra (the Caley-Dickson way)
-
-Ref: http://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction
-\begin{axiom}
-O ==> Octonion R
-SED ==> DirectProduct(2,O)
---B0:=map(x+->seden(x.1,x.2,x.3,x.4,x.5,x.6,x.7,x.8,x.9,x.10,x.11,x.12,x.13,x.14,x.15,x.16),1$SQMATRIX(dim,R)::List List R)
-pair(x:O,y:O):SED==directProduct vector [x,y]
-caleyOne:=pair(1,0)
-B:=map(x+->pair(octon(x.1,x.2,x.3,x.4,x.5,x.6,x.7,x.8),octon(x.9,x.10,x.11,x.12,x.13,x.14,x.15,x.16)),1$SQMATRIX(dim,R)::List List R)
-\end{axiom}
-\begin{axiom}
-caleyMul(x:SED,y:SED):SED == pair((x.1)*(y.1) - conjugate(y.2)*(x.2), (y.2)*(x.1) + (x.2)*conjugate(y.1))
-caleyMul(caleyOne,caleyOne)
---M0:=matrix [[B0.i*B0.j for j in 1..dim] for i in 1..dim]  
-M:=matrix [[caleyMul(B.i,B.j) for j in 1..dim] for i in 1..dim]
-\end{axiom}
-\begin{axiom}
-caleyConj(x:SED):SED == pair(conjugate(x.1), -x.2)
-caleyInv(x:SED):SED == inv(caleyMul(caleyConj x,x).1) * caleyConj(x)
---S0(y)==map(x+->(x*inv(y)=1 or x*inv(y)=-1 => x*inv(y);0),M0)
---S0(B0.1)
-S(y)==map(x+->(caleyMul(x,caleyInv y)=caleyOne => 1;caleyMul(x,caleyInv y)=-caleyOne => -1;0),M)
-S(B.1)
---Yg0:T:=unravel concat concat(map(S0,B0)::List List List R);
-Yg:T:=unravel concat concat(map(S,B)::List List List R)
-test(Yg0=Yg)
-\end{axiom}
macro ℒ == List
macro ℂ == CaleyDickson
macro ℚ == Expression Integer
𝐋 := LinearOperator(dim, OVAR [], ℚ)
𝐞:ℒ 𝐋      := basisVectors()
𝐝:ℒ 𝐋      := basisForms()
I:𝐋:=[1];   -- identity for composition
X:𝐋:=[2,1]; -- twist
\end{axiom}

Now generate structure constants for Sedenion Algebra

The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.

Split-complex, co-quaternions, split-octonions and seneions can be specified by Caley-Dickson parameters
\begin{axiom}
--q0:=sb('q,[0])
q0:=1  -- not split-complex
--q1:=sb('q,[1])
q1:=1  -- not co-quaternion
--q2:=sb('q,[2])
q2:=1  -- not split-octonion
q3:=sb('q,[3])
--q3:=1  -- split-sedennion
QQ := ℂ(ℂ(ℂ(ℂ(ℚ,'i,q0),'j,q1),'k,q2),'l,q3);
\end{axiom}

Basis: Each B.i is a sedennion number
\begin{axiom}
B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ)
-- Multiplication table:
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)
-- Function to divide the matrix entries by a basis element
S(y) == map(x +-> real real real real(x/y),M)
-- The result is a nested list
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ;
-- structure constants form a tensor operator
Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim);
arity Y
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)
\end{axiom}

changed:
-U:T := unravel(concat
-  [[script(u,[[],[j,i]])
-    for i in 1..dim]
-      for j in 1..dim]
-        );
-\end{axiom}
U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim);
\end{axiom}


changed:
-  In other words, if the (3,0)-tensor::
-
-    i  j  k   i  j  k   i  j  k
-     \ | /     \/  /     \  \/
-      \|/   =   \ /   -   \ /
-       0         0         0
  In other words, if the (3,0)-tensor:
$$
\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-0.92)(4.82,0.92)
\psbezier[linewidth=0.04](2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9)
\psline[linewidth=0.04cm](2.4,0.3)(2.4,-0.1)
\psbezier[linewidth=0.04](2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1)
\psline[linewidth=0.04cm](3.0,-0.1)(3.0,0.9)
\psbezier[linewidth=0.04](4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9)
\psline[linewidth=0.04cm](4.6,0.3)(4.6,-0.1)
\psbezier[linewidth=0.04](4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1)
\psline[linewidth=0.04cm](4.0,-0.1)(4.0,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(3.4948437,0.205){-}
\psline[linewidth=0.04cm](0.6,-0.7)(0.6,0.9)
\psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1)
\psline[linewidth=0.04cm](0.0,-0.1)(0.0,0.9)
\psline[linewidth=0.04cm](1.2,-0.1)(1.2,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(1.6948438,0.205){=}
\end{pspicture} 
}
$$

changed:
-\begin{axiom}
-ω := reindex(reindex(U,[2,1])*reindex(Yg,[1,3,2]),[3,2,1])-U*Yg;
-\end{axiom}
Using the LinearOperator domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.

\begin{axiom}
ω:𝐋 :=(Y*I)/U  - (I*Y)/U;
\end{axiom}


changed:
-  is called *pre-Frobenius*.
  is called a [Frobenius Algebra].

added:


changed:
-J := jacobian(ravel ω,concat(map(variables,ravel U))::List Symbol);
-uu := transpose matrix [concat(map(variables,ravel(U)))::List Symbol];
-J::OutputForm * uu::OutputForm = 0;
-nrows(J)
-ncols(J)
-\end{axiom}
J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);
--u := transpose matrix [concat map(variables,ravel U)::ℒ Symbol];
--J::OutputForm * u::OutputForm = 0
nrows(J),ncols(J)
\end{axiom}


changed:
-\begin{axiom}
-NJ:=nullSpace(J)
-SS:=map((x,y)+->x=y,concat map(variables,ravel U),
-  entries reduce(+,[p[i]*NJ.i for i in 1..#NJ]))
-Ug:T := unravel(map(x+->subst(x,SS),ravel U))
-\end{axiom}
-
-This defines a family of pre-Frobenius algebras:
-\begin{axiom}
-test(unravel(map(x+->subst(x,SS),ravel ω))$T=0*ω)
-\end{axiom}

\begin{axiom}
Ñ:=nullSpace(J);
ℰ:=map((x,y)+->x=y, concat
       map(variables,ravel U), entries Σ(sb('p,[i])*Ñ.i, i,1..#Ñ) )
\end{axiom}

This defines a family of Frobenius algebras:
\begin{axiom}
zero? eval(ω,ℰ)
\end{axiom}

The pairing is necessarily diagonal!
\begin{axiom}
Ų:𝐋 := eval(U,ℰ)
matrix Ξ(Ξ((𝐞.i 𝐞.j)/Ų, i,1..dim), j,1..dim)
\end{axiom}

changed:
-Ud:DMP([p[i] for i in 1..#NJ],INT) := determinant [[Ug[i,j] for j in 1..dim] for i in 1..dim]
-factor Ud
-\end{axiom}
Ů:=determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ų), j,1..dim), i,1..dim)
factor Ů
\end{axiom}

changed:
-\begin{axiom}
-Ωg:T:=unravel concat(transpose(1/Ud*adjoint([[Ug[i,j] for j in 1..dim] for i in 1..dim]).adjMat)::List List FRAC POLY INT)
-\end{axiom}
-<center><pre>
-dimension
-Ω
-U
-</pre></center>
-\begin{axiom}
-contract(contract(Ωg,1,Ug,1),1,2)
-\end{axiom}

Solve the [Snake Relation] as a system of linear equations.
\begin{axiom}
Um:=matrix Ξ(Ξ((𝐞.i*𝐞.j)/Ų, i,1..dim), j,1..dim);
mU:=transpose inverse map(retract,Um);
Ω:=Σ(Σ(mU(i,j)*(𝐞.i*𝐞.j), i,1..dim), j,1..dim)
matrix Ξ(Ξ(Ω/(𝐝.i*𝐝.j), i,1..dim), j,1..dim)
\end{axiom}

Check "dimension" and the snake relations.
\begin{axiom}

d:𝐋:=
       Ω    /
       X    /
       Ų

test
    (    I Ω     )  /
    (     Ų I    )  =  I

test
    (     Ω I    )  /
    (    I Ų     )  =  I

\end{axiom}

changed:
-  Co-multiplication
-\begin{axiom}
-λg:=reindex(contract(contract(Ug*Yg,1,Ωg,1),1,Ωg,1),[2,3,1]);
--- just for display
-reindex(λg,[3,1,2])
-\end{axiom}
-<center><pre>
-i  
-λ=Ω
-</pre></center>
-\begin{axiom}
-test(λg*X(1)=Ωg)
-\end{axiom}
  Co-algebra

Compute the "three-point" function and use it to define co-multiplication.
\begin{axiom}
W:=(Y,I)/Ų;
--λ:=(Ω,I,Ω)/(I,W,I)
\end{axiom}

\begin{axiom}

λ:= (I,Ω) / (Y,I)

test( (Ω,I) / (I,Y) = λ)

\end{axiom}

Frobenius Condition

  Like Octonion algebra Sedenion algebra also fails the Frobenius
Condition!

Slow:

\begin{axiom}

Χ := Y / λ ;

Χr := (λ,I)/(I,Y)
test(Χr = Χ )

Χl := (I,λ)/(Y,I);
--test( Χl = Χ )
test( Χr = Χl )

\end{axiom}

Perhaps this is not too surprising since like Octonion Seden
algebra is non-associative (in fact also non-alternative).
Nevertheless Sedenions are "Frobenius" in a more general sense
just because there is a non-degenerate associative pairing.

i = Unit of the algebra
\begin{axiom}
i:=𝐞.1
test
         i     /
         λ     =    Ω

\end{axiom}

Handle
\begin{axiom}

H:𝐋 :=
         λ     /
         X     /
         Y

\end{axiom}

changed:
-ιg:=X(1)*Ug

ι:𝐋:=
    (    i I    ) /
    (     Ų     )


changed:
-test(ιg * Yg = Ug)
-\end{axiom}
test
        Y    /
        ι       = Ų

\end{axiom}

changed:
-Ug0:T:=unravel eval(ravel Ug,[p[1]=1])
-Ωg0:T:=unravel eval(ravel Ωg,[p[1]=1])
-λg0:T:=unravel eval(ravel λg,[p[1]=1]);
-reindex(λg0,[3,1,2])
-\end{axiom}
ex1:=[q[3]=1,p[1]=1]
Ų0:𝐋  :=eval(Ų,ex1)
Ω0:𝐋  :=eval(Ω,ex1)$𝐋
λ0:𝐋  :=eval(λ,ex1)$𝐋
H0:𝐋 :=eval(H,ex1)$𝐋
\end{axiom}

Sedenion Algebra is Frobenius in just one way!

Linear operators over a 16-dimensional vector space representing Sedenion Algebra

Ref:

  • http://arxiv.org/abs/1103.5113

    $S_3$-permuted Frobenius Algebras

    Zbigniew Oziewicz (UNAM), Gregory Peter Wene (UTSA)

  • http://mat.uab.es/~kock/TQFT.html

    Frobenius algebras and 2D topological quantum field theories

    Joachim Kock

  • http://en.wikipedia.org/wiki/Frobenius_algebra
  • http://en.wikipedia.org/wiki/Sedenion

We need the Axiom LinearOperator library. \begin{axiom} )library CARTEN MONAL PROP LIN CALEY \end{axiom}

Use the following macros for convenient notation \begin{axiom} -- summation macro Σ(x,i,n)==reduce(+,[x for i in n]) -- list macro Ξ(f,i,n)==[f for i in n] -- subscript macro sb == subscript \end{axiom}

𝐋 is the domain of 16-dimensional linear operators over the rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients. \begin{axiom} dim:=16 macro ℒ == List macro ℂ == CaleyDickson macro ℚ == Expression Integer 𝐋 := LinearOperator(dim, OVAR [], ℚ) 𝐞:ℒ 𝐋 := basisVectors() 𝐝:ℒ 𝐋 := basisForms() I:𝐋:=[1]; -- identity for composition X:𝐋:=[2,1]; -- twist \end{axiom}

Now generate structure constants for Sedenion Algebra

The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.

Split-complex, co-quaternions, split-octonions and seneions can be specified by Caley-Dickson parameters \begin{axiom} --q0:=sb('q,[0]) q0:=1 -- not split-complex --q1:=sb('q,[1]) q1:=1 -- not co-quaternion --q2:=sb('q,[2]) q2:=1 -- not split-octonion q3:=sb('q,[3]) --q3:=1 -- split-sedennion QQ := ℂ(ℂ(ℂ(ℂ(ℚ,'i,q0),'j,q1),'k,q2),'l,q3); \end{axiom}

Basis: Each B.i is a sedennion number \begin{axiom} B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ) -- Multiplication table: M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim) -- Function to divide the matrix entries by a basis element S(y) == map(x +-> real real real real(x/y),M) -- The result is a nested list ѕ :=map(S,B)::ℒ ℒ ℒ ℚ; -- structure constants form a tensor operator Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim); arity Y matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim) \end{axiom}

A scalar product is denoted by the (2,0)-tensor $U = \{ u_{ij} \}$ \begin{axiom} U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim); \end{axiom}

Definition 1

We say that the scalar product is associative if the tensor equation holds:

    Y   =   Y
     U     U

In other words, if the (3,0)-tensor: $$ \scalebox{1} % Change this value to rescale the drawing. { \begin{pspicture}(0,-0.92)(4.82,0.92) \psbezier[linewidth=0.04]?(2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9) \psline[linewidth=0.04cm]?(2.4,0.3)(2.4,-0.1) \psbezier[linewidth=0.04]?(2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1) \psline[linewidth=0.04cm]?(3.0,-0.1)(3.0,0.9) \psbezier[linewidth=0.04]?(4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9) \psline[linewidth=0.04cm]?(4.6,0.3)(4.6,-0.1) \psbezier[linewidth=0.04]?(4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1) \psline[linewidth=0.04cm]?(4.0,-0.1)(4.0,0.9) \usefont{T1}{ptm}{m}{n} \rput(3.4948437,0.205){-} \psline[linewidth=0.04cm]?(0.6,-0.7)(0.6,0.9) \psbezier[linewidth=0.04]?(0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1) \psline[linewidth=0.04cm]?(0.0,-0.1)(0.0,0.9) \psline[linewidth=0.04cm]?(1.2,-0.1)(1.2,0.9) \usefont{T1}{ptm}{m}{n} \rput(1.6948438,0.205){=} \end{pspicture} } $$

\begin{equation} \label{eq1} \Phi = \{ \phi^{ijk} = {y^e}_{ij} u_{ek} - u_{ie} {y_e}^{jk} \} \end{equation} (three-point function) is zero.

Using the LinearOperator? domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.

\begin{axiom} ω:𝐋 :=(YI)/U - (IY)/U; \end{axiom}

Definition 2

An algebra with a non-degenerate associative scalar product is called a [Frobenius Algebra]?.

We may consider the problem where multiplication Y is given, and look for all associative scalar products $U = U(Y)$

This problem can be solved using linear algebra.

\begin{axiom} )expose MCALCFN J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol); --u := transpose matrix [concat map(variables,ravel U)::ℒ Symbol]?; --J::OutputForm? * u::OutputForm? = 0 nrows(J),ncols(J) \end{axiom}

The matrix J transforms the coefficients of the tensor $U$ into coefficients of the tensor $\Phi$. We are looking for the general linear family of tensors $U=U(Y,p_i)$ such that J transforms $U$ into $\Phi=0$ for any such $U$.

If the null space of the J matrix is not empty we can use the basis to find all non-trivial solutions for U:

\begin{axiom} Ñ:=nullSpace(J); ℰ:=map((x,y)+->x=y, concat map(variables,ravel U), entries Σ(sb('p,[i]?)*Ñ.i, i,1..#Ñ) ) \end{axiom}

This defines a family of Frobenius algebras: \begin{axiom} zero? eval(ω,ℰ) \end{axiom}

The pairing is necessarily diagonal! \begin{axiom} Ų:𝐋 := eval(U,ℰ) matrix Ξ(Ξ((𝐞.i 𝐞.j)/Ų, i,1..dim), j,1..dim) \end{axiom}

The scalar product must be non-degenerate: \begin{axiom} Ů:=determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ų), j,1..dim), i,1..dim) factor Ů \end{axiom}

Definition 3

Co-pairing

Solve the [Snake Relation]? as a system of linear equations. \begin{axiom} Um:=matrix Ξ(Ξ((𝐞.i*𝐞.j)/Ų, i,1..dim), j,1..dim); mU:=transpose inverse map(retract,Um); Ω:=Σ(Σ(mU(i,j)*(𝐞.i*𝐞.j), i,1..dim), j,1..dim) matrix Ξ(Ξ(Ω/(𝐝.i*𝐝.j), i,1..dim), j,1..dim) \end{axiom}

Check "dimension" and the snake relations. \begin{axiom}

d:𝐋:= Ω / X / Ų

test ( I Ω ) / ( Ų I ) = I

test ( Ω I ) / ( I Ų ) = I

\end{axiom}

Definition 4

Co-algebra

Compute the "three-point" function and use it to define co-multiplication. \begin{axiom} W:=(Y,I)/Ų; --λ:=(Ω,I,Ω)/(I,W,I) \end{axiom}

\begin{axiom}

λ:= (I,Ω) / (Y,I)

test( (Ω,I) / (I,Y) = λ)

\end{axiom}

Frobenius Condition

Like Octonion algebra Sedenion algebra also fails the Frobenius Condition!

Slow:

\begin{axiom}

Χ := Y / λ ;

Χr := (λ,I)/(I,Y) test(Χr = Χ )

Χl := (I,λ)/(Y,I); --test( Χl = Χ ) test( Χr = Χl )

\end{axiom}

Perhaps this is not too surprising since like Octonion Seden algebra is non-associative (in fact also non-alternative). Nevertheless Sedenions are "Frobenius" in a more general sense just because there is a non-degenerate associative pairing.

i = Unit of the algebra \begin{axiom} i:=𝐞.1 test i / λ = Ω

\end{axiom}

Handle \begin{axiom}

H:𝐋 := λ / X / Y

\end{axiom}

Definition 5

Co-unit
  i 
  U
  

\begin{axiom}

ι:𝐋:= ( i I ) / ( Ų )

\end{axiom}

Y=U
ι  
\begin{axiom} test Y / ι = Ų

\end{axiom}

For example: \begin{axiom} ex1:=[q[3]?=1,p[1]?=1] Ų0:𝐋 :=eval(Ų,ex1) Ω0:𝐋 :=eval(Ω,ex1)$𝐋 λ0:𝐋 :=eval(λ,ex1)$𝐋 H0:𝐋 :=eval(H,ex1)$𝐋 \end{axiom}


Some or all expressions may not have rendered properly, because Axiom returned the following error:
Error: export AXIOM=/usr/local/lib/fricas/target/x86_64-unknown-linux; export ALDORROOT=/usr/local/aldor/linux/1.1.0; export PATH=$ALDORROOT/bin:$PATH; export HOME=/var/zope2/var/LatexWiki; ulimit -t 600; export LD_LIBRARY_PATH=/usr/local/lib/fricas/target/x86_64-unknown-linux/lib; LANG=en_US.UTF-8 $AXIOM/bin/AXIOMsys < /var/zope2/var/LatexWiki/3205365606214558365-25px.axm
Killed

Checking for foreign routines AXIOM="/usr/local/lib/fricas/target/x86_64-unknown-linux" spad-lib="/usr/local/lib/fricas/target/x86_64-unknown-linux/lib/libspad.so" foreign routines found openServer result -2 FriCAS (AXIOM fork) Computer Algebra System Version: FriCAS 2010-12-08 Timestamp: Tuesday April 5, 2011 at 13:07:45 ----------------------------------------------------------------------------- Issue )copyright to view copyright notices. Issue )summary for a summary of useful system commands. Issue )quit to leave FriCAS and return to shell. -----------------------------------------------------------------------------

(1) -> (1) -> (1) -> (1) -> (1) -> )library CARTEN MONAL PROP LIN CALEY

CartesianTensor is now explicitly exposed in frame initial CartesianTensor will be automatically loaded when needed from /var/zope2/var/LatexWiki/CARTEN.NRLIB/CARTEN Monoidal is now explicitly exposed in frame initial Monoidal will be automatically loaded when needed from /var/zope2/var/LatexWiki/MONAL.NRLIB/MONAL Prop is now explicitly exposed in frame initial Prop will be automatically loaded when needed from /var/zope2/var/LatexWiki/PROP.NRLIB/PROP LinearOperator is now explicitly exposed in frame initial LinearOperator will be automatically loaded when needed from /var/zope2/var/LatexWiki/LIN.NRLIB/LIN CaleyDickson is now explicitly exposed in frame initial CaleyDickson will be automatically loaded when needed from /var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY (1) -> -- summation macro Σ(x,i,n)==reduce(+,[x for i in n])

Type: Void
list macro Ξ(f,i,n)==[f for i in n]
Type: Void
subscript macro sb == subscript

Type: Void (4) -> dim:=16

$$ 16 \leqno(4) $$

Type: PositiveInteger macro ℒ == List

Type: Void macro ℂ == CaleyDickson

Type: Void macro ℚ == Expression Integer

Type: Void 𝐋 := LinearOperator(dim, OVAR [], ℚ)

$$ LinearOperator(16,OrderedVariableList([]),Expression(Integer)) \leqno(8) $$

Type: Type 𝐞:ℒ 𝐋 := basisVectors()

$$ \left[ {| \sb {1}}, \: {| \sb {2}}, \: {| \sb {3}}, \: {| \sb {4}}, \: {| \sb {5}}, \: {| \sb {6}}, \: {| \sb {7}}, \: {| \sb {8}}, \: {| \sb {9}}, \: {| \sb {{10}}}, \: {| \sb {{11}}}, \: {| \sb {{12}}}, \: {| \sb {{13}}}, \: {| \sb {{14}}}, \: {| \sb {{15}}}, \: {| \sb {{16}}} \right] \leqno(9) $$

Type: List(LinearOperator(16,OrderedVariableList([]),Expression(Integer))) 𝐝:ℒ 𝐋 := basisForms()

$$ \left[ {| \sb {{\ }} \sp {1}}, \: {| \sb {{\ }} \sp {2}}, \: {| \sb {{\ }} \sp {3}}, \: {| \sb {{\ }} \sp {4}}, \: {| \sb {{\ }} \sp {5}}, \: {| \sb {{\ }} \sp {6}}, \: {| \sb {{\ }} \sp {7}}, \: {| \sb {{\ }} \sp {8}}, \: {| \sb {{\ }} \sp {9}}, \: {| \sb {{\ }} \sp {{10}}}, \: {| \sb {{\ }} \sp {{11}}}, \: {| \sb {{\ }} \sp {{12}}}, \: {| \sb {{\ }} \sp {{13}}}, \: {| \sb {{\ }} \sp {{14}}}, \: {| \sb {{\ }} \sp {{15}}}, \: {| \sb {{\ }} \sp {{16}}} \right] \leqno(10) $$

Type: List(LinearOperator(16,OrderedVariableList([]),Expression(Integer))) I:𝐋:=[1]; -- identity for composition

Type: LinearOperator(16,OrderedVariableList([]),Expression(Integer)) X:𝐋:=[2,1]; -- twist

Type: LinearOperator(16,OrderedVariableList([]),Expression(Integer)) (13) -> --q0:=sb('q,[0]) q0:=1 -- not split-complex

$$ 1 \leqno(13) $$

Type: PositiveInteger --q1:=sb('q,[1]) q1:=1 -- not co-quaternion

$$ 1 \leqno(14) $$

Type: PositiveInteger --q2:=sb('q,[2]) q2:=1 -- not split-octonion

$$ 1 \leqno(15) $$

Type: PositiveInteger q3:=sb('q,[3])

$$ q \sb {3} \leqno(16) $$

Type: Symbol --q3:=1 -- split-sedennion QQ := ℂ(ℂ(ℂ(ℂ(ℚ,'i,q0),'j,q1),'k,q2),'l,q3);

Type: Type (18) -> B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ)

$$ \left[ 1, \: i, \: j, \: {ij}, \: k, \: {ik}, \: {jk}, \: {{ij}k}, \: l, \: {il}, \: {jl}, \: {{ij}l}, \: {kl}, \: {{ik}l}, \: {{jk}l}, \: {{{ij}k}l} \right] \leqno(18) $$

Type: List(CaleyDickson(CaleyDickson(CaleyDickson(CaleyDickson(Expression(Integer),i,1),j,1),k,1),l,*01q(3)))
Multiplication table: M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)

$$ \left[ \begin{array}{cccccccccccccccc} 1 & i & j & {ij} & k & {ik} & {jk} & {{ij}k} & l & {il} & {jl} & {{ij}l} & {kl} & {{ik}l} & {{jk}l} & {{{ij}k}l} \ i & -1 & -{ij} & j & {-ik} & k & {{ij}k} & -{jk} & {-il} & l & {{ij}l} & {-jl} & {{ik}l} & -{kl} & {{-{ij}k}l} & {{jk}l} \ j & {ij} & -1 & -i & -{jk} & {-{ij}k} & k & {ik} & {-jl} & {-{ij}l} & l & {il} & {{jk}l} & {{{ij}k}l} & -{kl} & {{-ik}l} \ {ij} & -j & i & -1 & {-{ij}k} & {jk} & {-ik} & k & {-{ij}l} & {jl} & {-il} & l & {{{ij}k}l} & {-{jk}l} & {{ik}l} & -{kl} \ k & {ik} & {jk} & {{ij}k} & -1 & -i & -j & -{ij} & -{kl} & {{-ik}l} & {-{jk}l} & {{-{ij}k}l} & l & {il} & {jl} & {{ij}l} \ {ik} & -k & {{ij}k} & -{jk} & i & -1 & {ij} & -j & {{-ik}l} & {kl} & {{-{ij}k}l} & {{jk}l} & {-il} & l & {-{ij}l} & {jl} \ {jk} & {-{ij}k} & -k & {ik} & j & -{ij} & -1 & i & {-{jk}l} & {{{ij}k}l} & {kl} & {{-ik}l} & {-jl} & {{ij}l} & l & {-il} \ {{ij}k} & {jk} & {-ik} & -k & {ij} & j & -i & -1 & {{-{ij}k}l} & {-{jk}l} & {{ik}l} & {kl} & {-{ij}l} & {-jl} & {il} & l \ l & {il} & {jl} & {{ij}l} & {kl} & {{ik}l} & {{jk}l} & {{{ij}k}l} & -{q \sb {3}} & {-{q \sb {3}}i} & {-{q \sb {3}}j} & {{-{q \sb {3}}i}j} & {-{q \sb {3}}k} & {{-{q \sb {3}}i}k} & {{-{q \sb {3}}j}k} & {{{-{q \sb {3}}i}j}k} \ {il} & -l & {{ij}l} & {-jl} & {{ik}l} & -{kl} & {{-{ij}k}l} & {{jk}l} & {{q \sb {3}}i} & -{q \sb {3}} & {{{q \sb {3}}i}j} & {-{q \sb {3}}j} & {{{q \sb {3}}i}k} & {-{q \sb {3}}k} & {{{-{q \sb {3}}i}j}k} & {{{q \sb {3}}j}k} \ {jl} & {-{ij}l} & -l & {il} & {{jk}l} & {{{ij}k}l} & -{kl} & {{-ik}l} & {{q \sb {3}}j} & {{-{q \sb {3}}i}j} & -{q \sb {3}} & {{q \sb {3}}i} & {{{q \sb {3}}j}k} & {{{{q \sb {3}}i}j}k} & {-{q \sb {3}}k} & {{-{q \sb {3}}i}k} \ {{ij}l} & {jl} & {-il} & -l & {{{ij}k}l} & {-{jk}l} & {{ik}l} & -{kl} & {{{q \sb {3}}i}j} & {{q \sb {3}}j} & {-{q \sb {3}}i} & -{q \sb {3}} & {{{{q \sb {3}}i}j}k} & {{-{q \sb {3}}j}k} & {{{q \sb {3}}i}k} & {-{q \sb {3}}k} \ {kl} & {{-ik}l} & {-{jk}l} & {{-{ij}k}l} & -l & {il} & {jl} & {{ij}l} & {{q \sb {3}}k} & {{-{q \sb {3}}i}k} & {{-{q \sb {3}}j}k} & {{{-{q \sb {3}}i}j}k} & -{q \sb {3}} & {{q \sb {3}}i} & {{q \sb {3}}j} & {{{q \sb {3}}i}j} \ {{ik}l} & {kl} & {{-{ij}k}l} & {{jk}l} & {-il} & -l & {-{ij}l} & {jl} & {{{q \sb {3}}i}k} & {{q \sb {3}}k} & {{{-{q \sb {3}}i}j}k} & {{{q \sb {3}}j}k} & {-{q \sb {3}}i} & -{q \sb {3}} & {{-{q \sb {3}}i}j} & {{q \sb {3}}j} \ {{jk}l} & {{{ij}k}l} & {kl} & {{-ik}l} & {-jl} & {{ij}l} & -l & {-il} & {{{q \sb {3}}j}k} & {{{{q \sb {3}}i}j}k} & {{q \sb {3}}k} & {{-{q \sb {3}}i}k} & {-{q \sb {3}}j} & {{{q \sb {3}}i}j} & -{q \sb {3}} & {-{q \sb {3}}i} \ {{{ij}k}l} & {-{jk}l} & {{ik}l} & {kl} & {-{ij}l} & {-jl} & {il} & -l & {{{{q \sb {3}}i}j}k} & {{-{q \sb {3}}j}k} & {{{q \sb {3}}i}k} & {{q \sb {3}}k} & {{-{q \sb {3}}i}j} & {-{q \sb {3}}j} & {{q \sb {3}}i} & -{q \sb {3}} \end{array} \right] \leqno(19) $$

Type: Matrix(CaleyDickson(CaleyDickson(CaleyDickson(CaleyDickson(Expression(Integer),i,1),j,1),k,1),l,*01q(3)))
Function to divide the matrix entries by a basis element S(y) == map(x +-> real real real real(x/y),M)
Type: Void
The result is a nested list ѕ :=map(S,B)::ℒ ℒ ℒ ℚ;

Compiling function S with type CaleyDickson(CaleyDickson( CaleyDickson(CaleyDickson(Expression(Integer),i,1),j,1),k,1),l, *01q(3)) -> Matrix(Expression(Integer))

Type: List(List(List(Expression(Integer))))
structure constants form a tensor operator Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim);

Type: LinearOperator(16,OrderedVariableList([]),Expression(Integer)) arity Y

$$ 2 \over 1 \leqno(23) $$

Type: Prop(LinearOperator(16,OrderedVariableList([]),Expression(Integer))) matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)

$$ \left[ \begin{array}{cccccccccccccccc} {| \sb {1}} & {| \sb {2}} & {| \sb {3}} & {| \sb {4}} & {| \sb {5}} & {| \sb {6}} & {| \sb {7}} & {| \sb {8}} & {| \sb {9}} & {| \sb {{10}}} & {| \sb {{11}}} & {| \sb {{12}}} & {| \sb {{13}}} & {| \sb {{14}}} & {| \sb {{15}}} & {| \sb {{16}}} \ {| \sb {2}} & -{| \sb {1}} & -{| \sb {4}} & {| \sb {3}} & -{| \sb {6}} & {| \sb {5}} & {| \sb {8}} & -{| \sb {7}} & -{| \sb {{10}}} & {| \sb {9}} & {| \sb {{12}}} & -{| \sb {{11}}} & {| \sb {{14}}} & -{| \sb {{13}}} & -{| \sb {{16}}} & {| \sb {{15}}} \ {| \sb {3}} & {| \sb {4}} & -{| \sb {1}} & -{| \sb {2}} & -{| \sb {7}} & -{| \sb {8}} & {| \sb {5}} & {| \sb {6}} & -{| \sb {{11}}} & -{| \sb {{12}}} & {| \sb {9}} & {| \sb {{10}}} & {| \sb {{15}}} & {| \sb {{16}}} & -{| \sb {{13}}} & -{| \sb {{14}}} \ {| \sb {4}} & -{| \sb {3}} & {| \sb {2}} & -{| \sb {1}} & -{| \sb {8}} & {| \sb {7}} & -{| \sb {6}} & {| \sb {5}} & -{| \sb {{12}}} & {| \sb {{11}}} & -{| \sb {{10}}} & {| \sb {9}} & {| \sb {{16}}} & -{| \sb {{15}}} & {| \sb {{14}}} & -{| \sb {{13}}} \ {| \sb {5}} & {| \sb {6}} & {| \sb {7}} & {| \sb {8}} & -{| \sb {1}} & -{| \sb {2}} & -{| \sb {3}} & -{| \sb {4}} & -{| \sb {{13}}} & -{| \sb {{14}}} & -{| \sb {{15}}} & -{| \sb {{16}}} & {| \sb {9}} & {| \sb {{10}}} & {| \sb {{11}}} & {| \sb {{12}}} \ {| \sb {6}} & -{| \sb {5}} & {| \sb {8}} & -{| \sb {7}} & {| \sb {2}} & -{| \sb {1}} & {| \sb {4}} & -{| \sb {3}} & -{| \sb {{14}}} & {| \sb {{13}}} & -{| \sb {{16}}} & {| \sb {{15}}} & -{| \sb {{10}}} & {| \sb {9}} & -{| \sb {{12}}} & {| \sb {{11}}} \ {| \sb {7}} & -{| \sb {8}} & -{| \sb {5}} & {| \sb {6}} & {| \sb {3}} & -{| \sb {4}} & -{| \sb {1}} & {| \sb {2}} & -{| \sb {{15}}} & {| \sb {{16}}} & {| \sb {{13}}} & -{| \sb {{14}}} & -{| \sb {{11}}} & {| \sb {{12}}} & {| \sb {9}} & -{| \sb {{10}}} \ {| \sb {8}} & {| \sb {7}} & -{| \sb {6}} & -{| \sb {5}} & {| \sb {4}} & {| \sb {3}} & -{| \sb {2}} & -{| \sb {1}} & -{| \sb {{16}}} & -{| \sb {{15}}} & {| \sb {{14}}} & {| \sb {{13}}} & -{| \sb {{12}}} & -{| \sb {{11}}} & {| \sb {{10}}} & {| \sb {9}} \ {| \sb {9}} & {| \sb {{10}}} & {| \sb {{11}}} & {| \sb {{12}}} & {| \sb {{13}}} & {| \sb {{14}}} & {| \sb {{15}}} & {| \sb {{16}}} & -{{q \sb {3}} \ {| \sb {1}}} & -{{q \sb {3}} \ {| \sb {2}}} & -{{q \sb {3}} \ {| \sb {3}}} & -{{q \sb {3}} \ {| \sb {4}}} & -{{q \sb {3}} \ {| \sb {5}}} & -{{q \sb {3}} \ {| \sb {6}}} & -{{q \sb {3}} \ {| \sb {7}}} & -{{q \sb {3}} \ {| \sb {8}}} \ {| \sb {{10}}} & -{| \sb {9}} & {| \sb {{12}}} & -{| \sb {{11}}} & {| \sb {{14}}} & -{| \sb {{13}}} & -{| \sb {{16}}} & {| \sb {{15}}} & {{q \sb {3}} \ {| \sb {2}}} & -{{q \sb {3}} \ {| \sb {1}}} & {{q \sb {3}} \ {| \sb {4}}} & -{{q \sb {3}} \ {| \sb {3}}} & {{q \sb {3}} \ {| \sb {6}}} & -{{q \sb {3}} \ {| \sb {5}}} & -{{q \sb {3}} \ {| \sb {8}}} & {{q \sb {3}} \ {| \sb {7}}} \ {| \sb {{11}}} & -{| \sb {{12}}} & -{| \sb {9}} & {| \sb {{10}}} & {| \sb {{15}}} & {| \sb {{16}}} & -{| \sb {{13}}} & -{| \sb {{14}}} & {{q \sb {3}} \ {| \sb {3}}} & -{{q \sb {3}} \ {| \sb {4}}} & -{{q \sb {3}} \ {| \sb {1}}} & {{q \sb {3}} \ {| \sb {2}}} & {{q \sb {3}} \ {| \sb {7}}} & {{q \sb {3}} \ {| \sb {8}}} & -{{q \sb {3}} \ {| \sb {5}}} & -{{q \sb {3}} \ {| \sb {6}}} \ {| \sb {{12}}} & {| \sb {{11}}} & -{| \sb {{10}}} & -{| \sb {9}} & {| \sb {{16}}} & -{| \sb {{15}}} & {| \sb {{14}}} & -{| \sb {{13}}} & {{q \sb {3}} \ {| \sb {4}}} & {{q \sb {3}} \ {| \sb {3}}} & -{{q \sb {3}} \ {| \sb {2}}} & -{{q \sb {3}} \ {| \sb {1}}} & {{q \sb {3}} \ {| \sb {8}}} & -{{q \sb {3}} \ {| \sb {7}}} & {{q \sb {3}} \ {| \sb {6}}} & -{{q \sb {3}} \ {| \sb {5}}} \ {| \sb {{13}}} & -{| \sb {{14}}} & -{| \sb {{15}}} & -{| \sb {{16}}} & -{| \sb {9}} & {| \sb {{10}}} & {| \sb {{11}}} & {| \sb {{12}}} & {{q \sb {3}} \ {| \sb {5}}} & -{{q \sb {3}} \ {| \sb {6}}} & -{{q \sb {3}} \ {| \sb {7}}} & -{{q \sb {3}} \ {| \sb {8}}} & -{{q \sb {3}} \ {| \sb {1}}} & {{q \sb {3}} \ {| \sb {2}}} & {{q \sb {3}} \ {| \sb {3}}} & {{q \sb {3}} \ {| \sb {4}}} \ {| \sb {{14}}} & {| \sb {{13}}} & -{| \sb {{16}}} & {| \sb {{15}}} & -{| \sb {{10}}} & -{| \sb {9}} & -{| \sb {{12}}} & {| \sb {{11}}} & {{q \sb {3}} \ {| \sb {6}}} & {{q \sb {3}} \ {| \sb {5}}} & -{{q \sb {3}} \ {| \sb {8}}} & {{q \sb {3}} \ {| \sb {7}}} & -{{q \sb {3}} \ {| \sb {2}}} & -{{q \sb {3}} \ {| \sb {1}}} & -{{q \sb {3}} \ {| \sb {4}}} & {{q \sb {3}} \ {| \sb {3}}} \ {| \sb {{15}}} & {| \sb {{16}}} & {| \sb {{13}}} & -{| \sb {{14}}} & -{| \sb {{11}}} & {| \sb {{12}}} & -{| \sb {9}} & -{| \sb {{10}}} & {{q \sb {3}} \ {| \sb {7}}} & {{q \sb {3}} \ {| \sb {8}}} & {{q \sb {3}} \ {| \sb {5}}} & -{{q \sb {3}} \ {| \sb {6}}} & -{{q \sb {3}} \ {| \sb {3}}} & {{q \sb {3}} \ {| \sb {4}}} & -{{q \sb {3}} \ {| \sb {1}}} & -{{q \sb {3}} \ {| \sb {2}}} \ {| \sb {{16}}} & -{| \sb {{15}}} & {| \sb {{14}}} & {| \sb {{13}}} & -{| \sb {{12}}} & -{| \sb {{11}}} & {| \sb {{10}}} & -{| \sb {9}} & {{q \sb {3}} \ {| \sb {8}}} & -{{q \sb {3}} \ {| \sb {7}}} & {{q \sb {3}} \ {| \sb {6}}} & {{q \sb {3}} \ {| \sb {5}}} & -{{q \sb {3}} \ {| \sb {4}}} & -{{q \sb {3}} \ {| \sb {3}}} & {{q \sb {3}} \ {| \sb {2}}} & -{{q \sb {3}} \ {| \sb {1}}} \end{array} \right] \leqno(24) $$

Type: Matrix(LinearOperator(16,OrderedVariableList([]),Expression(Integer))) (25) -> U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim);

Type: LinearOperator(16,OrderedVariableList([]),Expression(Integer)) (26) -> ω:𝐋 :=(YI)/U - (IY)/U;

Type: LinearOperator(16,OrderedVariableList([]),Expression(Integer)) (27) -> )expose MCALCFN

MultiVariableCalculusFunctions is now explicitly exposed in frame initial J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);

Type: Matrix(Expression(Integer)) --u := transpose matrix [concat map(variables,ravel U)::ℒ Symbol]; --J::OutputForm * u::OutputForm = 0 nrows(J),ncols(J)

$$ \left[ {4096}, \: {256} \right] \leqno(28) $$

Type: Tuple(PositiveInteger) (29) -> Ñ:=nullSpace(J);

Type: List(Vector(Expression(Integer))) ℰ:=map((x,y)+->x=y, concat map(variables,ravel U), entries Σ(sb('p,[i])*Ñ.i, i,1..#Ñ) )

$$ \left[ {{u \sp {{1, \: 1}}}=-{{p \sb {1}} \over {q \sb {3}}}}, \: {{u \sp {{1, \: 2}}}=0}, \: {{u \sp {{1, \: 3}}}=0}, \: {{u \sp {{1, \: 4}}}=0}, \: {{u \sp {{1, \: 5}}}=0}, \: {{u \sp {{1, \: 6}}}=0}, \: {{u \sp {{1, \: 7}}}=0}, \: {{u \sp {{1, \: 8}}}=0}, \: {{u \sp {{1, \: 9}}}=0}, \: {{u \sp {{1, \: {10}}}}=0}, \: {{u \sp {{1, \: {11}}}}=0}, \: {{u \sp {{1, \: {12}}}}=0}, \: {{u \sp {{1, \: {13}}}}=0}, \: {{u \sp {{1, \: {14}}}}=0}, \: {{u \sp {{1, \: {15}}}}=0}, \: {{u \sp {{1, \: {16}}}}=0}, \: {{u \sp {{2, \: 1}}}=0}, \: {{u \sp {{2, \: 2}}}={{p \sb {1}} \over {q \sb {3}}}}, \: {{u \sp {{2, \: 3}}}=0}, \: {{u \sp {{2, \: 4}}}=0}, \: {{u \sp {{2, \: 5}}}=0}, \: {{u \sp {{2, \: 6}}}=0}, \: {{u \sp {{2, \: 7}}}=0}, \: {{u \sp {{2, \: 8}}}=0}, \: {{u \sp {{2, \: 9}}}=0}, \: {{u \sp {{2, \: {10}}}}=0}, \: {{u \sp {{2, \: {11}}}}=0}, \: {{u \sp {{2, \: {12}}}}=0}, \: {{u \sp {{2, \: {13}}}}=0}, \: {{u \sp {{2, \: {14}}}}=0}, \: {{u \sp {{2, \: {15}}}}=0}, \: {{u \sp {{2, \: {16}}}}=0}, \: {{u \sp {{3, \: 1}}}=0}, \: {{u \sp {{3, \: 2}}}=0}, \: {{u \sp {{3, \: 3}}}={{p \sb {1}} \over {q \sb {3}}}}, \: {{u \sp {{3, \: 4}}}=0}, \: {{u \sp {{3, \: 5}}}=0}, \: {{u \sp {{3, \: 6}}}=0}, \: {{u \sp {{3, \: 7}}}=0}, \: {{u \sp {{3, \: 8}}}=0}, \: {{u \sp {{3, \: 9}}}=0}, \: {{u \sp {{3, \: {10}}}}=0}, \: {{u \sp {{3, \: {11}}}}=0}, \: {{u \sp {{3, \: {12}}}}=0}, \: {{u \sp {{3, \: {13}}}}=0}, \: {{u \sp {{3, \: {14}}}}=0}, \: {{u \sp {{3, \: {15}}}}=0}, \: {{u \sp {{3, \: {16}}}}=0}, \: {{u \sp {{4, \: 1}}}=0}, \: {{u \sp {{4, \: 2}}}=0}, \: {{u \sp {{4, \: 3}}}=0}, \: {{u \sp {{4, \: 4}}}={{p \sb {1}} \over {q \sb {3}}}}, \: {{u \sp {{4, \: 5}}}=0}, \: {{u \sp {{4, \: 6}}}=0}, \: {{u \sp {{4, \: 7}}}=0}, \: {{u \sp {{4, \: 8}}}=0}, \: {{u \sp {{4, \: 9}}}=0}, \: {{u \sp {{4, \: {10}}}}=0}, \: {{u \sp {{4, \: {11}}}}=0}, \: {{u \sp {{4, \: {12}}}}=0}, \: {{u \sp {{4, \: {13}}}}=0}, \: {{u \sp {{4, \: {14}}}}=0}, \: {{u \sp {{4, \: {15}}}}=0}, \: {{u \sp {{4, \: {16}}}}=0}, \: {{u \sp {{5, \: 1}}}=0}, \: {{u \sp {{5, \: 2}}}=0}, \: {{u \sp {{5, \: 3}}}=0}, \: {{u \sp {{5, \: 4}}}=0}, \: {{u \sp {{5, \: 5}}}={{p \sb {1}} \over {q \sb {3}}}}, \: {{u \sp {{5, \: 6}}}=0}, \: {{u \sp {{5, \: 7}}}=0}, \: {{u \sp {{5, \: 8}}}=0}, \: {{u \sp {{5, \: 9}}}=0}, \: {{u \sp {{5, \: {10}}}}=0}, \: {{u \sp {{5, \: {11}}}}=0}, \: {{u \sp {{5, \: {12}}}}=0}, \: {{u \sp {{5, \: {13}}}}=0}, \: {{u \sp {{5, \: {14}}}}=0}, \: {{u \sp {{5, \: {15}}}}=0}, \: {{u \sp {{5, \: {16}}}}=0}, \: {{u \sp {{6, \: 1}}}=0}, \: {{u \sp {{6, \: 2}}}=0}, \: {{u \sp {{6, \: 3}}}=0}, \: {{u \sp {{6, \: 4}}}=0}, \: {{u \sp {{6, \: 5}}}=0}, \: {{u \sp {{6, \: 6}}}={{p \sb {1}} \over {q \sb {3}}}}, \: {{u \sp {{6, \: 7}}}=0}, \: {{u \sp {{6, \: 8}}}=0}, \: {{u \sp {{6, \: 9}}}=0}, \: {{u \sp {{6, \: {10}}}}=0}, \: {{u \sp {{6, \: {11}}}}=0}, \: {{u \sp {{6, \: {12}}}}=0}, \: {{u \sp {{6, \: {13}}}}=0}, \: {{u \sp {{6, \: {14}}}}=0}, \: {{u \sp {{6, \: {15}}}}=0}, \: {{u \sp {{6, \: {16}}}}=0}, \: {{u \sp {{7, \: 1}}}=0}, \: {{u \sp {{7, \: 2}}}=0}, \: {{u \sp {{7, \: 3}}}=0}, \: {{u \sp {{7, \: 4}}}=0}, \: {{u \sp {{7, \: 5}}}=0}, \: {{u \sp {{7, \: 6}}}=0}, \: {{u \sp {{7, \: 7}}}={{p \sb {1}} \over {q \sb {3}}}}, \: {{u \sp {{7, \: 8}}}=0}, \: {{u \sp {{7, \: 9}}}=0}, \: {{u \sp {{7, \: {10}}}}=0}, \: {{u \sp {{7, \: {11}}}}=0}, \: {{u \sp {{7, \: {12}}}}=0}, \: {{u \sp {{7, \: {13}}}}=0}, \: {{u \sp {{7, \: {14}}}}=0}, \: {{u \sp {{7, \: {15}}}}=0}, \: {{u \sp {{7, \: {16}}}}=0}, \: {{u \sp {{8, \: 1}}}=0}, \: {{u \sp {{8, \: 2}}}=0}, \: {{u \sp {{8, \: 3}}}=0}, \: {{u \sp {{8, \: 4}}}=0}, \: {{u \sp {{8, \: 5}}}=0}, \: {{u \sp {{8, \: 6}}}=0}, \: {{u \sp {{8, \: 7}}}=0}, \: {{u \sp {{8, \: 8}}}={{p \sb {1}} \over {q \sb {3}}}}, \: {{u \sp {{8, \: 9}}}=0}, \: {{u \sp {{8, \: {10}}}}=0}, \: {{u \sp {{8, \: {11}}}}=0}, \: {{u \sp {{8, \: {12}}}}=0}, \: {{u \sp {{8, \: {13}}}}=0}, \: {{u \sp {{8, \: {14}}}}=0}, \: {{u \sp {{8, \: {15}}}}=0}, \: {{u \sp {{8, \: {16}}}}=0}, \: {{u \sp {{9, \: 1}}}=0}, \: {{u \sp {{9, \: 2}}}=0}, \: {{u \sp {{9, \: 3}}}=0}, \: {{u \sp {{9, \: 4}}}=0}, \: {{u \sp {{9, \: 5}}}=0}, \: {{u \sp {{9, \: 6}}}=0}, \: {{u \sp {{9, \: 7}}}=0}, \: {{u \sp {{9, \: 8}}}=0}, \: {{u \sp {{9, \: 9}}}={p \sb {1}}}, \: {{u \sp {{9, \: {10}}}}=0}, \: {{u \sp {{9, \: {11}}}}=0}, \: {{u \sp {{9, \: {12}}}}=0}, \: {{u \sp {{9, \: {13}}}}=0}, \: {{u \sp {{9, \: {14}}}}=0}, \: {{u \sp {{9, \: {15}}}}=0}, \: {{u \sp {{9, \: {16}}}}=0}, \: {{u \sp {{{10}, \: 1}}}=0}, \: {{u \sp {{{10}, \: 2}}}=0}, \: {{u \sp {{{10}, \: 3}}}=0}, \: {{u \sp {{{10}, \: 4}}}=0}, \: {{u \sp {{{10}, \: 5}}}=0}, \: {{u \sp {{{10}, \: 6}}}=0}, \: {{u \sp {{{10}, \: 7}}}=0}, \: {{u \sp {{{10}, \: 8}}}=0}, \: {{u \sp {{{10}, \: 9}}}=0}, \: {{u \sp {{{10}, \: {10}}}}={p \sb {1}}}, \: {{u \sp {{{10}, \: {11}}}}=0}, \: {{u \sp {{{10}, \: {12}}}}=0}, \: {{u \sp {{{10}, \: {13}}}}=0}, \: {{u \sp {{{10}, \: {14}}}}=0}, \: {{u \sp {{{10}, \: {15}}}}=0}, \: {{u \sp {{{10}, \: {16}}}}=0}, \: {{u \sp {{{11}, \: 1}}}=0}, \: {{u \sp {{{11}, \: 2}}}=0}, \: {{u \sp {{{11}, \: 3}}}=0}, \: {{u \sp {{{11}, \: 4}}}=0}, \: {{u \sp {{{11}, \: 5}}}=0}, \: {{u \sp {{{11}, \: 6}}}=0}, \: {{u \sp {{{11}, \: 7}}}=0}, \: {{u \sp {{{11}, \: 8}}}=0}, \: {{u \sp {{{11}, \: 9}}}=0}, \: {{u \sp {{{11}, \: {10}}}}=0}, \: {{u \sp {{{11}, \: {11}}}}={p \sb {1}}}, \: {{u \sp {{{11}, \: {12}}}}=0}, \: {{u \sp {{{11}, \: {13}}}}=0}, \: {{u \sp {{{11}, \: {14}}}}=0}, \: {{u \sp {{{11}, \: {15}}}}=0}, \: {{u \sp {{{11}, \: {16}}}}=0}, \: {{u \sp {{{12}, \: 1}}}=0}, \: {{u \sp {{{12}, \: 2}}}=0}, \: {{u \sp {{{12}, \: 3}}}=0}, \: {{u \sp {{{12}, \: 4}}}=0}, \: {{u \sp {{{12}, \: 5}}}=0}, \: {{u \sp {{{12}, \: 6}}}=0}, \: {{u \sp {{{12}, \: 7}}}=0}, \: {{u \sp {{{12}, \: 8}}}=0}, \: {{u \sp {{{12}, \: 9}}}=0}, \: {{u \sp {{{12}, \: {10}}}}=0}, \: {{u \sp {{{12}, \: {11}}}}=0}, \: {{u \sp {{{12}, \: {12}}}}={p \sb {1}}}, \: {{u \sp {{{12}, \: {13}}}}=0}, \: {{u \sp {{{12}, \: {14}}}}=0}, \: {{u \sp {{{12}, \: {15}}}}=0}, \: {{u \sp {{{12}, \: {16}}}}=0}, \: {{u \sp {{{13}, \: 1}}}=0}, \: {{u \sp {{{13}, \: 2}}}=0}, \: {{u \sp {{{13}, \: 3}}}=0}, \: {{u \sp {{{13}, \: 4}}}=0}, \: {{u \sp {{{13}, \: 5}}}=0}, \: {{u \sp {{{13}, \: 6}}}=0}, \: {{u \sp {{{13}, \: 7}}}=0}, \: {{u \sp {{{13}, \: 8}}}=0}, \: {{u \sp {{{13}, \: 9}}}=0}, \: {{u \sp {{{13}, \: {10}}}}=0}, \: {{u \sp {{{13}, \: {11}}}}=0}, \: {{u \sp {{{13}, \: {12}}}}=0}, \: {{u \sp {{{13}, \: {13}}}}={p \sb {1}}}, \: {{u \sp {{{13}, \: {14}}}}=0}, \: {{u \sp {{{13}, \: {15}}}}=0}, \: {{u \sp {{{13}, \: {16}}}}=0}, \: {{u \sp {{{14}, \: 1}}}=0}, \: {{u \sp {{{14}, \: 2}}}=0}, \: {{u \sp {{{14}, \: 3}}}=0}, \: {{u \sp {{{14}, \: 4}}}=0}, \: {{u \sp {{{14}, \: 5}}}=0}, \: {{u \sp {{{14}, \: 6}}}=0}, \: {{u \sp {{{14}, \: 7}}}=0}, \: {{u \sp {{{14}, \: 8}}}=0}, \: {{u \sp {{{14}, \: 9}}}=0}, \: {{u \sp {{{14}, \: {10}}}}=0}, \: {{u \sp {{{14}, \: {11}}}}=0}, \: {{u \sp {{{14}, \: {12}}}}=0}, \: {{u \sp {{{14}, \: {13}}}}=0}, \: {{u \sp {{{14}, \: {14}}}}={p \sb {1}}}, \: {{u \sp {{{14}, \: {15}}}}=0}, \: {{u \sp {{{14}, \: {16}}}}=0}, \: {{u \sp {{{15}, \: 1}}}=0}, \: {{u \sp {{{15}, \: 2}}}=0}, \: {{u \sp {{{15}, \: 3}}}=0}, \: {{u \sp {{{15}, \: 4}}}=0}, \: {{u \sp {{{15}, \: 5}}}=0}, \: {{u \sp {{{15}, \: 6}}}=0}, \: {{u \sp {{{15}, \: 7}}}=0}, \: {{u \sp {{{15}, \: 8}}}=0}, \: {{u \sp {{{15}, \: 9}}}=0}, \: {{u \sp {{{15}, \: {10}}}}=0}, \: {{u \sp {{{15}, \: {11}}}}=0}, \: {{u \sp {{{15}, \: {12}}}}=0}, \: {{u \sp {{{15}, \: {13}}}}=0}, \: {{u \sp {{{15}, \: {14}}}}=0}, \: {{u \sp {{{15}, \: {15}}}}={p \sb {1}}}, \: {{u \sp {{{15}, \: {16}}}}=0}, \: {{u \sp {{{16}, \: 1}}}=0}, \: {{u \sp {{{16}, \: 2}}}=0}, \: {{u \sp {{{16}, \: 3}}}=0}, \: {{u \sp {{{16}, \: 4}}}=0}, \: {{u \sp {{{16}, \: 5}}}=0}, \: {{u \sp {{{16}, \: 6}}}=0}, \: {{u \sp {{{16}, \: 7}}}=0}, \: {{u \sp {{{16}, \: 8}}}=0}, \: {{u \sp {{{16}, \: 9}}}=0}, \: {{u \sp {{{16}, \: {10}}}}=0}, \: {{u \sp {{{16}, \: {11}}}}=0}, \: {{u \sp {{{16}, \: {12}}}}=0}, \: {{u \sp {{{16}, \: {13}}}}=0}, \: {{u \sp {{{16}, \: {14}}}}=0}, \: {{u \sp {{{16}, \: {15}}}}=0}, \: {{u \sp {{{16}, \: {16}}}}={p \sb {1}}} \right] \leqno(30) $$

Type: List(Equation(Expression(Integer))) (31) -> zero? eval(ω,ℰ)

$$ true \leqno(31) $$

Type: Boolean (32) -> Ų:𝐋 := eval(U,ℰ)

$$ -{{{p \sb {1}} \over {q \sb {3}}} \ {| \sb {{\ }} \sp {{1 \ 1}}}}+{{{p \sb {1}} \over {q \sb {3}}} \ {| \sb {{\ }} \sp {{2 \ 2}}}}+{{{p \sb {1}} \over {q \sb {3}}} \ {| \sb {{\ }} \sp {{3 \ 3}}}}+{{{p \sb {1}} \over {q \sb {3}}} \ {| \sb {{\ }} \sp {{4 \ 4}}}}+{{{p \sb {1}} \over {q \sb {3}}} \ {| \sb {{\ }} \sp {{5 \ 5}}}}+{{{p \sb {1}} \over {q \sb {3}}} \ {| \sb {{\ }} \sp {{6 \ 6}}}}+{{{p \sb {1}} \over {q \sb {3}}} \ {| \sb {{\ }} \sp {{7 \ 7}}}}+{{{p \sb {1}} \over {q \sb {3}}} \ {| \sb {{\ }} \sp {{8 \ 8}}}}+{{p \sb {1}} \ {| \sb {{\ }} \sp {{9 \ 9}}}}+{{p \sb {1}} \ {| \sb {{\ }} \sp {{{10} \ {10}}}}}+{{p \sb {1}} \ {| \sb {{\ }} \sp {{{11} \ {11}}}}}+{{p \sb {1}} \ {| \sb {{\ }} \sp {{{12} \ {12}}}}}+{{p \sb {1}} \ {| \sb {{\ }} \sp {{{13} \ {13}}}}}+{{p \sb {1}} \ {| \sb {{\ }} \sp {{{14} \ {14}}}}}+{{p \sb {1}} \ {| \sb {{\ }} \sp {{{15} \ {15}}}}}+{{p \sb {1}} \ {| \sb {{\ }} \sp {{{16} \ {16}}}}} \leqno(32) $$

Type: LinearOperator(16,OrderedVariableList([]),Expression(Integer)) matrix Ξ(Ξ((𝐞.i 𝐞.j)/Ų, i,1..dim), j,1..dim)

$$ \left[ \begin{array}{cccccccccccccccc} -{{p \sb {1}} \over {q \sb {3}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & {{p \sb {1}} \over {q \sb {3}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & {{p \sb {1}} \over {q \sb {3}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & {{p \sb {1}} \over {q \sb {3}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & {{p \sb {1}} \over {q \sb {3}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & {{p \sb {1}} \over {q \sb {3}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & {{p \sb {1}} \over {q \sb {3}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & {{p \sb {1}} \over {q \sb {3}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {p \sb {1}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {p \sb {1}} & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {p \sb {1}} & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {p \sb {1}} & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {p \sb {1}} & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {p \sb {1}} & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {p \sb {1}} & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {p \sb {1}} \end{array} \right] \leqno(33) $$

Type: Matrix(LinearOperator(16,OrderedVariableList([]),Expression(Integer))) (34) -> Ů:=determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ų), j,1..dim), i,1..dim)

$$ -{{{p \sb {1}} \sp {16}} \over {{q \sb {3}} \sp 8}} \leqno(34) $$

Type: Expression(Integer) factor Ů

$$ -{{{p \sb {1}} \sp {16}} \over {{q \sb {3}} \sp 8}} \leqno(35) $$

Type: Factored(Expression(Integer)) (36) -> Um:=matrix Ξ(Ξ((𝐞.i*𝐞.j)/Ų, i,1..dim), j,1..dim);

Type: Matrix(LinearOperator(16,OrderedVariableList([]),Expression(Integer))) mU:=transpose inverse map(retract,Um);

Type: Matrix(Expression(Integer)) Ω:=Σ(Σ(mU(i,j)*(𝐞.i*𝐞.j), i,1..dim), j,1..dim)

$$ -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ 1}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ 2}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ 3}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ 4}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ 5}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ 6}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ 7}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ 8}}}}+{{1 \over {p \sb {1}}} \ {| \sb {{9 \ 9}}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{10} \ {10}}}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{11} \ {11}}}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{12} \ {12}}}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{13} \ {13}}}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{14} \ {14}}}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{15} \ {15}}}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{16} \ {16}}}}} \leqno(38) $$

Type: LinearOperator(16,OrderedVariableList([]),Expression(Integer)) matrix Ξ(Ξ(Ω/(𝐝.i*𝐝.j), i,1..dim), j,1..dim)

$$ \left[ \begin{array}{cccccccccccccccc} -{{q \sb {3}} \over {p \sb {1}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & {{q \sb {3}} \over {p \sb {1}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & {{q \sb {3}} \over {p \sb {1}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & {{q \sb {3}} \over {p \sb {1}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & {{q \sb {3}} \over {p \sb {1}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & {{q \sb {3}} \over {p \sb {1}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & {{q \sb {3}} \over {p \sb {1}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & {{q \sb {3}} \over {p \sb {1}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 \over {p \sb {1}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 \over {p \sb {1}}} & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 \over {p \sb {1}}} & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 \over {p \sb {1}}} & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 \over {p \sb {1}}} & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 \over {p \sb {1}}} & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 \over {p \sb {1}}} & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 \over {p \sb {1}}} \end{array} \right] \leqno(39) $$

Type: Matrix(LinearOperator(16,OrderedVariableList([]),Expression(Integer))) (40) -> d:𝐋:= Ω / X / Ų

$$ 16 \leqno(40) $$

Type: LinearOperator(16,OrderedVariableList([]),Expression(Integer))

test ( I Ω ) / ( Ų I ) = I

$$ true \leqno(41) $$

Type: Boolean

test ( Ω I ) / ( I Ų ) = I

$$ true \leqno(42) $$

Type: Boolean (43) -> W:=(Y,I)/Ų;

Type: LinearOperator(16,OrderedVariableList([]),Expression(Integer)) (44) -> λ:= (I,Ω) / (Y,I)

$$ -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ 1}} \sp {1}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ 2}} \sp {1}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ 3}} \sp {1}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ 4}} \sp {1}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ 5}} \sp {1}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ 6}} \sp {1}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ 7}} \sp {1}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ 8}} \sp {1}}}+{{1 \over {p \sb {1}}} \ {| \sb {{9 \ 9}} \sp {1}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{10} \ {10}}} \sp {1}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{11} \ {11}}} \sp {1}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{12} \ {12}}} \sp {1}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{13} \ {13}}} \sp {1}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{14} \ {14}}} \sp {1}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{15} \ {15}}} \sp {1}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{16} \ {16}}} \sp {1}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ 2}} \sp {2}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ 1}} \sp {2}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ 4}} \sp {2}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ 3}} \sp {2}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ 6}} \sp {2}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ 5}} \sp {2}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ 8}} \sp {2}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ 7}} \sp {2}}} -{{1 \over {p \sb {1}}} \ {| \sb {{9 \ {10}}} \sp {2}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{10} \ 9}} \sp {2}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{11} \ {12}}} \sp {2}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{12} \ {11}}} \sp {2}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{13} \ {14}}} \sp {2}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{14} \ {13}}} \sp {2}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{15} \ {16}}} \sp {2}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{16} \ {15}}} \sp {2}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ 3}} \sp {3}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ 4}} \sp {3}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ 1}} \sp {3}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ 2}} \sp {3}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ 7}} \sp {3}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ 8}} \sp {3}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ 5}} \sp {3}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ 6}} \sp {3}}} -{{1 \over {p \sb {1}}} \ {| \sb {{9 \ {11}}} \sp {3}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{10} \ {12}}} \sp {3}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{11} \ 9}} \sp {3}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{12} \ {10}}} \sp {3}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{13} \ {15}}} \sp {3}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{14} \ {16}}} \sp {3}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{15} \ {13}}} \sp {3}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{16} \ {14}}} \sp {3}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ 4}} \sp {4}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ 3}} \sp {4}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ 2}} \sp {4}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ 1}} \sp {4}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ 8}} \sp {4}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ 7}} \sp {4}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ 6}} \sp {4}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ 5}} \sp {4}}} -{{1 \over {p \sb {1}}} \ {| \sb {{9 \ {12}}} \sp {4}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{10} \ {11}}} \sp {4}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{11} \ {10}}} \sp {4}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{12} \ 9}} \sp {4}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{13} \ {16}}} \sp {4}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{14} \ {15}}} \sp {4}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{15} \ {14}}} \sp {4}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{16} \ {13}}} \sp {4}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ 5}} \sp {5}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ 6}} \sp {5}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ 7}} \sp {5}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ 8}} \sp {5}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ 1}} \sp {5}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ 2}} \sp {5}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ 3}} \sp {5}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ 4}} \sp {5}}} -{{1 \over {p \sb {1}}} \ {| \sb {{9 \ {13}}} \sp {5}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{10} \ {14}}} \sp {5}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{11} \ {15}}} \sp {5}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{12} \ {16}}} \sp {5}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{13} \ 9}} \sp {5}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{14} \ {10}}} \sp {5}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{15} \ {11}}} \sp {5}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{16} \ {12}}} \sp {5}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ 6}} \sp {6}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ 5}} \sp {6}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ 8}} \sp {6}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ 7}} \sp {6}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ 2}} \sp {6}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ 1}} \sp {6}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ 4}} \sp {6}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ 3}} \sp {6}}} -{{1 \over {p \sb {1}}} \ {| \sb {{9 \ {14}}} \sp {6}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{10} \ {13}}} \sp {6}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{11} \ {16}}} \sp {6}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{12} \ {15}}} \sp {6}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{13} \ {10}}} \sp {6}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{14} \ 9}} \sp {6}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{15} \ {12}}} \sp {6}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{16} \ {11}}} \sp {6}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ 7}} \sp {7}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ 8}} \sp {7}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ 5}} \sp {7}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ 6}} \sp {7}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ 3}} \sp {7}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ 4}} \sp {7}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ 1}} \sp {7}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ 2}} \sp {7}}} -{{1 \over {p \sb {1}}} \ {| \sb {{9 \ {15}}} \sp {7}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{10} \ {16}}} \sp {7}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{11} \ {13}}} \sp {7}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{12} \ {14}}} \sp {7}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{13} \ {11}}} \sp {7}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{14} \ {12}}} \sp {7}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{15} \ 9}} \sp {7}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{16} \ {10}}} \sp {7}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ 8}} \sp {8}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ 7}} \sp {8}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ 6}} \sp {8}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ 5}} \sp {8}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ 4}} \sp {8}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ 3}} \sp {8}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ 2}} \sp {8}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ 1}} \sp {8}}} -{{1 \over {p \sb {1}}} \ {| \sb {{9 \ {16}}} \sp {8}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{10} \ {15}}} \sp {8}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{11} \ {14}}} \sp {8}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{12} \ {13}}} \sp {8}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{13} \ {12}}} \sp {8}}} -{{1 \over {p \sb {1}}} \ {| \sb {{{14} \ {11}}} \sp {8}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{15} \ {10}}} \sp {8}}}+{{1 \over {p \sb {1}}} \ {| \sb {{{16} \ 9}} \sp {8}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ 9}} \sp {9}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ {10}}} \sp {9}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ {11}}} \sp {9}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ {12}}} \sp {9}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ {13}}} \sp {9}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ {14}}} \sp {9}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ {15}}} \sp {9}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ {16}}} \sp {9}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{9 \ 1}} \sp {9}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{10} \ 2}} \sp {9}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{11} \ 3}} \sp {9}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{12} \ 4}} \sp {9}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{13} \ 5}} \sp {9}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{14} \ 6}} \sp {9}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{15} \ 7}} \sp {9}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{16} \ 8}} \sp {9}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ {10}}} \sp {{10}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ 9}} \sp {{10}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ {12}}} \sp {{10}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ {11}}} \sp {{10}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ {14}}} \sp {{10}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ {13}}} \sp {{10}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ {16}}} \sp {{10}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ {15}}} \sp {{10}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{9 \ 2}} \sp {{10}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{10} \ 1}} \sp {{10}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{11} \ 4}} \sp {{10}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{12} \ 3}} \sp {{10}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{13} \ 6}} \sp {{10}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{14} \ 5}} \sp {{10}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{15} \ 8}} \sp {{10}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{16} \ 7}} \sp {{10}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ {11}}} \sp {{11}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ {12}}} \sp {{11}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ 9}} \sp {{11}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ {10}}} \sp {{11}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ {15}}} \sp {{11}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ {16}}} \sp {{11}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ {13}}} \sp {{11}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ {14}}} \sp {{11}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{9 \ 3}} \sp {{11}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{10} \ 4}} \sp {{11}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{11} \ 1}} \sp {{11}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{12} \ 2}} \sp {{11}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{13} \ 7}} \sp {{11}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{14} \ 8}} \sp {{11}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{15} \ 5}} \sp {{11}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{16} \ 6}} \sp {{11}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ {12}}} \sp {{12}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ {11}}} \sp {{12}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ {10}}} \sp {{12}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ 9}} \sp {{12}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ {16}}} \sp {{12}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ {15}}} \sp {{12}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ {14}}} \sp {{12}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ {13}}} \sp {{12}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{9 \ 4}} \sp {{12}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{10} \ 3}} \sp {{12}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{11} \ 2}} \sp {{12}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{12} \ 1}} \sp {{12}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{13} \ 8}} \sp {{12}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{14} \ 7}} \sp {{12}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{15} \ 6}} \sp {{12}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{16} \ 5}} \sp {{12}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ {13}}} \sp {{13}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ {14}}} \sp {{13}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ {15}}} \sp {{13}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ {16}}} \sp {{13}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ 9}} \sp {{13}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ {10}}} \sp {{13}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ {11}}} \sp {{13}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ {12}}} \sp {{13}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{9 \ 5}} \sp {{13}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{10} \ 6}} \sp {{13}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{11} \ 7}} \sp {{13}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{12} \ 8}} \sp {{13}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{13} \ 1}} \sp {{13}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{14} \ 2}} \sp {{13}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{15} \ 3}} \sp {{13}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{16} \ 4}} \sp {{13}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ {14}}} \sp {{14}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ {13}}} \sp {{14}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ {16}}} \sp {{14}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ {15}}} \sp {{14}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ {10}}} \sp {{14}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ 9}} \sp {{14}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ {12}}} \sp {{14}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ {11}}} \sp {{14}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{9 \ 6}} \sp {{14}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{10} \ 5}} \sp {{14}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{11} \ 8}} \sp {{14}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{12} \ 7}} \sp {{14}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{13} \ 2}} \sp {{14}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{14} \ 1}} \sp {{14}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{15} \ 4}} \sp {{14}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{16} \ 3}} \sp {{14}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ {15}}} \sp {{15}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ {16}}} \sp {{15}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ {13}}} \sp {{15}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ {14}}} \sp {{15}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ {11}}} \sp {{15}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ {12}}} \sp {{15}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ 9}} \sp {{15}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ {10}}} \sp {{15}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{9 \ 7}} \sp {{15}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{10} \ 8}} \sp {{15}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{11} \ 5}} \sp {{15}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{12} \ 6}} \sp {{15}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{13} \ 3}} \sp {{15}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{14} \ 4}} \sp {{15}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{15} \ 1}} \sp {{15}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{16} \ 2}} \sp {{15}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{1 \ {16}}} \sp {{16}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{2 \ {15}}} \sp {{16}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{3 \ {14}}} \sp {{16}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{4 \ {13}}} \sp {{16}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{5 \ {12}}} \sp {{16}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{6 \ {11}}} \sp {{16}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{7 \ {10}}} \sp {{16}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{8 \ 9}} \sp {{16}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{9 \ 8}} \sp {{16}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{10} \ 7}} \sp {{16}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{11} \ 6}} \sp {{16}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{12} \ 5}} \sp {{16}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{13} \ 4}} \sp {{16}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{14} \ 3}} \sp {{16}}}}+{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{15} \ 2}} \sp {{16}}}} -{{{q \sb {3}} \over {p \sb {1}}} \ {| \sb {{{16} \ 1}} \sp {{16}}}} \leqno(44) $$

Type: LinearOperator(16,OrderedVariableList([]),Expression(Integer))

test( (Ω,I) / (I,Y) = λ)

$$ true \leqno(45) $$

Type: Boolean (46) -> Χ := Y / λ ;

Type: LinearOperator(16,OrderedVariableList([]),Expression(Integer))

Χr := (λ,I)/(I,Y)


Some or all expressions may not have rendered properly, because Latex returned the following error:
This is pdfTeXk, Version 3.141592-1.40.3 (Web2C 7.5.6)
 \write18 enabled.
 %&-line parsing enabled.
entering extended mode
(./5762260322476615244-16.0px.tex
LaTeX2e <2005/12/01>
Babel <v3.8h> and hyphenation patterns for english, usenglishmax, dumylang, noh
yphenation, arabic, farsi, croatian, ukrainian, russian, bulgarian, czech, slov
ak, danish, dutch, finnish, basque, french, german, ngerman, ibycus, greek, mon
ogreek, ancientgreek, hungarian, italian, latin, mongolian, norsk, icelandic, i
nterlingua, turkish, coptic, romanian, welsh, serbian, slovenian, estonian, esp
eranto, uppersorbian, indonesian, polish, portuguese, spanish, catalan, galicia
n, swedish, ukenglish, pinyin, loaded.
(/usr/share/texmf-texlive/tex/latex/base/article.cls
Document Class: article 2005/09/16 v1.4f Standard LaTeX document class
(/usr/share/texmf-texlive/tex/latex/base/size12.clo))
(/usr/share/texmf-texlive/tex/latex/ucs/ucs.sty
(/usr/share/texmf-texlive/tex/latex/ucs/data/uni-global.def))
(/usr/share/texmf-texlive/tex/latex/base/inputenc.sty
(/usr/share/texmf-texlive/tex/latex/ucs/utf8x.def))
(/usr/share/texmf-texlive/tex/latex/bbm/bbm.sty)
(/usr/share/texmf-texlive/tex/latex/jknapltx/mathrsfs.sty)
(/usr/share/texmf-texlive/tex/latex/base/fontenc.sty
(/usr/share/texmf-texlive/tex/latex/base/t1enc.def))
(/usr/share/texmf-texlive/tex/latex/pstricks/pstricks.sty
(/usr/share/texmf-texlive/tex/generic/pstricks/pstricks.tex
`PSTricks' v1.15  <2006/12/22> (tvz)
(/usr/share/texmf-texlive/tex/generic/pstricks/pstricks.con))
(/usr/share/texmf/tex/latex/xcolor/xcolor.sty
(/etc/texmf/tex/latex/config/color.cfg)
(/usr/share/texmf-texlive/tex/latex/graphics/dvips.def)
(/usr/share/texmf-texlive/tex/latex/graphics/dvipsnam.def)))
(/usr/share/texmf-texlive/tex/latex/graphics/epsfig.sty
(/usr/share/texmf-texlive/tex/latex/graphics/graphicx.sty
(/usr/share/texmf-texlive/tex/latex/graphics/keyval.sty)
(/usr/share/texmf-texlive/tex/latex/graphics/graphics.sty
(/usr/share/texmf-texlive/tex/latex/graphics/trig.sty)
(/etc/texmf/tex/latex/config/graphics.cfg))))
(/usr/share/texmf-texlive/tex/latex/pst-grad/pst-grad.sty
(/usr/share/texmf-texlive/tex/generic/pst-grad/pst-grad.tex
(/usr/share/texmf-texlive/tex/latex/xkeyval/pst-xkey.tex
(/usr/share/texmf-texlive/tex/latex/xkeyval/xkeyval.sty
(/usr/share/texmf-texlive/tex/latex/xkeyval/xkeyval.tex)))
`pst-plot' v1.05, 2006/11/04 (tvz,dg,hv)))
(/usr/share/texmf-texlive/tex/latex/pstricks/pst-plot.sty
(/usr/share/texmf-texlive/tex/generic/pstricks/pst-plot.tex
 v97 patch 2, 1999/12/12
(/usr/share/texmf-texlive/tex/generic/multido/multido.tex
 v1.41, 2004/05/18 <tvz>))) (/usr/share/texmf-texlive/tex/generic/xypic/xy.sty
(/usr/share/texmf-texlive/tex/generic/xypic/xy.tex Bootstrap'ing: catcodes,
docmode, (/usr/share/texmf-texlive/tex/generic/xypic/xyrecat.tex)
(/usr/share/texmf-texlive/tex/generic/xypic/xyidioms.tex)

Xy-pic version 3.7 <1999/02/16> Copyright (c) 1991-1998 by Kristoffer H. Rose <krisrose@ens-lyon.fr> Xy-pic is free software: see the User's Guide for details.

Loading kernel: messages; fonts; allocations: state, direction, utility macros; pictures: \xy, positions, objects, decorations; kernel objects: directionals, circles, text; options; algorithms: directions, edges, connections; Xy-pic loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xyall.tex Xy-pic option: All features v.3.3 (/usr/share/texmf-texlive/tex/generic/xypic/xycurve.tex Xy-pic option: Curve and Spline extension v.3.7 curve, circles, loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xyframe.tex Xy-pic option: Frame and Bracket extension v.3.7 loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xycmtip.tex Xy-pic option: Computer Modern tip extension v.3.3 (/usr/share/texmf-texlive/tex/generic/xypic/xytips.tex Xy-pic option: More Tips extension v.3.3 loaded) loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xyline.tex Xy-pic option: Line styles extension v.3.6 loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xyrotate.tex Xy-pic option: Rotate and Scale extension v.3.3 loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xycolor.tex Xy-pic option: Colour extension v.3.3 loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xymatrix.tex Xy-pic option: Matrix feature v.3.4 loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xyarrow.tex Xy-pic option: Arrow and Path feature v.3.5 path, \ar, loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xygraph.tex Xy-pic option: Graph feature v.3.7 loaded) loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xyknot.tex Xy-pic option: Knots and Links feature v.3.4 knots and links, loaded)) (/usr/share/texmf-texlive/tex/generic/xypic/xyarc.tex Xy-pic option: Circle, Ellipse, Arc feature v.3.4 circles, ellipses, elliptical arcs, loaded) (/usr/share/texmf-texlive/tex/latex/geometry/geometry.sty (/usr/share/texmf-texlive/tex/xelatex/xetexconfig/geometry.cfg)

Package geometry Warning: `lmargin' and `rmargin' result in NEGATIVE (-108.405p t). `width' should be shortened in length.

) (/usr/share/texmf-texlive/tex/latex/amsmath/amsmath.sty For additional information on amsmath, use the `? option. (/usr/share/texmf-texlive/tex/latex/amsmath/amstext.sty (/usr/share/texmf-texlive/tex/latex/amsmath/amsgen.sty)) (/usr/share/texmf-texlive/tex/latex/amsmath/amsbsy.sty) (/usr/share/texmf-texlive/tex/latex/amsmath/amsopn.sty)) (/usr/share/texmf-texlive/tex/latex/amsfonts/amsfonts.sty) (/usr/share/texmf-texlive/tex/latex/amsfonts/amssymb.sty) (/usr/share/texmf-texlive/tex/latex/amscls/amsthm.sty) (/usr/share/texmf-texlive/tex/latex/setspace/setspace.sty Package: `setspace 6.7 <2000/12/01> ) (/usr/share/texmf-texlive/tex/latex/tools/verbatim.sty) (/usr/share/texmf/tex/latex/graphviz/graphviz.sty (/usr/share/texmf-texlive/tex/latex/psfrag/psfrag.sty)) (/usr/share/texmf/tex/latex/sagetex.sty Writing sage input file 5762260322476615244-16.0px.sage (./5762260322476615244-16.0px.sout)) (/usr/share/texmf-texlive/tex/latex/gnuplottex/gnuplottex.sty (/usr/share/texmf-texlive/tex/latex/base/latexsym.sty) (/usr/share/texmf-texlive/tex/latex/moreverb/moreverb.sty) (/usr/share/texmf-texlive/tex/latex/base/ifthen.sty)) (./5762260322476615244-16.0px.aux) (/usr/share/texmf-texlive/tex/latex/ucs/ucsencs.def) (/usr/share/texmf-texlive/tex/latex/jknapltx/ursfs.fd) (/usr/share/texmf-texlive/tex/latex/amsfonts/umsa.fd) (/usr/share/texmf-texlive/tex/latex/amsfonts/umsb.fd) (/usr/share/texmf-texlive/tex/latex/base/ulasy.fd) [1] (/usr/share/texmf-texlive/tex/latex/base/t1cmtt.fd)

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 125.

(/usr/share/texmf-texlive/tex/latex/ucs/data/uni-3.def) Missing $ inserted. <inserted text> $ l.128 macro Σ(x,i,n)==reduce(+,[x for i in n])

Missing $ inserted. <inserted text> $ l.128 macro Σ(x,i,n)==reduce(+,[x for i in n])

Missing $ inserted. <inserted text> $ l.130 macro Ξ(f,i,n)==[f for i in n]

Missing $ inserted. <inserted text> $ l.130 macro Ξ(f,i,n)==[f for i in n]

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 133.

(/usr/share/texmf-texlive/tex/latex/ucs/data/uni-33.def) (/usr/share/texmf-texlive/tex/latex/bbm/ubbm.fd) (/usr/share/texmf-texlive/tex/latex/ucs/data/uni-468.def)

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 144.

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 155.

Missing $ inserted. <inserted text> $ l.159 ...atrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)

Missing $ inserted. <inserted text> $ l.159 ...atrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)

(/usr/share/texmf-texlive/tex/latex/ucs/data/uni-4.def) Undefined control sequence. \u-default-1109 #1->\cyrdze

l.163 ѕ :=map(S,B)::ℒ ℒ ℒ ℚ;

Missing $ inserted. <inserted text> $ l.165 ...*𝐝.k, i,1..dim), j,1..dim), k,1..dim);

Undefined control sequence. \u-default-1109 #1->\cyrdze

l.165 ...*𝐝.k, i,1..dim), j,1..dim), k,1..dim);

Missing $ inserted. <inserted text> $ l.165 ...*𝐝.k, i,1..dim), j,1..dim), k,1..dim);

Missing $ inserted. <inserted text> $ l.167 ...�((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)

Missing $ inserted. <inserted text> $ l.167 ...�((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 168.

[2] [3] Missing $ inserted. <inserted text> $ l.171 ...j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim);

TeX capacity exceeded, sorry [main memory size=1500000]. -&gt;\leavevmode \kern \z@ \char `\ l.171 ...j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim);

Output written on 5762260322476615244-16.0px.dvi (3 pages, 2976 bytes). Transcript written on 5762260322476615244-16.0px.log.