login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxLorentzTransformation revision 3 of 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Editor: Bill Page
Time: 2013/09/22 04:14:34 GMT+0
Note:

changed:
-vect [a1,a2,a3]
vect [a1,a2,a3,a4]

changed:
-transpose(vect [a1,a2,a3])
transpose(vect [a1,a2,a3,a4])

removed:
-Tensor product is
-\begin{axiom}
-tensor(v,w) == v*transpose(w)
-tensor(vect [a1,a2,a3], vect [b1,b2,b3])
-\end{axiom}

added:

Tensor product is
\begin{axiom}
tensor(v,w) == v*g(w)
tensor(vect [a1,a2,a3,a4], vect [b1,b2,b3,b4])
\end{axiom}


added:
v:=w(Q,P)
g(Q,v)

added:
L(P,P)
L(P,Q)*Q-P

changed:
-L(R,P)*R 
L(P,Q)*u + v

Lorentz transformations.

Book by T. Matolcsi

Mathematical Preliminaries

A vector is represented as a nx1 matrix (column vector)

fricas
vect(x:List Expression Integer):Matrix Expression Integer == matrix map(y+->[y],x)
Function declaration vect : List(Expression(Integer)) -> Matrix( Expression(Integer)) has been added to workspace.
Type: Void
fricas
vect [a1,a2,a3,a4]
fricas
Compiling function vect with type List(Expression(Integer)) -> 
      Matrix(Expression(Integer))

\label{eq1}\left[ 
\begin{array}{c}
a 1 
\
a 2 
\
a 3 
\
a 4 
(1)
Type: Matrix(Expression(Integer))

Then a row vector is

fricas
transpose(vect [a1,a2,a3,a4])

\label{eq2}\left[ 
\begin{array}{cccc}
a 1 & a 2 & a 3 & a 4 
(2)
Type: Matrix(Expression(Integer))

Applying the Lorentz form produces a row vector

fricas
g(x)==transpose(x)*diagonalMatrix [-1,1,1,1]
Type: Void

or a scalar

fricas
g(x,y)== (transpose(x)*diagonalMatrix([-1,1,1,1])*y)::EXPR INT
Type: Void

Tensor product is

fricas
tensor(v,w) == v*g(w)
Type: Void
fricas
tensor(vect [a1,a2,a3,a4], vect [b1,b2,b3,b4])
fricas
Compiling function g with type Matrix(Expression(Integer)) -> Matrix
      (Expression(Integer))
fricas
Compiling function tensor with type (Matrix(Expression(Integer)),
      Matrix(Expression(Integer))) -> Matrix(Expression(Integer))

\label{eq3}\left[ 
\begin{array}{cccc}
-{a 1 \  b 1}&{a 1 \  b 2}&{a 1 \  b 3}&{a 1 \  b 4}
\
-{a 2 \  b 1}&{a 2 \  b 2}&{a 2 \  b 3}&{a 2 \  b 4}
\
-{a 3 \  b 1}&{a 3 \  b 2}&{a 3 \  b 3}&{a 3 \  b 4}
\
-{a 4 \  b 1}&{a 4 \  b 2}&{a 4 \  b 3}&{a 4 \  b 4}
(3)
Type: Matrix(Expression(Integer))

For difficult verifications it is sometimes convenient to replace symbols by random numerical values.

fricas
possible(x)==subst(x, map(y+->(y=(random(100) - random(100))),variables x) )
Type: Void
fricas
Is?(eq:Equation EXPR INT):Boolean == (lhs(eq)-rhs(eq)=0)::Boolean
Function declaration Is? : Equation(Expression(Integer)) -> Boolean has been added to workspace.
Type: Void
fricas
Is2?(eq:Equation(Matrix(EXPR(INT)))):Boolean == _
( (lhs(eq)-rhs(eq)) :: Matrix Expression AlgebraicNumber = _
zero(nrows(lhs(eq)),ncols(lhs(eq)))$Matrix Expression AlgebraicNumber )::Boolean
Function declaration Is2? : Equation(Matrix(Expression(Integer))) -> Boolean has been added to workspace.
Type: Void

The AlgebraicNumber? domain can test for numerical equality of complicated expressions involving \sqrt{n}.

fricas
IsPossible?(eq:Equation EXPR INT):Boolean == _
  (possible(lhs(eq)-rhs(eq)) :: Expression AlgebraicNumber=0)::Boolean
Function declaration IsPossible? : Equation(Expression(Integer)) -> Boolean has been added to workspace.
Type: Void
fricas
IsPossible2?(eq:Equation(Matrix(EXPR(INT)))):Boolean == _
  ( map(possible,(lhs(eq)-rhs(eq))) :: Matrix Expression AlgebraicNumber = _
zero(nrows(lhs(eq)),ncols(lhs(eq)))$Matrix Expression AlgebraicNumber )::Boolean
Function declaration IsPossible2? : Equation(Matrix(Expression( Integer))) -> Boolean has been added to workspace.
Type: Void

Massive Objects

An object (also referred to as an obserser) is represented by a time-like 4-vector

fricas
P:=vect [sqrt(p1^2+p2^2+p3^2+1),p1,p2,p3];
Type: Matrix(Expression(Integer))
fricas
g(P,P)
fricas
Compiling function g with type (Matrix(Expression(Integer)),Matrix(
      Expression(Integer))) -> Expression(Integer)

\label{eq4}- 1(4)
Type: Expression(Integer)
fricas
Q:=vect [sqrt(q1^2+q2^2+q3^2+1),q1,q2,q3];
Type: Matrix(Expression(Integer))
fricas
g(Q,Q)

\label{eq5}- 1(5)
Type: Expression(Integer)
fricas
R:=vect [1,0,0,0]

\label{eq6}\left[ 
\begin{array}{c}
1 
\
0 
\
0 
\
0 
(6)
Type: Matrix(Expression(Integer))
fricas
g(R,R)

\label{eq7}- 1(7)
Type: Expression(Integer)

Associated with each such vector is the orthogonal 3-d Euclidean subspace E_P =\{x | P \cdot x = 0\}

Relative Velocity

An object Q has a unique relative velocity w(P,Q) with respect to object P given by

fricas
w(P,Q)==-Q/g(P,Q)-P
Type: Void

Lorentz factor

fricas
gamma(v)==1/sqrt(1-g(v,v))
Type: Void

Binary Boost

fricas
b(P,v)==gamma(v)*(P+v)
Type: Void

Observer P measures velocity u. u is space-like and in E_P.

fricas
u:=w(P,Q);
fricas
Compiling function w with type (Matrix(Expression(Integer)),Matrix(
      Expression(Integer))) -> Matrix(Expression(Integer))
Type: Matrix(Expression(Integer))
fricas
g(P,u)

\label{eq8}0(8)
Type: Expression(Integer)
fricas
v:=w(Q,P)

\label{eq9}\left[ 
\begin{array}{c}
{{{{\left({p 3 \  q 3}+{p 2 \  q 2}+{p 1 \  q 1}\right)}\ {\sqrt{{{q 3}^{2}}+{{q 2}^{2}}+{{q 1}^{2}}+ 1}}}+{{\left(-{{q 3}^{2}}-{{q 2}^{2}}-{{q 1}^{2}}\right)}\ {\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}}}\over{{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}\ {\sqrt{{{q 3}^{2}}+{{q 2}^{2}}+{{q 1}^{2}}+ 1}}}-{p 3 \  q 3}-{p 2 \  q 2}-{p 1 \  q 1}}}
\
{{-{q 1 \ {\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}\ {\sqrt{{{q 3}^{2}}+{{q 2}^{2}}+{{q 1}^{2}}+ 1}}}+{p 3 \  q 1 \  q 3}+{p 2 \  q 1 \  q 2}+{p 1 \ {{q 1}^{2}}}+ p 1}\over{{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}\ {\sqrt{{{q 3}^{2}}+{{q 2}^{2}}+{{q 1}^{2}}+ 1}}}-{p 3 \  q 3}-{p 2 \  q 2}-{p 1 \  q 1}}}
\
{{-{q 2 \ {\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}\ {\sqrt{{{q 3}^{2}}+{{q 2}^{2}}+{{q 1}^{2}}+ 1}}}+{p 3 \  q 2 \  q 3}+{p 2 \ {{q 2}^{2}}}+{p 1 \  q 1 \  q 2}+ p 2}\over{{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}\ {\sqrt{{{q 3}^{2}}+{{q 2}^{2}}+{{q 1}^{2}}+ 1}}}-{p 3 \  q 3}-{p 2 \  q 2}-{p 1 \  q 1}}}
\
{{-{q 3 \ {\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}\ {\sqrt{{{q 3}^{2}}+{{q 2}^{2}}+{{q 1}^{2}}+ 1}}}+{p 3 \ {{q 3}^{2}}}+{{\left({p 2 \  q 2}+{p 1 \  q 1}\right)}\  q 3}+ p 3}\over{{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}\ {\sqrt{{{q 3}^{2}}+{{q 2}^{2}}+{{q 1}^{2}}+ 1}}}-{p 3 \  q 3}-{p 2 \  q 2}-{p 1 \  q 1}}}
(9)
Type: Matrix(Expression(Integer))
fricas
g(Q,v)

\label{eq10}0(10)
Type: Expression(Integer)
fricas
possible(g(u,u))::EXPR Float
fricas
Compiling function possible with type Expression(Integer) -> 
      Expression(Integer)

\label{eq11}0.9999999943_835699824(11)
Type: Expression(Float)

fricas
L(P,Q) == diagonalMatrix([1,1,1,1]) + tensor(P+Q,P+Q)/(1-g(P,Q)) - 2*tensor(P,Q)
Type: Void
fricas
L(P,P)
fricas
Compiling function L with type (Matrix(Expression(Integer)),Matrix(
      Expression(Integer))) -> Matrix(Expression(Integer))

\label{eq12}\left[ 
\begin{array}{cccc}
1 & 0 & 0 & 0 
\
0 & 1 & 0 & 0 
\
0 & 0 & 1 & 0 
\
0 & 0 & 0 & 1 
(12)
Type: Matrix(Expression(Integer))
fricas
L(P,Q)*Q-P

\label{eq13}\left[ 
\begin{array}{c}
0 
\
0 
\
0 
\
0 
(13)
Type: Matrix(Expression(Integer))
fricas
L(R,P)

\label{eq14}\left[ 
\begin{array}{cccc}
{{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}& - p 1 & - p 2 & - p 3 
\
- p 1 &{{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+{{p 1}^{2}}+ 1}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}&{{p 1 \  p 2}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}&{{p 1 \  p 3}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}
\
- p 2 &{{p 1 \  p 2}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}&{{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+{{p 2}^{2}}+ 1}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}&{{p 2 \  p 3}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}
\
- p 3 &{{p 1 \  p 3}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}&{{p 2 \  p 3}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}&{{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+{{p 3}^{2}}+ 1}\over{{\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}+ 1}}
(14)
Type: Matrix(Expression(Integer))
fricas
L(P,Q)*u + v

\label{eq15}\left[ 
\begin{array}{c}
{{{{\left({{\left({{16}\ {{p 3}^{5}}}+{{\left({{24}\ {{p 2}^{2}}}+{{24}\ {{p 1}^{2}}}+{24}\right)}\ {{p 3}^{3}}}+{{\left({8 \ {{p 2}^{4}}}+{{\left({{16}\ {{p 1}^{2}}}+{16}\right)}\ {{p 2}^{2}}}+{8 \ {{p 1}^{4}}}+{{16}\ {{p 1}^{2}}}+ 8 \right)}\  p 3}\right)}\ {{q 3}^{3}}}+{{\left({{\left({{32}\  p 2 \ {{p 3}^{4}}}+{{\left({{4
0}\ {{p 2}^{3}}}+{{\left({{40}\ {{p 1}^{2}}}+{40}\right)}\  p 2}\right)}\ {{p 3}^{2}}}+{8 \ {{p 2}^{5}}}+{{\left({{16}\ {{p 1}^{2}}}+{16}\right)}\ {{p 2}^{3}}}+{{\left({8 \ {{p 1}^{4}}}+{{16}\ {{p 1}^{2}}}+ 8 \right)}\  p 2}\right)}\  q 2}+{{\left({{3
2}\  p 1 \ {{p 3}^{4}}}+{{\left({{40}\  p 1 \ {{p 2}^{2}}}+{{4
0}\ {{p 1}^{3}}}+{{40}\  p 1}\right)}\ {{p 3}^{2}}}+{8 \  p 1 \ {{p 2}^{4}}}+{{\left({{16}\ {{p 1}^{3}}}+{{16}\  p 1}\right)}\ {{p 2}^{2}}}+{8 \ {{p 1}^{5}}}+{{16}\ {{p 1}^{3}}}+{8 \  p 1}\right)}\  q 1}-{8 \ {{p 3}^{4}}}+{{\left(-{{10}\ {{p 2}^{2}}}-{{10}\ {{p 1}^{2}}}-{10}\right)}\ {{p 3}^{2}}}-{2 \ {{p 2}^{4}}}+{{\left(-{4 \ {{p 1}^{2}}}- 4 \right)}\ {{p 2}^{2}}}-{2 \ {{p 1}^{4}}}-{4 \ {{p 1}^{2}}}- 2 \right)}\ {{q 3}^{2}}}+{{\left({{\left({8 \ {{p 3}^{5}}}+{{\left({{40}\ {{p 2}^{2}}}+{{16}\ {{p 1}^{2}}}+{16}\right)}\ {{p 3}^{3}}}+{{\left({{32}\ {{p 2}^{4}}}+{{\left({{4
0}\ {{p 1}^{2}}}+{40}\right)}\ {{p 2}^{2}}}+{8 \ {{p 1}^{4}}}+{{16}\ {{p 1}^{2}}}+ 8 \right)}\  p 3}\right)}\ {{q 2}^{2}}}+{{\left({{\left({{48}\  p 1 \  p 2 \ {{p 3}^{3}}}+{{\left({{4
8}\  p 1 \ {{p 2}^{3}}}+{{\left({{48}\ {{p 1}^{3}}}+{{48}\  p 1}\right)}\  p 2}\right)}\  p 3}\right)}\  q 1}-{{12}\  p 2 \ {{p 3}^{3}}}+{{\left(-{{12}\ {{p 2}^{3}}}+{{\left(-{{12}\ {{p 1}^{2}}}-{12}\right)}\  p 2}\right)}\  p 3}\right)}\  q 2}+{{\left({8 \ {{p 3}^{5}}}+{{\left({{16}\ {{p 2}^{2}}}+{{40}\ {{p 1}^{2}}}+{16}\right)}\ {{p 3}^{3}}}+{{\left({8 \ {{p 2}^{4}}}+{{\left({{4
0}\ {{p 1}^{2}}}+{16}\right)}\ {{p 2}^{2}}}+{{32}\ {{p 1}^{4}}}+{{40}\ {{p 1}^{2}}}+ 8 \right)}\  p 3}\right)}\ {{q 1}^{2}}}+{{\left(-{{12}\  p 1 \ {{p 3}^{3}}}+{{\left(-{{12}\  p 1 \ {{p 2}^{2}}}-{{12}\ {{p 1}^{3}}}-{{12}\  p 1}\right)}\  p 3}\right)}\  q 1}+{8 \ {{p 3}^{5}}}+{{\left({{16}\ {{p 2}^{2}}}+{{16}\ {{p 1}^{2}}}+{12}\right)}\ {{p 3}^{3}}}+{{\left({8 \ {{p 2}^{4}}}+{{\left({{16}\ {{p 1}^{2}}}+{12}\right)}\ {{p 2}^{2}}}+{8 \ {{p 1}^{4}}}+{{12}\ {{p 1}^{2}}}+ 4 \right)}\  p 3}\right)}\  q 3}+{{\left({8 \  p 2 \ {{p 3}^{4}}}+{{\left({{24}\ {{p 2}^{3}}}+{{\left({{16}\ {{p 1}^{2}}}+{16}\right)}\  p 2}\right)}\ {{p 3}^{2}}}+{{16}\ {{p 2}^{5}}}+{{\left({{24}\ {{p 1}^{2}}}+{24}\right)}\ {{p 2}^{3}}}+{{\left({8 \ {{p 1}^{4}}}+{{16}\ {{p 1}^{2}}}+ 8 \right)}\  p 2}\right)}\ {{q 2}^{3}}}+{{\left({{\left({8 \  p 1 \ {{p 3}^{4}}}+{{\left({{40}\  p 1 \ {{p 2}^{2}}}+{{16}\ {{p 1}^{3}}}+{{16}\  p 1}\right)}\ {{p 3}^{2}}}+{{32}\  p 1 \ {{p 2}^{4}}}+{{\left({{40}\ {{p 1}^{3}}}+{{40}\  p 1}\right)}\ {{p 2}^{2}}}+{8 \ {{p 1}^{5}}}+{{16}\ {{p 1}^{3}}}+{8 \  p 1}\right)}\  q 1}-{2 \ {{p 3}^{4}}}+{{\left(-{{10}\ {{p 2}^{2}}}-{4 \ {{p 1}^{2}}}- 4 \right)}\ {{p 3}^{2}}}-{8 \ {{p 2}^{4}}}+{{\left(-{{1
0}\ {{p 1}^{2}}}-{10}\right)}\ {{p 2}^{2}}}-{2 \ {{p 1}^{4}}}-{4 \ {{p 1}^{2}}}- 2 \right)}\ {{q 2}^{2}}}+{{\left({{\left({8 \  p 2 \ {{p 3}^{4}}}+{{\left({{16}\ {{p 2}^{3}}}+{{\left({{4
0}\ {{p 1}^{2}}}+{16}\right)}\  p 2}\right)}\ {{p 3}^{2}}}+{8 \ {{p 2}^{5}}}+{{\left({{40}\ {{p 1}^{2}}}+{16}\right)}\ {{p 2}^{3}}}+{{\left({{32}\ {{p 1}^{4}}}+{{40}\ {{p 1}^{2}}}+ 8 \right)}\  p 2}\right)}\ {{q 1}^{2}}}+{{\left(-{{12}\  p 1 \  p 2 \ {{p 3}^{2}}}-{{12}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{12}\ {{p 1}^{3}}}-{{12}\  p 1}\right)}\  p 2}\right)}\  q 1}+{8 \  p 2 \ {{p 3}^{4}}}+{{\left({{16}\ {{p 2}^{3}}}+{{\left({{16}\ {{p 1}^{2}}}+{12}\right)}\  p 2}\right)}\ {{p 3}^{2}}}+{8 \ {{p 2}^{5}}}+{{\left({{1
6}\ {{p 1}^{2}}}+{12}\right)}\ {{p 2}^{3}}}+{{\left({8 \ {{p 1}^{4}}}+{{12}\ {{p 1}^{2}}}+ 4 \right)}\  p 2}\right)}\  q 2}+{{\left({8 \  p 1 \ {{p 3}^{4}}}+{{\left({{16}\  p 1 \ {{p 2}^{2}}}+{{24}\ {{p 1}^{3}}}+{{16}\  p 1}\right)}\ {{p 3}^{2}}}+{8 \  p 1 \ {{p 2}^{4}}}+{{\left({{24}\ {{p 1}^{3}}}+{{16}\  p 1}\right)}\ {{p 2}^{2}}}+{{16}\ {{p 1}^{5}}}+{{24}\ {{p 1}^{3}}}+{8 \  p 1}\right)}\ {{q 1}^{3}}}+{{\left(-{2 \ {{p 3}^{4}}}+{{\left(-{4 \ {{p 2}^{2}}}-{{10}\ {{p 1}^{2}}}- 4 \right)}\ {{p 3}^{2}}}-{2 \ {{p 2}^{4}}}+{{\left(-{{10}\ {{p 1}^{2}}}- 4 \right)}\ {{p 2}^{2}}}-{8 \ {{p 1}^{4}}}-{{10}\ {{p 1}^{2}}}- 2 \right)}\ {{q 1}^{2}}}+{{\left({8 \  p 1 \ {{p 3}^{4}}}+{{\left({{16}\  p 1 \ {{p 2}^{2}}}+{{16}\ {{p 1}^{3}}}+{{12}\  p 1}\right)}\ {{p 3}^{2}}}+{8 \  p 1 \ {{p 2}^{4}}}+{{\left({{16}\ {{p 1}^{3}}}+{{12}\  p 1}\right)}\ {{p 2}^{2}}}+{8 \ {{p 1}^{5}}}+{{12}\ {{p 1}^{3}}}+{4 \  p 1}\right)}\  q 1}-{2 \ {{p 3}^{4}}}+{{\left(-{4 \ {{p 2}^{2}}}-{4 \ {{p 1}^{2}}}- 2 \right)}\ {{p 3}^{2}}}-{2 \ {{p 2}^{4}}}+{{\left(-{4 \ {{p 1}^{2}}}- 2 \right)}\ {{p 2}^{2}}}-{2 \ {{p 1}^{4}}}-{2 \ {{p 1}^{2}}}\right)}\ {\sqrt{{{q 3}^{2}}+{{q 2}^{2}}+{{q 1}^{2}}+ 1}}}+{{\left({{\left(-{{16}\ {{p 3}^{4}}}+{{\left(-{{16}\ {{p 2}^{2}}}-{{16}\ {{p 1}^{2}}}-{16}\right)}\ {{p 3}^{2}}}-{2 \ {{p 2}^{4}}}+{{\left(-{4 \ {{p 1}^{2}}}- 4 \right)}\ {{p 2}^{2}}}-{2 \ {{p 1}^{4}}}-{4 \ {{p 1}^{2}}}- 2 \right)}\ {{q 3}^{4}}}+{{\left({{\left(-{{32}\  p 2 \ {{p 3}^{3}}}+{{\left(-{{24}\ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{2}}}-{24}\right)}\  p 2}\right)}\  p 3}\right)}\  q 2}+{{\left(-{{32}\  p 1 \ {{p 3}^{3}}}+{{\left(-{{24}\  p 1 \ {{p 2}^{2}}}-{{24}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\  p 3}\right)}\  q 1}+{8 \ {{p 3}^{3}}}+{{\left({6 \ {{p 2}^{2}}}+{6 \ {{p 1}^{2}}}+ 6 \right)}\  p 3}\right)}\ {{q 3}^{3}}}+{{\left({{\left(-{{16}\ {{p 3}^{4}}}+{{\left(-{{44}\ {{p 2}^{2}}}-{{20}\ {{p 1}^{2}}}-{20}\right)}\ {{p 3}^{2}}}-{{16}\ {{p 2}^{4}}}+{{\left(-{{20}\ {{p 1}^{2}}}-{20}\right)}\ {{p 2}^{2}}}-{4 \ {{p 1}^{4}}}-{8 \ {{p 1}^{2}}}- 4 \right)}\ {{q 2}^{2}}}+{{\left({{\left(-{{48}\  p 1 \  p 2 \ {{p 3}^{2}}}-{{24}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\  p 2}\right)}\  q 1}+{{12}\  p 2 \ {{p 3}^{2}}}+{6 \ {{p 2}^{3}}}+{{\left({6 \ {{p 1}^{2}}}+ 6 \right)}\  p 2}\right)}\  q 2}+{{\left(-{{16}\ {{p 3}^{4}}}+{{\left(-{{20}\ {{p 2}^{2}}}-{{44}\ {{p 1}^{2}}}-{20}\right)}\ {{p 3}^{2}}}-{4 \ {{p 2}^{4}}}+{{\left(-{{2
0}\ {{p 1}^{2}}}- 8 \right)}\ {{p 2}^{2}}}-{{16}\ {{p 1}^{4}}}-{{20}\ {{p 1}^{2}}}- 4 \right)}\ {{q 1}^{2}}}+{{\left({{12}\  p 1 \ {{p 3}^{2}}}+{6 \  p 1 \ {{p 2}^{2}}}+{6 \ {{p 1}^{3}}}+{6 \  p 1}\right)}\  q 1}-{{16}\ {{p 3}^{4}}}+{{\left(-{{20}\ {{p 2}^{2}}}-{{20}\ {{p 1}^{2}}}-{16}\right)}\ {{p 3}^{2}}}-{4 \ {{p 2}^{4}}}+{{\left(-{8 \ {{p 1}^{2}}}- 6 \right)}\ {{p 2}^{2}}}-{4 \ {{p 1}^{4}}}-{6 \ {{p 1}^{2}}}- 2 \right)}\ {{q 3}^{2}}}+{{\left({{\left(-{{24}\  p 2 \ {{p 3}^{3}}}+{{\left(-{{32}\ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{2}}}-{24}\right)}\  p 2}\right)}\  p 3}\right)}\ {{q 2}^{3}}}+{{\left({{\left(-{{24}\  p 1 \ {{p 3}^{3}}}+{{\left(-{{48}\  p 1 \ {{p 2}^{2}}}-{{24}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\  p 3}\right)}\  q 1}+{6 \ {{p 3}^{3}}}+{{\left({{12}\ {{p 2}^{2}}}+{6 \ {{p 1}^{2}}}+ 6 \right)}\  p 3}\right)}\ {{q 2}^{2}}}+{{\left({{\left(-{{24}\  p 2 \ {{p 3}^{3}}}+{{\left(-{{24}\ {{p 2}^{3}}}+{{\left(-{{48}\ {{p 1}^{2}}}-{24}\right)}\  p 2}\right)}\  p 3}\right)}\ {{q 1}^{2}}}+{{12}\  p 1 \  p 2 \  p 3 \  q 1}-{{24}\  p 2 \ {{p 3}^{3}}}+{{\left(-{{24}\ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{2}}}-{20}\right)}\  p 2}\right)}\  p 3}\right)}\  q 2}+{{\left(-{{24}\  p 1 \ {{p 3}^{3}}}+{{\left(-{{24}\  p 1 \ {{p 2}^{2}}}-{{32}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\  p 3}\right)}\ {{q 1}^{3}}}+{{\left({6 \ {{p 3}^{3}}}+{{\left({6 \ {{p 2}^{2}}}+{{12}\ {{p 1}^{2}}}+ 6 \right)}\  p 3}\right)}\ {{q 1}^{2}}}+{{\left(-{{24}\  p 1 \ {{p 3}^{3}}}+{{\left(-{{24}\  p 1 \ {{p 2}^{2}}}-{{24}\ {{p 1}^{3}}}-{{20}\  p 1}\right)}\  p 3}\right)}\  q 1}+{6 \ {{p 3}^{3}}}+{{\left({6 \ {{p 2}^{2}}}+{6 \ {{p 1}^{2}}}+ 4 \right)}\  p 3}\right)}\  q 3}+{{\left(-{2 \ {{p 3}^{4}}}+{{\left(-{{16}\ {{p 2}^{2}}}-{4 \ {{p 1}^{2}}}- 4 \right)}\ {{p 3}^{2}}}-{{16}\ {{p 2}^{4}}}+{{\left(-{{16}\ {{p 1}^{2}}}-{16}\right)}\ {{p 2}^{2}}}-{2 \ {{p 1}^{4}}}-{4 \ {{p 1}^{2}}}- 2 \right)}\ {{q 2}^{4}}}+{{\left({{\left(-{{24}\  p 1 \  p 2 \ {{p 3}^{2}}}-{{32}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\  p 2}\right)}\  q 1}+{6 \  p 2 \ {{p 3}^{2}}}+{8 \ {{p 2}^{3}}}+{{\left({6 \ {{p 1}^{2}}}+ 6 \right)}\  p 2}\right)}\ {{q 2}^{3}}}+{{\left({{\left(-{4 \ {{p 3}^{4}}}+{{\left(-{{20}\ {{p 2}^{2}}}-{{20}\ {{p 1}^{2}}}- 8 \right)}\ {{p 3}^{2}}}-{{16}\ {{p 2}^{4}}}+{{\left(-{{44}\ {{p 1}^{2}}}-{20}\right)}\ {{p 2}^{2}}}-{{16}\ {{p 1}^{4}}}-{{20}\ {{p 1}^{2}}}- 4 \right)}\ {{q 1}^{2}}}+{{\left({6 \  p 1 \ {{p 3}^{2}}}+{{12}\  p 1 \ {{p 2}^{2}}}+{6 \ {{p 1}^{3}}}+{6 \  p 1}\right)}\  q 1}-{4 \ {{p 3}^{4}}}+{{\left(-{{20}\ {{p 2}^{2}}}-{8 \ {{p 1}^{2}}}- 6 \right)}\ {{p 3}^{2}}}-{{16}\ {{p 2}^{4}}}+{{\left(-{{20}\ {{p 1}^{2}}}-{16}\right)}\ {{p 2}^{2}}}-{4 \ {{p 1}^{4}}}-{6 \ {{p 1}^{2}}}- 2 \right)}\ {{q 2}^{2}}}+{{\left({{\left(-{{24}\  p 1 \  p 2 \ {{p 3}^{2}}}-{{2
4}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{32}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\  p 2}\right)}\ {{q 1}^{3}}}+{{\left({6 \  p 2 \ {{p 3}^{2}}}+{6 \ {{p 2}^{3}}}+{{\left({{12}\ {{p 1}^{2}}}+ 6 \right)}\  p 2}\right)}\ {{q 1}^{2}}}+{{\left(-{{24}\  p 1 \  p 2 \ {{p 3}^{2}}}-{{24}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{3}}}-{{20}\  p 1}\right)}\  p 2}\right)}\  q 1}+{6 \  p 2 \ {{p 3}^{2}}}+{6 \ {{p 2}^{3}}}+{{\left({6 \ {{p 1}^{2}}}+ 4 \right)}\  p 2}\right)}\  q 2}+{{\left(-{2 \ {{p 3}^{4}}}+{{\left(-{4 \ {{p 2}^{2}}}-{{16}\ {{p 1}^{2}}}- 4 \right)}\ {{p 3}^{2}}}-{2 \ {{p 2}^{4}}}+{{\left(-{{16}\ {{p 1}^{2}}}- 4 \right)}\ {{p 2}^{2}}}-{{16}\ {{p 1}^{4}}}-{{16}\ {{p 1}^{2}}}- 2 \right)}\ {{q 1}^{4}}}+{{\left({6 \  p 1 \ {{p 3}^{2}}}+{6 \  p 1 \ {{p 2}^{2}}}+{8 \ {{p 1}^{3}}}+{6 \  p 1}\right)}\ {{q 1}^{3}}}+{{\left(-{4 \ {{p 3}^{4}}}+{{\left(-{8 \ {{p 2}^{2}}}-{{20}\ {{p 1}^{2}}}- 6 \right)}\ {{p 3}^{2}}}-{4 \ {{p 2}^{4}}}+{{\left(-{{20}\ {{p 1}^{2}}}- 6 \right)}\ {{p 2}^{2}}}-{{16}\ {{p 1}^{4}}}-{{16}\ {{p 1}^{2}}}- 2 \right)}\ {{q 1}^{2}}}+{{\left({6 \  p 1 \ {{p 3}^{2}}}+{6 \  p 1 \ {{p 2}^{2}}}+{6 \ {{p 1}^{3}}}+{4 \  p 1}\right)}\  q 1}-{2 \ {{p 3}^{4}}}+{{\left(-{4 \ {{p 2}^{2}}}-{4 \ {{p 1}^{2}}}- 2 \right)}\ {{p 3}^{2}}}-{2 \ {{p 2}^{4}}}+{{\left(-{4 \ {{p 1}^{2}}}- 2 \right)}\ {{p 2}^{2}}}-{2 \ {{p 1}^{4}}}-{2 \ {{p 1}^{2}}}\right)}\ {\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}}}\over{{{\left({{\left({4 \ {{p 3}^{2}}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1 \right)}\ {{q 3}^{2}}}+{{\left({6 \  p 2 \  p 3 \  q 2}+{6 \  p 1 \  p 3 \  q 1}-{2 \  p 3}\right)}\  q 3}+{{\left({{p 3}^{2}}+{4 \ {{p 2}^{2}}}+{{p 1}^{2}}+ 1 \right)}\ {{q 2}^{2}}}+{{\left({6 \  p 1 \  p 2 \  q 1}-{2 \  p 2}\right)}\  q 2}+{{\left({{p 3}^{2}}+{{p 2}^{2}}+{4 \ {{p 1}^{2}}}+ 1 \right)}\ {{q 1}^{2}}}-{2 \  p 1 \  q 1}+{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1 \right)}\ {\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}\ {\sqrt{{{q 3}^{2}}+{{q 2}^{2}}+{{q 1}^{2}}+ 1}}}+{{\left(-{4 \ {{p 3}^{3}}}+{{\left(-{3 \ {{p 2}^{2}}}-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 3}\right)}\ {{q 3}^{3}}}+{{\left({{\left(-{6 \  p 2 \ {{p 3}^{2}}}-{3 \ {{p 2}^{3}}}+{{\left(-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 2}\right)}\  q 2}+{{\left(-{6 \  p 1 \ {{p 3}^{2}}}-{3 \  p 1 \ {{p 2}^{2}}}-{3 \ {{p 1}^{3}}}-{3 \  p 1}\right)}\  q 1}+{2 \ {{p 3}^{2}}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1 \right)}\ {{q 3}^{2}}}+{{\left({{\left(-{3 \ {{p 3}^{3}}}+{{\left(-{6 \ {{p 2}^{2}}}-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 3}\right)}\ {{q 2}^{2}}}+{{\left(-{6 \  p 1 \  p 2 \  p 3 \  q 1}+{2 \  p 2 \  p 3}\right)}\  q 2}+{{\left(-{3 \ {{p 3}^{3}}}+{{\left(-{3 \ {{p 2}^{2}}}-{6 \ {{p 1}^{2}}}- 3 \right)}\  p 3}\right)}\ {{q 1}^{2}}}+{2 \  p 1 \  p 3 \  q 1}-{3 \ {{p 3}^{3}}}+{{\left(-{3 \ {{p 2}^{2}}}-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 3}\right)}\  q 3}+{{\left(-{3 \  p 2 \ {{p 3}^{2}}}-{4 \ {{p 2}^{3}}}+{{\left(-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 2}\right)}\ {{q 2}^{3}}}+{{\left({{\left(-{3 \  p 1 \ {{p 3}^{2}}}-{6 \  p 1 \ {{p 2}^{2}}}-{3 \ {{p 1}^{3}}}-{3 \  p 1}\right)}\  q 1}+{{p 3}^{2}}+{2 \ {{p 2}^{2}}}+{{p 1}^{2}}+ 1 \right)}\ {{q 2}^{2}}}+{{\left({{\left(-{3 \  p 2 \ {{p 3}^{2}}}-{3 \ {{p 2}^{3}}}+{{\left(-{6 \ {{p 1}^{2}}}- 3 \right)}\  p 2}\right)}\ {{q 1}^{2}}}+{2 \  p 1 \  p 2 \  q 1}-{3 \  p 2 \ {{p 3}^{2}}}-{3 \ {{p 2}^{3}}}+{{\left(-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 2}\right)}\  q 2}+{{\left(-{3 \  p 1 \ {{p 3}^{2}}}-{3 \  p 1 \ {{p 2}^{2}}}-{4 \ {{p 1}^{3}}}-{3 \  p 1}\right)}\ {{q 1}^{3}}}+{{\left({{p 3}^{2}}+{{p 2}^{2}}+{2 \ {{p 1}^{2}}}+ 1 \right)}\ {{q 1}^{2}}}+{{\left(-{3 \  p 1 \ {{p 3}^{2}}}-{3 \  p 1 \ {{p 2}^{2}}}-{3 \ {{p 1}^{3}}}-{3 \  p 1}\right)}\  q 1}+{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}
\
{{{{\left({{\left({{16}\  p 1 \ {{p 3}^{3}}}+{{\left({8 \  p 1 \ {{p 2}^{2}}}+{8 \ {{p 1}^{3}}}+{8 \  p 1}\right)}\  p 3}\right)}\ {{q 3}^{3}}}+{{\left({{\left({{32}\  p 1 \  p 2 \ {{p 3}^{2}}}+{8 \  p 1 \ {{p 2}^{3}}}+{{\left({8 \ {{p 1}^{3}}}+{8 \  p 1}\right)}\  p 2}\right)}\  q 2}+{{\left({{32}\ {{p 1}^{2}}\ {{p 3}^{2}}}+{8 \ {{p 1}^{2}}\ {{p 2}^{2}}}+{8 \ {{p 1}^{4}}}+{8 \ {{p 1}^{2}}}\right)}\  q 1}-{8 \  p 1 \ {{p 3}^{2}}}-{2 \  p 1 \ {{p 2}^{2}}}-{2 \ {{p 1}^{3}}}-{2 \  p 1}\right)}\ {{q 3}^{2}}}+{{\left({{\left({8 \  p 1 \ {{p 3}^{3}}}+{{\left({{32}\  p 1 \ {{p 2}^{2}}}+{8 \ {{p 1}^{3}}}+{8 \  p 1}\right)}\  p 3}\right)}\ {{q 2}^{2}}}+{{\left({{4
8}\ {{p 1}^{2}}\  p 2 \  p 3 \  q 1}-{{12}\  p 1 \  p 2 \  p 3}\right)}\  q 2}+{{\left({8 \  p 1 \ {{p 3}^{3}}}+{{\left({8 \  p 1 \ {{p 2}^{2}}}+{{32}\ {{p 1}^{3}}}+{8 \  p 1}\right)}\  p 3}\right)}\ {{q 1}^{2}}}-{{12}\ {{p 1}^{2}}\  p 3 \  q 1}+{8 \  p 1 \ {{p 3}^{3}}}+{{\left({8 \  p 1 \ {{p 2}^{2}}}+{8 \ {{p 1}^{3}}}+{4 \  p 1}\right)}\  p 3}\right)}\  q 3}+{{\left({8 \  p 1 \  p 2 \ {{p 3}^{2}}}+{{16}\  p 1 \ {{p 2}^{3}}}+{{\left({8 \ {{p 1}^{3}}}+{8 \  p 1}\right)}\  p 2}\right)}\ {{q 2}^{3}}}+{{\left({{\left({8 \ {{p 1}^{2}}\ {{p 3}^{2}}}+{{32}\ {{p 1}^{2}}\ {{p 2}^{2}}}+{8 \ {{p 1}^{4}}}+{8 \ {{p 1}^{2}}}\right)}\  q 1}-{2 \  p 1 \ {{p 3}^{2}}}-{8 \  p 1 \ {{p 2}^{2}}}-{2 \ {{p 1}^{3}}}-{2 \  p 1}\right)}\ {{q 2}^{2}}}+{{\left({{\left({8 \  p 1 \  p 2 \ {{p 3}^{2}}}+{8 \  p 1 \ {{p 2}^{3}}}+{{\left({{3
2}\ {{p 1}^{3}}}+{8 \  p 1}\right)}\  p 2}\right)}\ {{q 1}^{2}}}-{{12}\ {{p 1}^{2}}\  p 2 \  q 1}+{8 \  p 1 \  p 2 \ {{p 3}^{2}}}+{8 \  p 1 \ {{p 2}^{3}}}+{{\left({8 \ {{p 1}^{3}}}+{4 \  p 1}\right)}\  p 2}\right)}\  q 2}+{{\left({8 \ {{p 1}^{2}}\ {{p 3}^{2}}}+{8 \ {{p 1}^{2}}\ {{p 2}^{2}}}+{{16}\ {{p 1}^{4}}}+{8 \ {{p 1}^{2}}}\right)}\ {{q 1}^{3}}}+{{\left(-{2 \  p 1 \ {{p 3}^{2}}}-{2 \  p 1 \ {{p 2}^{2}}}-{8 \ {{p 1}^{3}}}-{2 \  p 1}\right)}\ {{q 1}^{2}}}+{{\left({8 \ {{p 1}^{2}}\ {{p 3}^{2}}}+{8 \ {{p 1}^{2}}\ {{p 2}^{2}}}+{8 \ {{p 1}^{4}}}+{4 \ {{p 1}^{2}}}\right)}\  q 1}-{2 \  p 1 \ {{p 3}^{2}}}-{2 \  p 1 \ {{p 2}^{2}}}-{2 \ {{p 1}^{3}}}\right)}\ {\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}\ {\sqrt{{{q 3}^{2}}+{{q 2}^{2}}+{{q 1}^{2}}+ 1}}}+{{\left(-{{16}\  p 1 \ {{p 3}^{4}}}+{{\left(-{{16}\  p 1 \ {{p 2}^{2}}}-{{16}\ {{p 1}^{3}}}-{{16}\  p 1}\right)}\ {{p 3}^{2}}}-{2 \  p 1 \ {{p 2}^{4}}}+{{\left(-{4 \ {{p 1}^{3}}}-{4 \  p 1}\right)}\ {{p 2}^{2}}}-{2 \ {{p 1}^{5}}}-{4 \ {{p 1}^{3}}}-{2 \  p 1}\right)}\ {{q 3}^{4}}}+{{\left({{\left(-{{32}\  p 1 \  p 2 \ {{p 3}^{3}}}+{{\left(-{{24}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\  p 2}\right)}\  p 3}\right)}\  q 2}+{{\left(-{{32}\ {{p 1}^{2}}\ {{p 3}^{3}}}+{{\left(-{{24}\ {{p 1}^{2}}\ {{p 2}^{2}}}-{{24}\ {{p 1}^{4}}}-{{24}\ {{p 1}^{2}}}\right)}\  p 3}\right)}\  q 1}+{8 \  p 1 \ {{p 3}^{3}}}+{{\left({6 \  p 1 \ {{p 2}^{2}}}+{6 \ {{p 1}^{3}}}+{6 \  p 1}\right)}\  p 3}\right)}\ {{q 3}^{3}}}+{{\left({{\left(-{{16}\  p 1 \ {{p 3}^{4}}}+{{\left(-{{44}\  p 1 \ {{p 2}^{2}}}-{{20}\ {{p 1}^{3}}}-{{20}\  p 1}\right)}\ {{p 3}^{2}}}-{{16}\  p 1 \ {{p 2}^{4}}}+{{\left(-{{20}\ {{p 1}^{3}}}-{{20}\  p 1}\right)}\ {{p 2}^{2}}}-{4 \ {{p 1}^{5}}}-{8 \ {{p 1}^{3}}}-{4 \  p 1}\right)}\ {{q 2}^{2}}}+{{\left({{\left(-{{48}\ {{p 1}^{2}}\  p 2 \ {{p 3}^{2}}}-{{24}\ {{p 1}^{2}}\ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{4}}}-{{24}\ {{p 1}^{2}}}\right)}\  p 2}\right)}\  q 1}+{{12}\  p 1 \  p 2 \ {{p 3}^{2}}}+{6 \  p 1 \ {{p 2}^{3}}}+{{\left({6 \ {{p 1}^{3}}}+{6 \  p 1}\right)}\  p 2}\right)}\  q 2}+{{\left(-{{1
6}\  p 1 \ {{p 3}^{4}}}+{{\left(-{{20}\  p 1 \ {{p 2}^{2}}}-{{4
4}\ {{p 1}^{3}}}-{{20}\  p 1}\right)}\ {{p 3}^{2}}}-{4 \  p 1 \ {{p 2}^{4}}}+{{\left(-{{20}\ {{p 1}^{3}}}-{8 \  p 1}\right)}\ {{p 2}^{2}}}-{{16}\ {{p 1}^{5}}}-{{20}\ {{p 1}^{3}}}-{4 \  p 1}\right)}\ {{q 1}^{2}}}+{{\left({{12}\ {{p 1}^{2}}\ {{p 3}^{2}}}+{6 \ {{p 1}^{2}}\ {{p 2}^{2}}}+{6 \ {{p 1}^{4}}}+{6 \ {{p 1}^{2}}}\right)}\  q 1}-{{16}\  p 1 \ {{p 3}^{4}}}+{{\left(-{{20}\  p 1 \ {{p 2}^{2}}}-{{20}\ {{p 1}^{3}}}-{{16}\  p 1}\right)}\ {{p 3}^{2}}}-{4 \  p 1 \ {{p 2}^{4}}}+{{\left(-{8 \ {{p 1}^{3}}}-{6 \  p 1}\right)}\ {{p 2}^{2}}}-{4 \ {{p 1}^{5}}}-{6 \ {{p 1}^{3}}}-{2 \  p 1}\right)}\ {{q 3}^{2}}}+{{\left({{\left(-{{24}\  p 1 \  p 2 \ {{p 3}^{3}}}+{{\left(-{{32}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\  p 2}\right)}\  p 3}\right)}\ {{q 2}^{3}}}+{{\left({{\left(-{{24}\ {{p 1}^{2}}\ {{p 3}^{3}}}+{{\left(-{{48}\ {{p 1}^{2}}\ {{p 2}^{2}}}-{{24}\ {{p 1}^{4}}}-{{24}\ {{p 1}^{2}}}\right)}\  p 3}\right)}\  q 1}+{6 \  p 1 \ {{p 3}^{3}}}+{{\left({{12}\  p 1 \ {{p 2}^{2}}}+{6 \ {{p 1}^{3}}}+{6 \  p 1}\right)}\  p 3}\right)}\ {{q 2}^{2}}}+{{\left({{\left(-{{24}\  p 1 \  p 2 \ {{p 3}^{3}}}+{{\left(-{{24}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{48}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\  p 2}\right)}\  p 3}\right)}\ {{q 1}^{2}}}+{{12}\ {{p 1}^{2}}\  p 2 \  p 3 \  q 1}-{{24}\  p 1 \  p 2 \ {{p 3}^{3}}}+{{\left(-{{24}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{3}}}-{{20}\  p 1}\right)}\  p 2}\right)}\  p 3}\right)}\  q 2}+{{\left(-{{24}\ {{p 1}^{2}}\ {{p 3}^{3}}}+{{\left(-{{24}\ {{p 1}^{2}}\ {{p 2}^{2}}}-{{32}\ {{p 1}^{4}}}-{{24}\ {{p 1}^{2}}}\right)}\  p 3}\right)}\ {{q 1}^{3}}}+{{\left({6 \  p 1 \ {{p 3}^{3}}}+{{\left({6 \  p 1 \ {{p 2}^{2}}}+{{12}\ {{p 1}^{3}}}+{6 \  p 1}\right)}\  p 3}\right)}\ {{q 1}^{2}}}+{{\left(-{{24}\ {{p 1}^{2}}\ {{p 3}^{3}}}+{{\left(-{{24}\ {{p 1}^{2}}\ {{p 2}^{2}}}-{{24}\ {{p 1}^{4}}}-{{20}\ {{p 1}^{2}}}\right)}\  p 3}\right)}\  q 1}+{6 \  p 1 \ {{p 3}^{3}}}+{{\left({6 \  p 1 \ {{p 2}^{2}}}+{6 \ {{p 1}^{3}}}+{4 \  p 1}\right)}\  p 3}\right)}\  q 3}+{{\left(-{2 \  p 1 \ {{p 3}^{4}}}+{{\left(-{{16}\  p 1 \ {{p 2}^{2}}}-{4 \ {{p 1}^{3}}}-{4 \  p 1}\right)}\ {{p 3}^{2}}}-{{16}\  p 1 \ {{p 2}^{4}}}+{{\left(-{{16}\ {{p 1}^{3}}}-{{16}\  p 1}\right)}\ {{p 2}^{2}}}-{2 \ {{p 1}^{5}}}-{4 \ {{p 1}^{3}}}-{2 \  p 1}\right)}\ {{q 2}^{4}}}+{{\left({{\left(-{{24}\ {{p 1}^{2}}\  p 2 \ {{p 3}^{2}}}-{{32}\ {{p 1}^{2}}\ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{4}}}-{{24}\ {{p 1}^{2}}}\right)}\  p 2}\right)}\  q 1}+{6 \  p 1 \  p 2 \ {{p 3}^{2}}}+{8 \  p 1 \ {{p 2}^{3}}}+{{\left({6 \ {{p 1}^{3}}}+{6 \  p 1}\right)}\  p 2}\right)}\ {{q 2}^{3}}}+{{\left({{\left(-{4 \  p 1 \ {{p 3}^{4}}}+{{\left(-{{20}\  p 1 \ {{p 2}^{2}}}-{{20}\ {{p 1}^{3}}}-{8 \  p 1}\right)}\ {{p 3}^{2}}}-{{16}\  p 1 \ {{p 2}^{4}}}+{{\left(-{{44}\ {{p 1}^{3}}}-{{20}\  p 1}\right)}\ {{p 2}^{2}}}-{{16}\ {{p 1}^{5}}}-{{20}\ {{p 1}^{3}}}-{4 \  p 1}\right)}\ {{q 1}^{2}}}+{{\left({6 \ {{p 1}^{2}}\ {{p 3}^{2}}}+{{12}\ {{p 1}^{2}}\ {{p 2}^{2}}}+{6 \ {{p 1}^{4}}}+{6 \ {{p 1}^{2}}}\right)}\  q 1}-{4 \  p 1 \ {{p 3}^{4}}}+{{\left(-{{20}\  p 1 \ {{p 2}^{2}}}-{8 \ {{p 1}^{3}}}-{6 \  p 1}\right)}\ {{p 3}^{2}}}-{{16}\  p 1 \ {{p 2}^{4}}}+{{\left(-{{20}\ {{p 1}^{3}}}-{{16}\  p 1}\right)}\ {{p 2}^{2}}}-{4 \ {{p 1}^{5}}}-{6 \ {{p 1}^{3}}}-{2 \  p 1}\right)}\ {{q 2}^{2}}}+{{\left({{\left(-{{24}\ {{p 1}^{2}}\  p 2 \ {{p 3}^{2}}}-{{24}\ {{p 1}^{2}}\ {{p 2}^{3}}}+{{\left(-{{32}\ {{p 1}^{4}}}-{{24}\ {{p 1}^{2}}}\right)}\  p 2}\right)}\ {{q 1}^{3}}}+{{\left({6 \  p 1 \  p 2 \ {{p 3}^{2}}}+{6 \  p 1 \ {{p 2}^{3}}}+{{\left({{1
2}\ {{p 1}^{3}}}+{6 \  p 1}\right)}\  p 2}\right)}\ {{q 1}^{2}}}+{{\left(-{{24}\ {{p 1}^{2}}\  p 2 \ {{p 3}^{2}}}-{{24}\ {{p 1}^{2}}\ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{4}}}-{{20}\ {{p 1}^{2}}}\right)}\  p 2}\right)}\  q 1}+{6 \  p 1 \  p 2 \ {{p 3}^{2}}}+{6 \  p 1 \ {{p 2}^{3}}}+{{\left({6 \ {{p 1}^{3}}}+{4 \  p 1}\right)}\  p 2}\right)}\  q 2}+{{\left(-{2 \  p 1 \ {{p 3}^{4}}}+{{\left(-{4 \  p 1 \ {{p 2}^{2}}}-{{16}\ {{p 1}^{3}}}-{4 \  p 1}\right)}\ {{p 3}^{2}}}-{2 \  p 1 \ {{p 2}^{4}}}+{{\left(-{{16}\ {{p 1}^{3}}}-{4 \  p 1}\right)}\ {{p 2}^{2}}}-{{16}\ {{p 1}^{5}}}-{{16}\ {{p 1}^{3}}}-{2 \  p 1}\right)}\ {{q 1}^{4}}}+{{\left({6 \ {{p 1}^{2}}\ {{p 3}^{2}}}+{6 \ {{p 1}^{2}}\ {{p 2}^{2}}}+{8 \ {{p 1}^{4}}}+{6 \ {{p 1}^{2}}}\right)}\ {{q 1}^{3}}}+{{\left(-{4 \  p 1 \ {{p 3}^{4}}}+{{\left(-{8 \  p 1 \ {{p 2}^{2}}}-{{20}\ {{p 1}^{3}}}-{6 \  p 1}\right)}\ {{p 3}^{2}}}-{4 \  p 1 \ {{p 2}^{4}}}+{{\left(-{{20}\ {{p 1}^{3}}}-{6 \  p 1}\right)}\ {{p 2}^{2}}}-{{16}\ {{p 1}^{5}}}-{{16}\ {{p 1}^{3}}}-{2 \  p 1}\right)}\ {{q 1}^{2}}}+{{\left({6 \ {{p 1}^{2}}\ {{p 3}^{2}}}+{6 \ {{p 1}^{2}}\ {{p 2}^{2}}}+{6 \ {{p 1}^{4}}}+{4 \ {{p 1}^{2}}}\right)}\  q 1}-{2 \  p 1 \ {{p 3}^{4}}}+{{\left(-{4 \  p 1 \ {{p 2}^{2}}}-{4 \ {{p 1}^{3}}}-{2 \  p 1}\right)}\ {{p 3}^{2}}}-{2 \  p 1 \ {{p 2}^{4}}}+{{\left(-{4 \ {{p 1}^{3}}}-{2 \  p 1}\right)}\ {{p 2}^{2}}}-{2 \ {{p 1}^{5}}}-{2 \ {{p 1}^{3}}}}\over{{{\left({{\left({4 \ {{p 3}^{2}}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1 \right)}\ {{q 3}^{2}}}+{{\left({6 \  p 2 \  p 3 \  q 2}+{6 \  p 1 \  p 3 \  q 1}-{2 \  p 3}\right)}\  q 3}+{{\left({{p 3}^{2}}+{4 \ {{p 2}^{2}}}+{{p 1}^{2}}+ 1 \right)}\ {{q 2}^{2}}}+{{\left({6 \  p 1 \  p 2 \  q 1}-{2 \  p 2}\right)}\  q 2}+{{\left({{p 3}^{2}}+{{p 2}^{2}}+{4 \ {{p 1}^{2}}}+ 1 \right)}\ {{q 1}^{2}}}-{2 \  p 1 \  q 1}+{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1 \right)}\ {\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}\ {\sqrt{{{q 3}^{2}}+{{q 2}^{2}}+{{q 1}^{2}}+ 1}}}+{{\left(-{4 \ {{p 3}^{3}}}+{{\left(-{3 \ {{p 2}^{2}}}-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 3}\right)}\ {{q 3}^{3}}}+{{\left({{\left(-{6 \  p 2 \ {{p 3}^{2}}}-{3 \ {{p 2}^{3}}}+{{\left(-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 2}\right)}\  q 2}+{{\left(-{6 \  p 1 \ {{p 3}^{2}}}-{3 \  p 1 \ {{p 2}^{2}}}-{3 \ {{p 1}^{3}}}-{3 \  p 1}\right)}\  q 1}+{2 \ {{p 3}^{2}}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1 \right)}\ {{q 3}^{2}}}+{{\left({{\left(-{3 \ {{p 3}^{3}}}+{{\left(-{6 \ {{p 2}^{2}}}-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 3}\right)}\ {{q 2}^{2}}}+{{\left(-{6 \  p 1 \  p 2 \  p 3 \  q 1}+{2 \  p 2 \  p 3}\right)}\  q 2}+{{\left(-{3 \ {{p 3}^{3}}}+{{\left(-{3 \ {{p 2}^{2}}}-{6 \ {{p 1}^{2}}}- 3 \right)}\  p 3}\right)}\ {{q 1}^{2}}}+{2 \  p 1 \  p 3 \  q 1}-{3 \ {{p 3}^{3}}}+{{\left(-{3 \ {{p 2}^{2}}}-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 3}\right)}\  q 3}+{{\left(-{3 \  p 2 \ {{p 3}^{2}}}-{4 \ {{p 2}^{3}}}+{{\left(-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 2}\right)}\ {{q 2}^{3}}}+{{\left({{\left(-{3 \  p 1 \ {{p 3}^{2}}}-{6 \  p 1 \ {{p 2}^{2}}}-{3 \ {{p 1}^{3}}}-{3 \  p 1}\right)}\  q 1}+{{p 3}^{2}}+{2 \ {{p 2}^{2}}}+{{p 1}^{2}}+ 1 \right)}\ {{q 2}^{2}}}+{{\left({{\left(-{3 \  p 2 \ {{p 3}^{2}}}-{3 \ {{p 2}^{3}}}+{{\left(-{6 \ {{p 1}^{2}}}- 3 \right)}\  p 2}\right)}\ {{q 1}^{2}}}+{2 \  p 1 \  p 2 \  q 1}-{3 \  p 2 \ {{p 3}^{2}}}-{3 \ {{p 2}^{3}}}+{{\left(-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 2}\right)}\  q 2}+{{\left(-{3 \  p 1 \ {{p 3}^{2}}}-{3 \  p 1 \ {{p 2}^{2}}}-{4 \ {{p 1}^{3}}}-{3 \  p 1}\right)}\ {{q 1}^{3}}}+{{\left({{p 3}^{2}}+{{p 2}^{2}}+{2 \ {{p 1}^{2}}}+ 1 \right)}\ {{q 1}^{2}}}+{{\left(-{3 \  p 1 \ {{p 3}^{2}}}-{3 \  p 1 \ {{p 2}^{2}}}-{3 \ {{p 1}^{3}}}-{3 \  p 1}\right)}\  q 1}+{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}
\
{{{{\left({{\left({{16}\  p 2 \ {{p 3}^{3}}}+{{\left({8 \ {{p 2}^{3}}}+{{\left({8 \ {{p 1}^{2}}}+ 8 \right)}\  p 2}\right)}\  p 3}\right)}\ {{q 3}^{3}}}+{{\left({{\left({{32}\ {{p 2}^{2}}\ {{p 3}^{2}}}+{8 \ {{p 2}^{4}}}+{{\left({8 \ {{p 1}^{2}}}+ 8 \right)}\ {{p 2}^{2}}}\right)}\  q 2}+{{\left({{32}\  p 1 \  p 2 \ {{p 3}^{2}}}+{8 \  p 1 \ {{p 2}^{3}}}+{{\left({8 \ {{p 1}^{3}}}+{8 \  p 1}\right)}\  p 2}\right)}\  q 1}-{8 \  p 2 \ {{p 3}^{2}}}-{2 \ {{p 2}^{3}}}+{{\left(-{2 \ {{p 1}^{2}}}- 2 \right)}\  p 2}\right)}\ {{q 3}^{2}}}+{{\left({{\left({8 \  p 2 \ {{p 3}^{3}}}+{{\left({{32}\ {{p 2}^{3}}}+{{\left({8 \ {{p 1}^{2}}}+ 8 \right)}\  p 2}\right)}\  p 3}\right)}\ {{q 2}^{2}}}+{{\left({{48}\  p 1 \ {{p 2}^{2}}\  p 3 \  q 1}-{{12}\ {{p 2}^{2}}\  p 3}\right)}\  q 2}+{{\left({8 \  p 2 \ {{p 3}^{3}}}+{{\left({8 \ {{p 2}^{3}}}+{{\left({{32}\ {{p 1}^{2}}}+ 8 \right)}\  p 2}\right)}\  p 3}\right)}\ {{q 1}^{2}}}-{{12}\  p 1 \  p 2 \  p 3 \  q 1}+{8 \  p 2 \ {{p 3}^{3}}}+{{\left({8 \ {{p 2}^{3}}}+{{\left({8 \ {{p 1}^{2}}}+ 4 \right)}\  p 2}\right)}\  p 3}\right)}\  q 3}+{{\left({8 \ {{p 2}^{2}}\ {{p 3}^{2}}}+{{1
6}\ {{p 2}^{4}}}+{{\left({8 \ {{p 1}^{2}}}+ 8 \right)}\ {{p 2}^{2}}}\right)}\ {{q 2}^{3}}}+{{\left({{\left({8 \  p 1 \  p 2 \ {{p 3}^{2}}}+{{32}\  p 1 \ {{p 2}^{3}}}+{{\left({8 \ {{p 1}^{3}}}+{8 \  p 1}\right)}\  p 2}\right)}\  q 1}-{2 \  p 2 \ {{p 3}^{2}}}-{8 \ {{p 2}^{3}}}+{{\left(-{2 \ {{p 1}^{2}}}- 2 \right)}\  p 2}\right)}\ {{q 2}^{2}}}+{{\left({{\left({8 \ {{p 2}^{2}}\ {{p 3}^{2}}}+{8 \ {{p 2}^{4}}}+{{\left({{32}\ {{p 1}^{2}}}+ 8 \right)}\ {{p 2}^{2}}}\right)}\ {{q 1}^{2}}}-{{12}\  p 1 \ {{p 2}^{2}}\  q 1}+{8 \ {{p 2}^{2}}\ {{p 3}^{2}}}+{8 \ {{p 2}^{4}}}+{{\left({8 \ {{p 1}^{2}}}+ 4 \right)}\ {{p 2}^{2}}}\right)}\  q 2}+{{\left({8 \  p 1 \  p 2 \ {{p 3}^{2}}}+{8 \  p 1 \ {{p 2}^{3}}}+{{\left({{1
6}\ {{p 1}^{3}}}+{8 \  p 1}\right)}\  p 2}\right)}\ {{q 1}^{3}}}+{{\left(-{2 \  p 2 \ {{p 3}^{2}}}-{2 \ {{p 2}^{3}}}+{{\left(-{8 \ {{p 1}^{2}}}- 2 \right)}\  p 2}\right)}\ {{q 1}^{2}}}+{{\left({8 \  p 1 \  p 2 \ {{p 3}^{2}}}+{8 \  p 1 \ {{p 2}^{3}}}+{{\left({8 \ {{p 1}^{3}}}+{4 \  p 1}\right)}\  p 2}\right)}\  q 1}-{2 \  p 2 \ {{p 3}^{2}}}-{2 \ {{p 2}^{3}}}-{2 \ {{p 1}^{2}}\  p 2}\right)}\ {\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}\ {\sqrt{{{q 3}^{2}}+{{q 2}^{2}}+{{q 1}^{2}}+ 1}}}+{{\left(-{{16}\  p 2 \ {{p 3}^{4}}}+{{\left(-{{16}\ {{p 2}^{3}}}+{{\left(-{{16}\ {{p 1}^{2}}}-{16}\right)}\  p 2}\right)}\ {{p 3}^{2}}}-{2 \ {{p 2}^{5}}}+{{\left(-{4 \ {{p 1}^{2}}}- 4 \right)}\ {{p 2}^{3}}}+{{\left(-{2 \ {{p 1}^{4}}}-{4 \ {{p 1}^{2}}}- 2 \right)}\  p 2}\right)}\ {{q 3}^{4}}}+{{\left({{\left(-{{32}\ {{p 2}^{2}}\ {{p 3}^{3}}}+{{\left(-{{24}\ {{p 2}^{4}}}+{{\left(-{{24}\ {{p 1}^{2}}}-{24}\right)}\ {{p 2}^{2}}}\right)}\  p 3}\right)}\  q 2}+{{\left(-{{32}\  p 1 \  p 2 \ {{p 3}^{3}}}+{{\left(-{{24}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\  p 2}\right)}\  p 3}\right)}\  q 1}+{8 \  p 2 \ {{p 3}^{3}}}+{{\left({6 \ {{p 2}^{3}}}+{{\left({6 \ {{p 1}^{2}}}+ 6 \right)}\  p 2}\right)}\  p 3}\right)}\ {{q 3}^{3}}}+{{\left({{\left(-{{16}\  p 2 \ {{p 3}^{4}}}+{{\left(-{{44}\ {{p 2}^{3}}}+{{\left(-{{20}\ {{p 1}^{2}}}-{20}\right)}\  p 2}\right)}\ {{p 3}^{2}}}-{{16}\ {{p 2}^{5}}}+{{\left(-{{20}\ {{p 1}^{2}}}-{20}\right)}\ {{p 2}^{3}}}+{{\left(-{4 \ {{p 1}^{4}}}-{8 \ {{p 1}^{2}}}- 4 \right)}\  p 2}\right)}\ {{q 2}^{2}}}+{{\left({{\left(-{{48}\  p 1 \ {{p 2}^{2}}\ {{p 3}^{2}}}-{{24}\  p 1 \ {{p 2}^{4}}}+{{\left(-{{2
4}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\ {{p 2}^{2}}}\right)}\  q 1}+{{12}\ {{p 2}^{2}}\ {{p 3}^{2}}}+{6 \ {{p 2}^{4}}}+{{\left({6 \ {{p 1}^{2}}}+ 6 \right)}\ {{p 2}^{2}}}\right)}\  q 2}+{{\left(-{{16}\  p 2 \ {{p 3}^{4}}}+{{\left(-{{20}\ {{p 2}^{3}}}+{{\left(-{{44}\ {{p 1}^{2}}}-{20}\right)}\  p 2}\right)}\ {{p 3}^{2}}}-{4 \ {{p 2}^{5}}}+{{\left(-{{20}\ {{p 1}^{2}}}- 8 \right)}\ {{p 2}^{3}}}+{{\left(-{{16}\ {{p 1}^{4}}}-{{20}\ {{p 1}^{2}}}- 4 \right)}\  p 2}\right)}\ {{q 1}^{2}}}+{{\left({{12}\  p 1 \  p 2 \ {{p 3}^{2}}}+{6 \  p 1 \ {{p 2}^{3}}}+{{\left({6 \ {{p 1}^{3}}}+{6 \  p 1}\right)}\  p 2}\right)}\  q 1}-{{16}\  p 2 \ {{p 3}^{4}}}+{{\left(-{{20}\ {{p 2}^{3}}}+{{\left(-{{20}\ {{p 1}^{2}}}-{16}\right)}\  p 2}\right)}\ {{p 3}^{2}}}-{4 \ {{p 2}^{5}}}+{{\left(-{8 \ {{p 1}^{2}}}- 6 \right)}\ {{p 2}^{3}}}+{{\left(-{4 \ {{p 1}^{4}}}-{6 \ {{p 1}^{2}}}- 2 \right)}\  p 2}\right)}\ {{q 3}^{2}}}+{{\left({{\left(-{{24}\ {{p 2}^{2}}\ {{p 3}^{3}}}+{{\left(-{{32}\ {{p 2}^{4}}}+{{\left(-{{24}\ {{p 1}^{2}}}-{24}\right)}\ {{p 2}^{2}}}\right)}\  p 3}\right)}\ {{q 2}^{3}}}+{{\left({{\left(-{{24}\  p 1 \  p 2 \ {{p 3}^{3}}}+{{\left(-{{48}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\  p 2}\right)}\  p 3}\right)}\  q 1}+{6 \  p 2 \ {{p 3}^{3}}}+{{\left({{1
2}\ {{p 2}^{3}}}+{{\left({6 \ {{p 1}^{2}}}+ 6 \right)}\  p 2}\right)}\  p 3}\right)}\ {{q 2}^{2}}}+{{\left({{\left(-{{24}\ {{p 2}^{2}}\ {{p 3}^{3}}}+{{\left(-{{24}\ {{p 2}^{4}}}+{{\left(-{{48}\ {{p 1}^{2}}}-{24}\right)}\ {{p 2}^{2}}}\right)}\  p 3}\right)}\ {{q 1}^{2}}}+{{12}\  p 1 \ {{p 2}^{2}}\  p 3 \  q 1}-{{24}\ {{p 2}^{2}}\ {{p 3}^{3}}}+{{\left(-{{24}\ {{p 2}^{4}}}+{{\left(-{{24}\ {{p 1}^{2}}}-{20}\right)}\ {{p 2}^{2}}}\right)}\  p 3}\right)}\  q 2}+{{\left(-{{24}\  p 1 \  p 2 \ {{p 3}^{3}}}+{{\left(-{{24}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{32}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\  p 2}\right)}\  p 3}\right)}\ {{q 1}^{3}}}+{{\left({6 \  p 2 \ {{p 3}^{3}}}+{{\left({6 \ {{p 2}^{3}}}+{{\left({{12}\ {{p 1}^{2}}}+ 6 \right)}\  p 2}\right)}\  p 3}\right)}\ {{q 1}^{2}}}+{{\left(-{{24}\  p 1 \  p 2 \ {{p 3}^{3}}}+{{\left(-{{24}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{3}}}-{{20}\  p 1}\right)}\  p 2}\right)}\  p 3}\right)}\  q 1}+{6 \  p 2 \ {{p 3}^{3}}}+{{\left({6 \ {{p 2}^{3}}}+{{\left({6 \ {{p 1}^{2}}}+ 4 \right)}\  p 2}\right)}\  p 3}\right)}\  q 3}+{{\left(-{2 \  p 2 \ {{p 3}^{4}}}+{{\left(-{{16}\ {{p 2}^{3}}}+{{\left(-{4 \ {{p 1}^{2}}}- 4 \right)}\  p 2}\right)}\ {{p 3}^{2}}}-{{16}\ {{p 2}^{5}}}+{{\left(-{{16}\ {{p 1}^{2}}}-{16}\right)}\ {{p 2}^{3}}}+{{\left(-{2 \ {{p 1}^{4}}}-{4 \ {{p 1}^{2}}}- 2 \right)}\  p 2}\right)}\ {{q 2}^{4}}}+{{\left({{\left(-{{24}\  p 1 \ {{p 2}^{2}}\ {{p 3}^{2}}}-{{32}\  p 1 \ {{p 2}^{4}}}+{{\left(-{{24}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\ {{p 2}^{2}}}\right)}\  q 1}+{6 \ {{p 2}^{2}}\ {{p 3}^{2}}}+{8 \ {{p 2}^{4}}}+{{\left({6 \ {{p 1}^{2}}}+ 6 \right)}\ {{p 2}^{2}}}\right)}\ {{q 2}^{3}}}+{{\left({{\left(-{4 \  p 2 \ {{p 3}^{4}}}+{{\left(-{{2
0}\ {{p 2}^{3}}}+{{\left(-{{20}\ {{p 1}^{2}}}- 8 \right)}\  p 2}\right)}\ {{p 3}^{2}}}-{{16}\ {{p 2}^{5}}}+{{\left(-{{44}\ {{p 1}^{2}}}-{20}\right)}\ {{p 2}^{3}}}+{{\left(-{{16}\ {{p 1}^{4}}}-{{20}\ {{p 1}^{2}}}- 4 \right)}\  p 2}\right)}\ {{q 1}^{2}}}+{{\left({6 \  p 1 \  p 2 \ {{p 3}^{2}}}+{{12}\  p 1 \ {{p 2}^{3}}}+{{\left({6 \ {{p 1}^{3}}}+{6 \  p 1}\right)}\  p 2}\right)}\  q 1}-{4 \  p 2 \ {{p 3}^{4}}}+{{\left(-{{20}\ {{p 2}^{3}}}+{{\left(-{8 \ {{p 1}^{2}}}- 6 \right)}\  p 2}\right)}\ {{p 3}^{2}}}-{{1
6}\ {{p 2}^{5}}}+{{\left(-{{20}\ {{p 1}^{2}}}-{16}\right)}\ {{p 2}^{3}}}+{{\left(-{4 \ {{p 1}^{4}}}-{6 \ {{p 1}^{2}}}- 2 \right)}\  p 2}\right)}\ {{q 2}^{2}}}+{{\left({{\left(-{{24}\  p 1 \ {{p 2}^{2}}\ {{p 3}^{2}}}-{{24}\  p 1 \ {{p 2}^{4}}}+{{\left(-{{3
2}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\ {{p 2}^{2}}}\right)}\ {{q 1}^{3}}}+{{\left({6 \ {{p 2}^{2}}\ {{p 3}^{2}}}+{6 \ {{p 2}^{4}}}+{{\left({{12}\ {{p 1}^{2}}}+ 6 \right)}\ {{p 2}^{2}}}\right)}\ {{q 1}^{2}}}+{{\left(-{{24}\  p 1 \ {{p 2}^{2}}\ {{p 3}^{2}}}-{{2
4}\  p 1 \ {{p 2}^{4}}}+{{\left(-{{24}\ {{p 1}^{3}}}-{{20}\  p 1}\right)}\ {{p 2}^{2}}}\right)}\  q 1}+{6 \ {{p 2}^{2}}\ {{p 3}^{2}}}+{6 \ {{p 2}^{4}}}+{{\left({6 \ {{p 1}^{2}}}+ 4 \right)}\ {{p 2}^{2}}}\right)}\  q 2}+{{\left(-{2 \  p 2 \ {{p 3}^{4}}}+{{\left(-{4 \ {{p 2}^{3}}}+{{\left(-{{16}\ {{p 1}^{2}}}- 4 \right)}\  p 2}\right)}\ {{p 3}^{2}}}-{2 \ {{p 2}^{5}}}+{{\left(-{{16}\ {{p 1}^{2}}}- 4 \right)}\ {{p 2}^{3}}}+{{\left(-{{16}\ {{p 1}^{4}}}-{{16}\ {{p 1}^{2}}}- 2 \right)}\  p 2}\right)}\ {{q 1}^{4}}}+{{\left({6 \  p 1 \  p 2 \ {{p 3}^{2}}}+{6 \  p 1 \ {{p 2}^{3}}}+{{\left({8 \ {{p 1}^{3}}}+{6 \  p 1}\right)}\  p 2}\right)}\ {{q 1}^{3}}}+{{\left(-{4 \  p 2 \ {{p 3}^{4}}}+{{\left(-{8 \ {{p 2}^{3}}}+{{\left(-{{20}\ {{p 1}^{2}}}- 6 \right)}\  p 2}\right)}\ {{p 3}^{2}}}-{4 \ {{p 2}^{5}}}+{{\left(-{{20}\ {{p 1}^{2}}}- 6 \right)}\ {{p 2}^{3}}}+{{\left(-{{16}\ {{p 1}^{4}}}-{{16}\ {{p 1}^{2}}}- 2 \right)}\  p 2}\right)}\ {{q 1}^{2}}}+{{\left({6 \  p 1 \  p 2 \ {{p 3}^{2}}}+{6 \  p 1 \ {{p 2}^{3}}}+{{\left({6 \ {{p 1}^{3}}}+{4 \  p 1}\right)}\  p 2}\right)}\  q 1}-{2 \  p 2 \ {{p 3}^{4}}}+{{\left(-{4 \ {{p 2}^{3}}}+{{\left(-{4 \ {{p 1}^{2}}}- 2 \right)}\  p 2}\right)}\ {{p 3}^{2}}}-{2 \ {{p 2}^{5}}}+{{\left(-{4 \ {{p 1}^{2}}}- 2 \right)}\ {{p 2}^{3}}}+{{\left(-{2 \ {{p 1}^{4}}}-{2 \ {{p 1}^{2}}}\right)}\  p 2}}\over{{{\left({{\left({4 \ {{p 3}^{2}}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1 \right)}\ {{q 3}^{2}}}+{{\left({6 \  p 2 \  p 3 \  q 2}+{6 \  p 1 \  p 3 \  q 1}-{2 \  p 3}\right)}\  q 3}+{{\left({{p 3}^{2}}+{4 \ {{p 2}^{2}}}+{{p 1}^{2}}+ 1 \right)}\ {{q 2}^{2}}}+{{\left({6 \  p 1 \  p 2 \  q 1}-{2 \  p 2}\right)}\  q 2}+{{\left({{p 3}^{2}}+{{p 2}^{2}}+{4 \ {{p 1}^{2}}}+ 1 \right)}\ {{q 1}^{2}}}-{2 \  p 1 \  q 1}+{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1 \right)}\ {\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}\ {\sqrt{{{q 3}^{2}}+{{q 2}^{2}}+{{q 1}^{2}}+ 1}}}+{{\left(-{4 \ {{p 3}^{3}}}+{{\left(-{3 \ {{p 2}^{2}}}-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 3}\right)}\ {{q 3}^{3}}}+{{\left({{\left(-{6 \  p 2 \ {{p 3}^{2}}}-{3 \ {{p 2}^{3}}}+{{\left(-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 2}\right)}\  q 2}+{{\left(-{6 \  p 1 \ {{p 3}^{2}}}-{3 \  p 1 \ {{p 2}^{2}}}-{3 \ {{p 1}^{3}}}-{3 \  p 1}\right)}\  q 1}+{2 \ {{p 3}^{2}}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1 \right)}\ {{q 3}^{2}}}+{{\left({{\left(-{3 \ {{p 3}^{3}}}+{{\left(-{6 \ {{p 2}^{2}}}-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 3}\right)}\ {{q 2}^{2}}}+{{\left(-{6 \  p 1 \  p 2 \  p 3 \  q 1}+{2 \  p 2 \  p 3}\right)}\  q 2}+{{\left(-{3 \ {{p 3}^{3}}}+{{\left(-{3 \ {{p 2}^{2}}}-{6 \ {{p 1}^{2}}}- 3 \right)}\  p 3}\right)}\ {{q 1}^{2}}}+{2 \  p 1 \  p 3 \  q 1}-{3 \ {{p 3}^{3}}}+{{\left(-{3 \ {{p 2}^{2}}}-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 3}\right)}\  q 3}+{{\left(-{3 \  p 2 \ {{p 3}^{2}}}-{4 \ {{p 2}^{3}}}+{{\left(-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 2}\right)}\ {{q 2}^{3}}}+{{\left({{\left(-{3 \  p 1 \ {{p 3}^{2}}}-{6 \  p 1 \ {{p 2}^{2}}}-{3 \ {{p 1}^{3}}}-{3 \  p 1}\right)}\  q 1}+{{p 3}^{2}}+{2 \ {{p 2}^{2}}}+{{p 1}^{2}}+ 1 \right)}\ {{q 2}^{2}}}+{{\left({{\left(-{3 \  p 2 \ {{p 3}^{2}}}-{3 \ {{p 2}^{3}}}+{{\left(-{6 \ {{p 1}^{2}}}- 3 \right)}\  p 2}\right)}\ {{q 1}^{2}}}+{2 \  p 1 \  p 2 \  q 1}-{3 \  p 2 \ {{p 3}^{2}}}-{3 \ {{p 2}^{3}}}+{{\left(-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 2}\right)}\  q 2}+{{\left(-{3 \  p 1 \ {{p 3}^{2}}}-{3 \  p 1 \ {{p 2}^{2}}}-{4 \ {{p 1}^{3}}}-{3 \  p 1}\right)}\ {{q 1}^{3}}}+{{\left({{p 3}^{2}}+{{p 2}^{2}}+{2 \ {{p 1}^{2}}}+ 1 \right)}\ {{q 1}^{2}}}+{{\left(-{3 \  p 1 \ {{p 3}^{2}}}-{3 \  p 1 \ {{p 2}^{2}}}-{3 \ {{p 1}^{3}}}-{3 \  p 1}\right)}\  q 1}+{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}
\
{{{{\left({{\left({{16}\ {{p 3}^{4}}}+{{\left({8 \ {{p 2}^{2}}}+{8 \ {{p 1}^{2}}}+ 8 \right)}\ {{p 3}^{2}}}\right)}\ {{q 3}^{3}}}+{{\left({{\left({{32}\  p 2 \ {{p 3}^{3}}}+{{\left({8 \ {{p 2}^{3}}}+{{\left({8 \ {{p 1}^{2}}}+ 8 \right)}\  p 2}\right)}\  p 3}\right)}\  q 2}+{{\left({{32}\  p 1 \ {{p 3}^{3}}}+{{\left({8 \  p 1 \ {{p 2}^{2}}}+{8 \ {{p 1}^{3}}}+{8 \  p 1}\right)}\  p 3}\right)}\  q 1}-{8 \ {{p 3}^{3}}}+{{\left(-{2 \ {{p 2}^{2}}}-{2 \ {{p 1}^{2}}}- 2 \right)}\  p 3}\right)}\ {{q 3}^{2}}}+{{\left({{\left({8 \ {{p 3}^{4}}}+{{\left({{32}\ {{p 2}^{2}}}+{8 \ {{p 1}^{2}}}+ 8 \right)}\ {{p 3}^{2}}}\right)}\ {{q 2}^{2}}}+{{\left({{48}\  p 1 \  p 2 \ {{p 3}^{2}}\  q 1}-{{12}\  p 2 \ {{p 3}^{2}}}\right)}\  q 2}+{{\left({8 \ {{p 3}^{4}}}+{{\left({8 \ {{p 2}^{2}}}+{{32}\ {{p 1}^{2}}}+ 8 \right)}\ {{p 3}^{2}}}\right)}\ {{q 1}^{2}}}-{{12}\  p 1 \ {{p 3}^{2}}\  q 1}+{8 \ {{p 3}^{4}}}+{{\left({8 \ {{p 2}^{2}}}+{8 \ {{p 1}^{2}}}+ 4 \right)}\ {{p 3}^{2}}}\right)}\  q 3}+{{\left({8 \  p 2 \ {{p 3}^{3}}}+{{\left({{16}\ {{p 2}^{3}}}+{{\left({8 \ {{p 1}^{2}}}+ 8 \right)}\  p 2}\right)}\  p 3}\right)}\ {{q 2}^{3}}}+{{\left({{\left({8 \  p 1 \ {{p 3}^{3}}}+{{\left({{3
2}\  p 1 \ {{p 2}^{2}}}+{8 \ {{p 1}^{3}}}+{8 \  p 1}\right)}\  p 3}\right)}\  q 1}-{2 \ {{p 3}^{3}}}+{{\left(-{8 \ {{p 2}^{2}}}-{2 \ {{p 1}^{2}}}- 2 \right)}\  p 3}\right)}\ {{q 2}^{2}}}+{{\left({{\left({8 \  p 2 \ {{p 3}^{3}}}+{{\left({8 \ {{p 2}^{3}}}+{{\left({{32}\ {{p 1}^{2}}}+ 8 \right)}\  p 2}\right)}\  p 3}\right)}\ {{q 1}^{2}}}-{{12}\  p 1 \  p 2 \  p 3 \  q 1}+{8 \  p 2 \ {{p 3}^{3}}}+{{\left({8 \ {{p 2}^{3}}}+{{\left({8 \ {{p 1}^{2}}}+ 4 \right)}\  p 2}\right)}\  p 3}\right)}\  q 2}+{{\left({8 \  p 1 \ {{p 3}^{3}}}+{{\left({8 \  p 1 \ {{p 2}^{2}}}+{{16}\ {{p 1}^{3}}}+{8 \  p 1}\right)}\  p 3}\right)}\ {{q 1}^{3}}}+{{\left(-{2 \ {{p 3}^{3}}}+{{\left(-{2 \ {{p 2}^{2}}}-{8 \ {{p 1}^{2}}}- 2 \right)}\  p 3}\right)}\ {{q 1}^{2}}}+{{\left({8 \  p 1 \ {{p 3}^{3}}}+{{\left({8 \  p 1 \ {{p 2}^{2}}}+{8 \ {{p 1}^{3}}}+{4 \  p 1}\right)}\  p 3}\right)}\  q 1}-{2 \ {{p 3}^{3}}}+{{\left(-{2 \ {{p 2}^{2}}}-{2 \ {{p 1}^{2}}}\right)}\  p 3}\right)}\ {\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}\ {\sqrt{{{q 3}^{2}}+{{q 2}^{2}}+{{q 1}^{2}}+ 1}}}+{{\left(-{{16}\ {{p 3}^{5}}}+{{\left(-{{16}\ {{p 2}^{2}}}-{{16}\ {{p 1}^{2}}}-{16}\right)}\ {{p 3}^{3}}}+{{\left(-{2 \ {{p 2}^{4}}}+{{\left(-{4 \ {{p 1}^{2}}}- 4 \right)}\ {{p 2}^{2}}}-{2 \ {{p 1}^{4}}}-{4 \ {{p 1}^{2}}}- 2 \right)}\  p 3}\right)}\ {{q 3}^{4}}}+{{\left({{\left(-{{32}\  p 2 \ {{p 3}^{4}}}+{{\left(-{{24}\ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{2}}}-{24}\right)}\  p 2}\right)}\ {{p 3}^{2}}}\right)}\  q 2}+{{\left(-{{32}\  p 1 \ {{p 3}^{4}}}+{{\left(-{{24}\  p 1 \ {{p 2}^{2}}}-{{24}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\ {{p 3}^{2}}}\right)}\  q 1}+{8 \ {{p 3}^{4}}}+{{\left({6 \ {{p 2}^{2}}}+{6 \ {{p 1}^{2}}}+ 6 \right)}\ {{p 3}^{2}}}\right)}\ {{q 3}^{3}}}+{{\left({{\left(-{{16}\ {{p 3}^{5}}}+{{\left(-{{44}\ {{p 2}^{2}}}-{{20}\ {{p 1}^{2}}}-{20}\right)}\ {{p 3}^{3}}}+{{\left(-{{16}\ {{p 2}^{4}}}+{{\left(-{{20}\ {{p 1}^{2}}}-{20}\right)}\ {{p 2}^{2}}}-{4 \ {{p 1}^{4}}}-{8 \ {{p 1}^{2}}}- 4 \right)}\  p 3}\right)}\ {{q 2}^{2}}}+{{\left({{\left(-{{48}\  p 1 \  p 2 \ {{p 3}^{3}}}+{{\left(-{{24}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\  p 2}\right)}\  p 3}\right)}\  q 1}+{{12}\  p 2 \ {{p 3}^{3}}}+{{\left({6 \ {{p 2}^{3}}}+{{\left({6 \ {{p 1}^{2}}}+ 6 \right)}\  p 2}\right)}\  p 3}\right)}\  q 2}+{{\left(-{{16}\ {{p 3}^{5}}}+{{\left(-{{20}\ {{p 2}^{2}}}-{{44}\ {{p 1}^{2}}}-{20}\right)}\ {{p 3}^{3}}}+{{\left(-{4 \ {{p 2}^{4}}}+{{\left(-{{20}\ {{p 1}^{2}}}- 8 \right)}\ {{p 2}^{2}}}-{{16}\ {{p 1}^{4}}}-{{20}\ {{p 1}^{2}}}- 4 \right)}\  p 3}\right)}\ {{q 1}^{2}}}+{{\left({{12}\  p 1 \ {{p 3}^{3}}}+{{\left({6 \  p 1 \ {{p 2}^{2}}}+{6 \ {{p 1}^{3}}}+{6 \  p 1}\right)}\  p 3}\right)}\  q 1}-{{16}\ {{p 3}^{5}}}+{{\left(-{{20}\ {{p 2}^{2}}}-{{20}\ {{p 1}^{2}}}-{16}\right)}\ {{p 3}^{3}}}+{{\left(-{4 \ {{p 2}^{4}}}+{{\left(-{8 \ {{p 1}^{2}}}- 6 \right)}\ {{p 2}^{2}}}-{4 \ {{p 1}^{4}}}-{6 \ {{p 1}^{2}}}- 2 \right)}\  p 3}\right)}\ {{q 3}^{2}}}+{{\left({{\left(-{{24}\  p 2 \ {{p 3}^{4}}}+{{\left(-{{3
2}\ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{2}}}-{24}\right)}\  p 2}\right)}\ {{p 3}^{2}}}\right)}\ {{q 2}^{3}}}+{{\left({{\left(-{{24}\  p 1 \ {{p 3}^{4}}}+{{\left(-{{48}\  p 1 \ {{p 2}^{2}}}-{{24}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\ {{p 3}^{2}}}\right)}\  q 1}+{6 \ {{p 3}^{4}}}+{{\left({{12}\ {{p 2}^{2}}}+{6 \ {{p 1}^{2}}}+ 6 \right)}\ {{p 3}^{2}}}\right)}\ {{q 2}^{2}}}+{{\left({{\left(-{{24}\  p 2 \ {{p 3}^{4}}}+{{\left(-{{24}\ {{p 2}^{3}}}+{{\left(-{{48}\ {{p 1}^{2}}}-{24}\right)}\  p 2}\right)}\ {{p 3}^{2}}}\right)}\ {{q 1}^{2}}}+{{12}\  p 1 \  p 2 \ {{p 3}^{2}}\  q 1}-{{24}\  p 2 \ {{p 3}^{4}}}+{{\left(-{{24}\ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{2}}}-{20}\right)}\  p 2}\right)}\ {{p 3}^{2}}}\right)}\  q 2}+{{\left(-{{24}\  p 1 \ {{p 3}^{4}}}+{{\left(-{{24}\  p 1 \ {{p 2}^{2}}}-{{32}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\ {{p 3}^{2}}}\right)}\ {{q 1}^{3}}}+{{\left({6 \ {{p 3}^{4}}}+{{\left({6 \ {{p 2}^{2}}}+{{12}\ {{p 1}^{2}}}+ 6 \right)}\ {{p 3}^{2}}}\right)}\ {{q 1}^{2}}}+{{\left(-{{24}\  p 1 \ {{p 3}^{4}}}+{{\left(-{{24}\  p 1 \ {{p 2}^{2}}}-{{24}\ {{p 1}^{3}}}-{{20}\  p 1}\right)}\ {{p 3}^{2}}}\right)}\  q 1}+{6 \ {{p 3}^{4}}}+{{\left({6 \ {{p 2}^{2}}}+{6 \ {{p 1}^{2}}}+ 4 \right)}\ {{p 3}^{2}}}\right)}\  q 3}+{{\left(-{2 \ {{p 3}^{5}}}+{{\left(-{{16}\ {{p 2}^{2}}}-{4 \ {{p 1}^{2}}}- 4 \right)}\ {{p 3}^{3}}}+{{\left(-{{16}\ {{p 2}^{4}}}+{{\left(-{{16}\ {{p 1}^{2}}}-{16}\right)}\ {{p 2}^{2}}}-{2 \ {{p 1}^{4}}}-{4 \ {{p 1}^{2}}}- 2 \right)}\  p 3}\right)}\ {{q 2}^{4}}}+{{\left({{\left(-{{24}\  p 1 \  p 2 \ {{p 3}^{3}}}+{{\left(-{{32}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\  p 2}\right)}\  p 3}\right)}\  q 1}+{6 \  p 2 \ {{p 3}^{3}}}+{{\left({8 \ {{p 2}^{3}}}+{{\left({6 \ {{p 1}^{2}}}+ 6 \right)}\  p 2}\right)}\  p 3}\right)}\ {{q 2}^{3}}}+{{\left({{\left(-{4 \ {{p 3}^{5}}}+{{\left(-{{20}\ {{p 2}^{2}}}-{{20}\ {{p 1}^{2}}}- 8 \right)}\ {{p 3}^{3}}}+{{\left(-{{16}\ {{p 2}^{4}}}+{{\left(-{{44}\ {{p 1}^{2}}}-{20}\right)}\ {{p 2}^{2}}}-{{16}\ {{p 1}^{4}}}-{{20}\ {{p 1}^{2}}}- 4 \right)}\  p 3}\right)}\ {{q 1}^{2}}}+{{\left({6 \  p 1 \ {{p 3}^{3}}}+{{\left({{12}\  p 1 \ {{p 2}^{2}}}+{6 \ {{p 1}^{3}}}+{6 \  p 1}\right)}\  p 3}\right)}\  q 1}-{4 \ {{p 3}^{5}}}+{{\left(-{{20}\ {{p 2}^{2}}}-{8 \ {{p 1}^{2}}}- 6 \right)}\ {{p 3}^{3}}}+{{\left(-{{16}\ {{p 2}^{4}}}+{{\left(-{{20}\ {{p 1}^{2}}}-{16}\right)}\ {{p 2}^{2}}}-{4 \ {{p 1}^{4}}}-{6 \ {{p 1}^{2}}}- 2 \right)}\  p 3}\right)}\ {{q 2}^{2}}}+{{\left({{\left(-{{24}\  p 1 \  p 2 \ {{p 3}^{3}}}+{{\left(-{{24}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{32}\ {{p 1}^{3}}}-{{24}\  p 1}\right)}\  p 2}\right)}\  p 3}\right)}\ {{q 1}^{3}}}+{{\left({6 \  p 2 \ {{p 3}^{3}}}+{{\left({6 \ {{p 2}^{3}}}+{{\left({{12}\ {{p 1}^{2}}}+ 6 \right)}\  p 2}\right)}\  p 3}\right)}\ {{q 1}^{2}}}+{{\left(-{{24}\  p 1 \  p 2 \ {{p 3}^{3}}}+{{\left(-{{24}\  p 1 \ {{p 2}^{3}}}+{{\left(-{{24}\ {{p 1}^{3}}}-{{20}\  p 1}\right)}\  p 2}\right)}\  p 3}\right)}\  q 1}+{6 \  p 2 \ {{p 3}^{3}}}+{{\left({6 \ {{p 2}^{3}}}+{{\left({6 \ {{p 1}^{2}}}+ 4 \right)}\  p 2}\right)}\  p 3}\right)}\  q 2}+{{\left(-{2 \ {{p 3}^{5}}}+{{\left(-{4 \ {{p 2}^{2}}}-{{16}\ {{p 1}^{2}}}- 4 \right)}\ {{p 3}^{3}}}+{{\left(-{2 \ {{p 2}^{4}}}+{{\left(-{{16}\ {{p 1}^{2}}}- 4 \right)}\ {{p 2}^{2}}}-{{16}\ {{p 1}^{4}}}-{{16}\ {{p 1}^{2}}}- 2 \right)}\  p 3}\right)}\ {{q 1}^{4}}}+{{\left({6 \  p 1 \ {{p 3}^{3}}}+{{\left({6 \  p 1 \ {{p 2}^{2}}}+{8 \ {{p 1}^{3}}}+{6 \  p 1}\right)}\  p 3}\right)}\ {{q 1}^{3}}}+{{\left(-{4 \ {{p 3}^{5}}}+{{\left(-{8 \ {{p 2}^{2}}}-{{20}\ {{p 1}^{2}}}- 6 \right)}\ {{p 3}^{3}}}+{{\left(-{4 \ {{p 2}^{4}}}+{{\left(-{{20}\ {{p 1}^{2}}}- 6 \right)}\ {{p 2}^{2}}}-{{16}\ {{p 1}^{4}}}-{{16}\ {{p 1}^{2}}}- 2 \right)}\  p 3}\right)}\ {{q 1}^{2}}}+{{\left({6 \  p 1 \ {{p 3}^{3}}}+{{\left({6 \  p 1 \ {{p 2}^{2}}}+{6 \ {{p 1}^{3}}}+{4 \  p 1}\right)}\  p 3}\right)}\  q 1}-{2 \ {{p 3}^{5}}}+{{\left(-{4 \ {{p 2}^{2}}}-{4 \ {{p 1}^{2}}}- 2 \right)}\ {{p 3}^{3}}}+{{\left(-{2 \ {{p 2}^{4}}}+{{\left(-{4 \ {{p 1}^{2}}}- 2 \right)}\ {{p 2}^{2}}}-{2 \ {{p 1}^{4}}}-{2 \ {{p 1}^{2}}}\right)}\  p 3}}\over{{{\left({{\left({4 \ {{p 3}^{2}}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1 \right)}\ {{q 3}^{2}}}+{{\left({6 \  p 2 \  p 3 \  q 2}+{6 \  p 1 \  p 3 \  q 1}-{2 \  p 3}\right)}\  q 3}+{{\left({{p 3}^{2}}+{4 \ {{p 2}^{2}}}+{{p 1}^{2}}+ 1 \right)}\ {{q 2}^{2}}}+{{\left({6 \  p 1 \  p 2 \  q 1}-{2 \  p 2}\right)}\  q 2}+{{\left({{p 3}^{2}}+{{p 2}^{2}}+{4 \ {{p 1}^{2}}}+ 1 \right)}\ {{q 1}^{2}}}-{2 \  p 1 \  q 1}+{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1 \right)}\ {\sqrt{{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}\ {\sqrt{{{q 3}^{2}}+{{q 2}^{2}}+{{q 1}^{2}}+ 1}}}+{{\left(-{4 \ {{p 3}^{3}}}+{{\left(-{3 \ {{p 2}^{2}}}-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 3}\right)}\ {{q 3}^{3}}}+{{\left({{\left(-{6 \  p 2 \ {{p 3}^{2}}}-{3 \ {{p 2}^{3}}}+{{\left(-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 2}\right)}\  q 2}+{{\left(-{6 \  p 1 \ {{p 3}^{2}}}-{3 \  p 1 \ {{p 2}^{2}}}-{3 \ {{p 1}^{3}}}-{3 \  p 1}\right)}\  q 1}+{2 \ {{p 3}^{2}}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1 \right)}\ {{q 3}^{2}}}+{{\left({{\left(-{3 \ {{p 3}^{3}}}+{{\left(-{6 \ {{p 2}^{2}}}-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 3}\right)}\ {{q 2}^{2}}}+{{\left(-{6 \  p 1 \  p 2 \  p 3 \  q 1}+{2 \  p 2 \  p 3}\right)}\  q 2}+{{\left(-{3 \ {{p 3}^{3}}}+{{\left(-{3 \ {{p 2}^{2}}}-{6 \ {{p 1}^{2}}}- 3 \right)}\  p 3}\right)}\ {{q 1}^{2}}}+{2 \  p 1 \  p 3 \  q 1}-{3 \ {{p 3}^{3}}}+{{\left(-{3 \ {{p 2}^{2}}}-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 3}\right)}\  q 3}+{{\left(-{3 \  p 2 \ {{p 3}^{2}}}-{4 \ {{p 2}^{3}}}+{{\left(-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 2}\right)}\ {{q 2}^{3}}}+{{\left({{\left(-{3 \  p 1 \ {{p 3}^{2}}}-{6 \  p 1 \ {{p 2}^{2}}}-{3 \ {{p 1}^{3}}}-{3 \  p 1}\right)}\  q 1}+{{p 3}^{2}}+{2 \ {{p 2}^{2}}}+{{p 1}^{2}}+ 1 \right)}\ {{q 2}^{2}}}+{{\left({{\left(-{3 \  p 2 \ {{p 3}^{2}}}-{3 \ {{p 2}^{3}}}+{{\left(-{6 \ {{p 1}^{2}}}- 3 \right)}\  p 2}\right)}\ {{q 1}^{2}}}+{2 \  p 1 \  p 2 \  q 1}-{3 \  p 2 \ {{p 3}^{2}}}-{3 \ {{p 2}^{3}}}+{{\left(-{3 \ {{p 1}^{2}}}- 3 \right)}\  p 2}\right)}\  q 2}+{{\left(-{3 \  p 1 \ {{p 3}^{2}}}-{3 \  p 1 \ {{p 2}^{2}}}-{4 \ {{p 1}^{3}}}-{3 \  p 1}\right)}\ {{q 1}^{3}}}+{{\left({{p 3}^{2}}+{{p 2}^{2}}+{2 \ {{p 1}^{2}}}+ 1 \right)}\ {{q 1}^{2}}}+{{\left(-{3 \  p 1 \ {{p 3}^{2}}}-{3 \  p 1 \ {{p 2}^{2}}}-{3 \ {{p 1}^{3}}}-{3 \  p 1}\right)}\  q 1}+{{p 3}^{2}}+{{p 2}^{2}}+{{p 1}^{2}}+ 1}}
(15)
Type: Matrix(Expression(Integer))