login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxLorentzTransformation revision 4 of 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Editor: Bill Page
Time: 2013/09/22 20:27:06 GMT+0
Note:

removed:
-Then a row vector is
-\begin{axiom}
-transpose(vect [a1,a2,a3,a4])
-\end{axiom}

changed:
-or a scalar

Then the dual is a row vector is

changed:
-g(x,y)== (transpose(x)*diagonalMatrix([-1,1,1,1])*y)::EXPR INT
g(vect [a1,a2,a3,a4])

added:

And scalar product is
\begin{axiom}
dot(x,y)== (g(x)*y)::Expression Integer 
dot(vect [a1,a2,a3,a4], vect [b1,b2,b3,b4])
\end{axiom}

changed:
-tensor(v,w) == v*g(w)
tensor(x,y) == x*g(y)

changed:
-For difficult verifications it is sometimes convenient to replace
-symbols by random numerical values.
Verification

removed:
-

removed:
-The AlgebraicNumber domain can test for numerical equality of complicated
-expressions involving $\sqrt{n}$.
-\begin{axiom}
-IsPossible?(eq:Equation EXPR INT):Boolean == _
-  (possible(lhs(eq)-rhs(eq)) :: Expression AlgebraicNumber=0)::Boolean
-IsPossible2?(eq:Equation(Matrix(EXPR(INT)))):Boolean == _
-  ( map(possible,(lhs(eq)-rhs(eq))) :: Matrix Expression AlgebraicNumber = _
-zero(nrows(lhs(eq)),ncols(lhs(eq)))$Matrix Expression AlgebraicNumber )::Boolean
-\end{axiom}

changed:
-g(P,P)
dot(P,P)

changed:
-g(Q,Q)
dot(Q,Q)

changed:
-g(R,R)
dot(R,R)

changed:
-w(P,Q)==-Q/g(P,Q)-P
w(P,Q)==-Q/dot(P,Q)-P

changed:
-g(P,u)
-v:=w(Q,P)
-g(Q,v)
-possible(g(u,u))::EXPR Float
dot(P,u)
possible dot(u,u)::EXPR Float
v:=w(Q,P);
dot(Q,v)
possible dot(v,v)::EXPR Float

changed:
-L(P,Q) == diagonalMatrix([1,1,1,1]) + tensor(P+Q,P+Q)/(1-g(P,Q)) - 2*tensor(P,Q)
L(P,Q) == diagonalMatrix([1,1,1,1]) + tensor(P+Q,P+Q)/(1-dot(P,Q)) - 2*tensor(P,Q)

changed:
-L(P,Q)*u + v
map(x+->possible(x)::EXPR Float,L(P,Q)*u + v)

removed:
-

Lorentz transformations.

Book by T. Matolcsi

Mathematical Preliminaries

A vector is represented as a nx1 matrix (column vector)

fricas
vect(x:List Expression Integer):Matrix Expression Integer == matrix map(y+->[y],x)
Function declaration vect : List(Expression(Integer)) -> Matrix( Expression(Integer)) has been added to workspace.
Type: Void
fricas
vect [a1,a2,a3,a4]
fricas
Compiling function vect with type List(Expression(Integer)) -> 
      Matrix(Expression(Integer))

\label{eq1}\left[ 
\begin{array}{c}
a 1 
\
a 2 
\
a 3 
\
a 4 
(1)
Type: Matrix(Expression(Integer))

Applying the Lorentz form produces a row vector

fricas
g(x)==transpose(x)*diagonalMatrix [-1,1,1,1]
Type: Void

Then the dual is a row vector is

fricas
g(vect [a1,a2,a3,a4])
fricas
Compiling function g with type Matrix(Expression(Integer)) -> Matrix
      (Expression(Integer))

\label{eq2}\left[ 
\begin{array}{cccc}
- a 1 & a 2 & a 3 & a 4 
(2)
Type: Matrix(Expression(Integer))

And scalar product is

fricas
dot(x,y)== (g(x)*y)::Expression Integer
Type: Void
fricas
dot(vect [a1,a2,a3,a4], vect [b1,b2,b3,b4])
fricas
Compiling function dot with type (Matrix(Expression(Integer)),Matrix
      (Expression(Integer))) -> Expression(Integer)

\label{eq3}{a 4 \  b 4}+{a 3 \  b 3}+{a 2 \  b 2}-{a 1 \  b 1}(3)
Type: Expression(Integer)

Tensor product is

fricas
tensor(x,y) == x*g(y)
Type: Void
fricas
tensor(vect [a1,a2,a3,a4], vect [b1,b2,b3,b4])
fricas
Compiling function tensor with type (Matrix(Expression(Integer)),
      Matrix(Expression(Integer))) -> Matrix(Expression(Integer))

\label{eq4}\left[ 
\begin{array}{cccc}
-{a 1 \  b 1}&{a 1 \  b 2}&{a 1 \  b 3}&{a 1 \  b 4}
\
-{a 2 \  b 1}&{a 2 \  b 2}&{a 2 \  b 3}&{a 2 \  b 4}
\
-{a 3 \  b 1}&{a 3 \  b 2}&{a 3 \  b 3}&{a 3 \  b 4}
\
-{a 4 \  b 1}&{a 4 \  b 2}&{a 4 \  b 3}&{a 4 \  b 4}
(4)
Type: Matrix(Expression(Integer))

Verification

fricas
possible(x)==subst(x, map(y+->(y=(random(100) - random(100))),variables x) )
Type: Void
fricas
Is?(eq:Equation EXPR INT):Boolean == (lhs(eq)-rhs(eq)=0)::Boolean
Function declaration Is? : Equation(Expression(Integer)) -> Boolean has been added to workspace.
Type: Void
fricas
Is2?(eq:Equation(Matrix(EXPR(INT)))):Boolean == _
( (lhs(eq)-rhs(eq)) :: Matrix Expression AlgebraicNumber = _
zero(nrows(lhs(eq)),ncols(lhs(eq)))$Matrix Expression AlgebraicNumber )::Boolean
Function declaration Is2? : Equation(Matrix(Expression(Integer))) -> Boolean has been added to workspace.
Type: Void

Massive Objects

An object (also referred to as an obserser) is represented by a time-like 4-vector

fricas
P:=vect [sqrt(p1^2+p2^2+p3^2+1),p1,p2,p3];
Type: Matrix(Expression(Integer))
fricas
dot(P,P)

\label{eq5}- 1(5)
Type: Expression(Integer)
fricas
Q:=vect [sqrt(q1^2+q2^2+q3^2+1),q1,q2,q3];
Type: Matrix(Expression(Integer))
fricas
dot(Q,Q)

\label{eq6}- 1(6)
Type: Expression(Integer)
fricas
R:=vect [1,0,0,0]

\label{eq7}\left[ 
\begin{array}{c}
1 
\
0 
\
0 
\
0 
(7)
Type: Matrix(Expression(Integer))
fricas
dot(R,R)

\label{eq8}- 1(8)
Type: Expression(Integer)

Associated with each such vector is the orthogonal 3-d Euclidean subspace E_P =\{x | P \cdot x = 0\}

Relative Velocity

An object Q has a unique relative velocity w(P,Q) with respect to object P given by

fricas
w(P,Q)==-Q/dot(P,Q)-P
Type: Void

Lorentz factor

fricas
gamma(v)==1/sqrt(1-g(v,v))
Type: Void

Binary Boost

fricas
b(P,v)==gamma(v)*(P+v)
Type: Void

Observer P measures velocity u. u is space-like and in E_P.

fricas
u:=w(P,Q);
fricas
Compiling function w with type (Matrix(Expression(Integer)),Matrix(
      Expression(Integer))) -> Matrix(Expression(Integer))
Type: Matrix(Expression(Integer))
fricas
dot(P,u)

\label{eq9}0(9)
Type: Expression(Integer)
fricas
possible dot(u,u)::EXPR Float
fricas
Compiling function possible with type Expression(Integer) -> 
      Expression(Integer)

\label{eq10}0.9999857413_817665124(10)
Type: Expression(Float)
fricas
v:=w(Q,P);
Type: Matrix(Expression(Integer))
fricas
dot(Q,v)

\label{eq11}0(11)
Type: Expression(Integer)
fricas
possible dot(v,v)::EXPR Float

\label{eq12}0.9999997579_6676651116(12)
Type: Expression(Float)

fricas
L(P,Q) == diagonalMatrix([1,1,1,1]) + tensor(P+Q,P+Q)/(1-dot(P,Q)) - 2*tensor(P,Q)
Type: Void
fricas
L(P,P)
fricas
Compiling function L with type (Matrix(Expression(Integer)),Matrix(
      Expression(Integer))) -> Matrix(Expression(Integer))

\label{eq13}\left[ 
\begin{array}{cccc}
1 & 0 & 0 & 0 
\
0 & 1 & 0 & 0 
\
0 & 0 & 1 & 0 
\
0 & 0 & 0 & 1 
(13)
Type: Matrix(Expression(Integer))
fricas
L(P,Q)*Q-P

\label{eq14}\left[ 
\begin{array}{c}
0 
\
0 
\
0 
\
0 
(14)
Type: Matrix(Expression(Integer))
fricas
L(R,P)

\label{eq15}\left[ 
\begin{array}{cccc}
{{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}& - p 1 & - p 2 & - p 3 
\
- p 1 &{{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+{{p 1}^{2}}+ 1}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}&{{p 1 \  p 2}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}&{{p 1 \  p 3}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}
\
- p 2 &{{p 1 \  p 2}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}&{{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+{{p 2}^{2}}+ 1}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}&{{p 2 \  p 3}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}
\
- p 3 &{{p 1 \  p 3}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}&{{p 2 \  p 3}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}&{{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+{{p 3}^{2}}+ 1}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}
(15)
Type: Matrix(Expression(Integer))
fricas
map(x+->possible(x)::EXPR Float,L(P,Q)*u + v)

\label{eq16}\left[ 
\begin{array}{c}
-{70859.0949812301_84461}
\
-{361538.1204534425_9971}
\
-{540768.0117583411_6253}
\
{566080.9433370158_4835}
(16)
Type: Matrix(Expression(Float))