axiom
)lib CARTEN MONAL PROP LIN
CartesianTensor is now explicitly exposed in frame initial
CartesianTensor will be automatically loaded when needed from
/var/zope2/var/LatexWiki/CARTEN.NRLIB/CARTEN
Monoidal is now explicitly exposed in frame initial
Monoidal will be automatically loaded when needed from
/var/zope2/var/LatexWiki/MONAL.NRLIB/MONAL
Prop is now explicitly exposed in frame initial
Prop will be automatically loaded when needed from
/var/zope2/var/LatexWiki/PROP.NRLIB/PROP
LinearOperator is now explicitly exposed in frame initial
LinearOperator will be automatically loaded when needed from
/var/zope2/var/LatexWiki/LIN.NRLIB/LIN
spad
)abbrev domain LAZY LazyLinearOperator
LazyLinearOperator(dim:NNI,gener:OrderedFinite,K:CommutativeRing): Exports == Implementation where
NNI ==> NonNegativeInteger
NAT ==> PositiveInteger
T ==> CartesianTensor(1,dim,K)
Exports ==> Join(Ring, BiModule(K,K), Monoidal NNI, RetractableTo K) with
inp: List K -> %
++ incoming vector
inp: List % -> %
out: List K -> %
++ output vector
out: List % -> %
arity: % -> Prop %
basisVectors: () -> List %
basisForms: () -> List %
tensor: % -> T
map: (K->K,%) -> %
if K has Evalable(K) then Evalable(K)
eval: % -> %
ravel: % -> List K
unravel: (Prop %,List K) -> %
coerce:(x:List NAT) -> %
++ identity for composition and permutations of its products
coerce:(x:List None) -> %
++ [] = 1
elt: (%,%) -> %
elt: (%,NAT) -> %
elt: (%,NAT,NAT) -> %
elt: (%,NAT,NAT,NAT) -> %
_/: (Tuple %,Tuple %) -> %
_/: (Tuple %,%) -> %
_/: (%,Tuple %) -> %
++ yet another syntax for product
ev: NAT -> %
++ (2,0)-tensor for evaluation
co: NAT -> %
++ (0,2)-tensor for co-evaluation
Implementation ==> add
import List NNI
import NAT
L ==> Record(domain:NNI, codomain:NNI, data:T)
-- FreeMonoid provides unevaluated products
Rep == FreeMonoid L
RR ==> Record(gen:L,exp:NNI)
rep(x:%):Rep == x pretend Rep
per(x:Rep):% == x pretend %
-- Prop (arity)
dom(f:%):NNI ==
r:NNI := 0
for y in factors(rep f) repeat
r:=r+(y.gen.domain)*(y.exp)
return r
cod(f:%):NNI ==
r:NNI := 0
for y in factors(rep f) repeat
r:=r+(y.gen.codomain)*(y.exp)
return r
prod(f:L,g:L):L ==
r:T := product(f.data,g.data)
-- dom(f) + cod(f) + dom(g) + cod(g)
p:List Integer := concat _
[[i for i in 1..(f.domain)], _
[(f.domain)+(f.codomain)+i for i in 1..(g.domain)], _
[(f.domain)+i for i in 1..(f.codomain)], _
[(f.domain)+(g.domain)+(f.codomain)+i for i in 1..(g.codomain)]]
-- dom(f) + dom(g) + cod(f) + cod(g)
[(f.domain)+(g.domain),(f.codomain)+(g.codomain),reindex(r,p)]
dats(fs:List RR):L ==
r:L := [0,0,1$T]
for y in fs repeat
t:L:=y.gen
for n in 1..y.exp repeat
r:=prod(r,t)
return r
dat(f:%):L == dats factors rep f
arity(f:%):Prop % == f::Prop %
eval(f:%):% == per coerce dat(f)
retractIfCan(f:%):Union(K,"failed") ==
dom(f)=0 and cod(f)=0 => retract(dat(f).data)$T
return "failed"
retract(f:%):K ==
dom(f)=0 and cod(f)=0 => retract(dat(f).data)$T
error "failed"
-- basis
basisVectors():List % == [per coerce [0,1,entries(row(1,i)$SquareMatrix(dim,K))::T] for i in 1..dim]
basisForms():List % == [per coerce [1,0,entries(row(1,i)$SquareMatrix(dim,K))::T] for i in 1..dim]
ev(n:NAT):% ==
dx:= basisForms()
reduce(_+,[ (dx.i)^n * (dx.i)^n for i in 1..dim])
co(n:NAT):% ==
Dx:= basisVectors()
reduce(_+,[ (Dx.i)^n * (Dx.i)^n for i in 1..dim])
-- manipulation
map(f:K->K, g:%):% == per coerce [dom g,cod g,unravel(map(f,ravel dat(g).data))$T]
if K has Evalable(K) then
eval(g:%,f:List Equation K):% == map((x:K):K+->eval(x,f),g)
ravel(g:%):List K == ravel dat(g).data
unravel(p:Prop %,r:List K):% ==
dim^(dom(p)+cod(p)) ~= #r => error "failed"
per coerce [dom(p),cod(p),unravel(r)$T]
tensor(x:%):T == dat(x).data
-- sum
(f:% + g:%):% ==
dat(f).data=0 => g
dat(g).data=0 => f
dom(f) ~= dom(g) or cod(f) ~= cod(g) => error "arity"
per coerce [dom f,cod f,dat(f).data+dat(g).data]
(f:% - g:%):% ==
dat(f).data=0 => g
dat(g).data=0 => f
dom(f) ~= dom(f) or cod(g) ~= cod(g) => error "arity"
per coerce [dom f, cod f,dat(f).data-dat(g).data]
_-(f:%):% == per coerce [dom f, cod f,-dat(f).data]
-- repeated sum
(p:NNI * f:%):% ==
p=1 => f
q:=subtractIfCan(p,1)
q case NNI => q*f + f
-- zero map (non-trivial)
per coerce [dom f,cod f,0*dat(f).data]
-- identity for sum (trivial zero map)
0 == per coerce [0,0,0]
zero?(f:%):Boolean == dat(f).data = 0 * dat(f).data
-- identity for product
--1:% == per coerce [0,0,1]
1:% == per 1
one?(f:%):Boolean == dat(f).data = 1$T
-- identity for composition
I == per coerce [1,1,kroneckerDelta()$T]
(x:% = y:%):Boolean == rep eval x = rep eval y
-- permutations and identities
coerce(p:List NAT):% ==
r:=I^#p
#p = 1 and p.1 = 1 => return r
p1:List Integer:=[i for i in 1..#p]
p2:List Integer:=[#p+i for i in p]
p3:=concat(p1,p2)
per coerce [#p,#p,reindex(dat(r).data,p3)]
coerce(p:List None):% == per coerce [0,0,1]
coerce(x:K):% == 1*x
-- product
elt(f:%,g:%):% == f * g
elt(f:%,g:NAT):% == f * I^g
elt(f:%,g1:NAT,g2:NAT):% == f * [g1 @ NAT,g2 @ NAT]::List NAT::%
elt(f:%,g1:NAT,g2:NAT,g3:NAT):% == f * [g1 @ NAT,g2 @ NAT,g3 @ NAT]::List NAT::%
apply(f:%,g:%):% == f * g
(f:% * g:%):% ==
one? f => g
one? g => f
per(rep f * rep g)
-- repeated product
(f:% ^ p:NNI):% ==
p=1 => f
q:=subtractIfCan(p,1)
q case NNI => f^q * f
1
-- composition:
-- f/g : A^n -> A^p = f:A^n -> A^m / g:A^m -> A^p
(ff:% / gg:%):% ==
g:=gg; f:=ff
-- partial application from the left
n:=subtractIfCan(cod ff,dom gg)
if n case NNI and n>0 then
-- apply g on f from the left, pass extra f outputs on the right
print(hconcat([message("arity warning: "), _
over(arity(ff)::OutputForm, _
arity(gg)::OutputForm*(arity(I)::OutputForm)^n::OutputForm) ]))$OutputForm
g:=gg*I^n
m:=subtractIfCan(dom gg, cod ff)
-- apply g on f from the left, add extra g inputs on the left
if m case NNI and m>0 then
print(hconcat([message("arity warning: "), _
over((arity(I)::OutputForm)^m::OutputForm*arity(ff)::OutputForm, _
arity(gg)::OutputForm)]))$OutputForm
f:=I^m*ff
-- optimize leading and trailing identities
I1:L:=[1,1,kroneckerDelta()$T]
fs:=factors rep f
gs:=factors rep g
l1:NNI:=0
nf := first(fs).exp
ng := first(gs).exp
if first(fs).gen=I1 then
if first(gs).gen=I1 then
if nf < ng then
l1 := nf
ng := (ng - nf) pretend NNI
nf := 0
else
l1 := ng
nf := (nf - ng) pretend NNI
ng := 0
else
ng := 0
else
nf := 0
if not first(gs).gen=I1 then
ng := 0
if nf>0 and ng>0 then error "either nf or ng or both must be 0"
print(bracket [nf::OutputForm,ng::OutputForm])$OutputForm
t1:NNI:=0
fn := last(fs).exp
gn := last(gs).exp
if last(fs).gen=I1 then
if last(gs).gen=I1 then
if fn < gn then
t1 := fn
gn := (gn - fn) pretend NNI
fn := 0
else
t1 := gn
fn := (fn - gn) pretend NNI
gn := 0
else
gn := 0
else
fn := 0
if not last(gs).gen=I1 then
gn := 0
if fn>0 and fn>0 then error "either fn or gn or both must be 0"
print(bracket [fn::OutputForm,gn::OutputForm])$OutputForm
print(bracket [l1::OutputForm,t1::OutputForm])$OutputForm
-- debugging defeat optimizations
--nf:=0; ng:=0
fn:=0; gn:=0
--l1:=0; t1:=0
if l1 > 0 then
first(fs).exp := nf
first(gs).exp := ng
if t1>0 then
last(fs).exp := fn
last(gs).exp := gn
if nf>0 then
-- leading input identities (I^n*f)/g
fs := last(fs,(#fs-1) pretend NNI)
if ng>0 then
-- leading output identities g/(I^n*g)
gs := last(gs,(#gs-1) pretend NNI)
if fn>0 then
-- trailing input identities (f*I^n)/g
fs := first(fs,(#fs-1) pretend NNI)
if gn>0 then
-- trailing output identities f/(g*I^n)
gs := first(gs,(#gs-1) pretend NNI)
f := per coerce dats(fs)
g := per coerce dats(gs)
if nf=0 and ng=0 then
if fn=0 and gn=0 then
-- no leading and no trailing input or output
f1:Integer:=dom(f)+1
r:T := contract(cod(f), dat(f).data,f1, dat(g).data,1)
-- no need to reindex
else if fn>0 then
-- trailing input
f1:Integer:=dom(f)+1
r:T := contract(cod(f), dat(f).data,f1, dat(g).data,1)
-- no need to reindex
else
-- trailing output
f1:Integer:=dom(f)+1
r:T := contract(dom(g), dat(f).data,f1, dat(g).data,1)
-- all f'f inputs then f's extra outputs after g's outputs
r:=reindex(r,concat [[i for i in 1..dom(f)],[dom(f)+gn+i for i in 1..cod(g)],[dom(f)+i for i in 1..gn]])
else
if nf>0 then
if fn=0 and gn=0 then
-- leading input
r:T := contract(cod(f), dat(f).data,dom(f)+1, dat(g).data,nf+1)
-- g's extra inputs before f's then all g's outputs
p:List Integer:=concat [[dom(f)+i for i in 1..nf],[i for i in 1..dom(f)],[nf+dom(f)+i for i in 1..cod(g)]]
r:=reindex(r,p)
else if fn>0 then
-- leading input and trailing input
f1:Integer:=dom(f)+1
r:T := contract(cod(f), dat(f).data,f1, dat(g).data,1)
else
-- leading input and trailing output
f1:Integer:=dom(f)+1
r:T := contract(cod(f)-gn, dat(f).data,f1, dat(g).data,nf+1)
output("rank r = ",rank(r)::OutputForm)$OutputPackage
-- g's extra inputs before f's inputs, f's extra outputs after g's outputs
p:List Integer:=concat [ _
[dom(f)+gn+i for i in 1..nf], _
[i for i in 1..dom(f)], _
[dom(f)+nf+gn+i for i in 1..cod(g)], _
[dom(f)+i for i in 1..gn]]
print(p::OutputForm)$OutputForm
r:=reindex(r,p)
else
if fn=0 and gn=0 then
-- leading output
f1:Integer:=dom(f)+1
r:T := contract(dom(g), dat(f).data,f1+ng, dat(g).data,1)
-- no need to reindex
else if fn>0 then
-- leading output and trailing input
f1:Integer:=dom(f)+1
r:T := contract(cod(f), dat(f).data,f1, dat(g).data,1)
else
-- leading output and trailing output
f1:Integer:=dom(f)+1
r:T := contract(cod(f), dat(f).data,f1, dat(g).data,1)
I^l1 * per coerce [nf+dom(f)+fn,ng+cod(g)+gn,r] * I^t1
-- another notation for composition of products
(t:Tuple % / x:%):% == t / construct([x])$PrimitiveArray(%)::Tuple(%)
(x:% / t:Tuple %):% == construct([x])$PrimitiveArray(%)::Tuple(%) / t
(f:Tuple % / g:Tuple %):% ==
fs:List % := [select(f,i) for i in 0..length(f)-1]
gs:List % := [select(g,i) for i in 0..length(g)-1]
fr:=reduce(elt@(%,%)->%,fs,1)
gr:=reduce(elt@(%,%)->%,gs,1)
fr / gr
(x:K * y:%):% == per coerce [dom y, cod y,x*dat(y).data]
(x:% * y:K):% == per coerce [dom x,cod x,dat(x).data*y]
(x:Integer * y:%):% == per coerce [dom y,cod y,x*dat(y).data]
-- constructors
inp(x:List K):% == per coerce [1,0,entries(x)::T]
inp(x:List %):% ==
#removeDuplicates([dom(y) for y in x]) ~= 1 or
#removeDuplicates([cod(y) for y in x]) ~= 1 => error "arity"
per coerce [dom(first x)+1, cod(first x), [dat(y).data for y in x]::T]$L
out(x:List K):% == per coerce [0,1,entries(x)::T]
out(x:List %):% ==
#removeDuplicates([dom(y) for y in x])~=1 or
#removeDuplicates([cod(y) for y in x])~=1 => error "arity"
per coerce [dom(first x), cod(first x)+1, [dat(y).data for y in x]::T]$L
-- display operators using basis
show(x:%):OutputForm ==
dom(x)=0 and cod(x)=0 => return (dat(x).data)::OutputForm
if size()$gener > 0 then
gens:List OutputForm:=[index(i::PositiveInteger)$gener::OutputForm for i in 1..dim]
else
-- default to numeric indices
gens:List OutputForm:=[i::OutputForm for i in 1..dim]
-- input basis
inps:List OutputForm := []
for i in 1..dom(x) repeat
empty? inps => inps:=gens
inps:=concat [[(inps.k * gens.j) for j in 1..dim] for k in 1..#inps]
-- output basis
outs:List OutputForm := []
for i in 1..cod(x) repeat
empty? outs => outs:=gens
outs:=concat [[(outs.k * gens.j) for j in 1..dim] for k in 1..#outs]
-- combine input (superscripts) and/or output(subscripts) to form basis symbols
bases:List OutputForm
if #inps > 0 and #outs > 0 then
bases:=concat([[ scripts(message("|"),[i,j]) for i in outs] for j in inps])
else if #inps > 0 then
bases:=[super(message("|"),i) for i in inps]
else if #outs > 0 then
bases:=[sub(message("|"),j) for j in outs]
else
bases:List OutputForm:= []
-- merge bases with data to form term list
terms:=[(k=1 => base;k::OutputForm*base)
for base in bases for k in ravel dat(x).data | k~=0]
empty? terms => return 0::OutputForm
-- combine the terms
return reduce(_+,terms)
coerce(x:%):OutputForm ==
r:OutputForm := empty()
for y in factors(rep x) repeat
if y.exp = 1 then
if size rep x = 1 then
r := show per coerce y.gen
else
r:=r*paren(list show per coerce y.gen)
else
r:=r*paren(list show per coerce y.gen)^(y.exp::OutputForm)
return r
spad
Compiling FriCAS source code from file
/var/zope2/var/LatexWiki/2802507821389332474-25px002.spad using
old system compiler.
LAZY abbreviates domain LazyLinearOperator
------------------------------------------------------------------------
initializing NRLIB LAZY for LazyLinearOperator
compiling into NRLIB LAZY
importing List NonNegativeInteger
importing PositiveInteger
processing macro definition L ==> Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K))
processing macro definition RR ==> Record(gen: Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K)),exp: NonNegativeInteger)
compiling local rep : $ -> FreeMonoid Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K))
LAZY;rep is replaced by x
Time: 0.14 SEC.
compiling local per : FreeMonoid Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K)) -> $
LAZY;per is replaced by x
Time: 0 SEC.
compiling exported dom : $ -> NonNegativeInteger
Time: 0.02 SEC.
compiling exported cod : $ -> NonNegativeInteger
Time: 0.01 SEC.
compiling local prod : (Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K)),Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K))) -> Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K))
Time: 0.07 SEC.
compiling local dats : List Record(gen: Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K)),exp: NonNegativeInteger) -> Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K))
Time: 0.02 SEC.
compiling local dat : $ -> Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K))
Time: 0.01 SEC.
compiling exported arity : $ -> Prop $
Time: 0.01 SEC.
compiling exported eval : $ -> $
Time: 0 SEC.
compiling exported retractIfCan : $ -> Union(K,failed)
Time: 0.01 SEC.
compiling exported retract : $ -> K
Time: 0.11 SEC.
compiling exported basisVectors : () -> List $
Time: 0.04 SEC.
compiling exported basisForms : () -> List $
Time: 0.02 SEC.
compiling exported ev : PositiveInteger -> $
Time: 0.16 SEC.
compiling exported co : PositiveInteger -> $
Time: 0.07 SEC.
compiling exported map : (K -> K,$) -> $
Time: 0 SEC.
****** Domain: K already in scope
augmenting K: (Evalable K)
compiling exported eval : ($,List Equation K) -> $
Time: 0.02 SEC.
compiling exported ravel : $ -> List K
Time: 0.01 SEC.
compiling exported unravel : (Prop $,List K) -> $
Time: 0.02 SEC.
compiling exported tensor : $ -> CartesianTensor(One,dim,K)
Time: 0 SEC.
compiling exported + : ($,$) -> $
Time: 0.12 SEC.
compiling exported - : ($,$) -> $
Time: 0.03 SEC.
compiling exported - : $ -> $
Time: 0 SEC.
compiling exported * : (NonNegativeInteger,$) -> $
Time: 0.01 SEC.
compiling exported Zero : () -> $
Time: 0 SEC.
compiling exported zero? : $ -> Boolean
Time: 0.03 SEC.
compiling exported One : () -> $
Time: 0 SEC.
compiling exported one? : $ -> Boolean
Time: 0.01 SEC.
compiling exported = : ($,$) -> Boolean
Time: 0 SEC.
compiling exported coerce : List PositiveInteger -> $
Time: 0.18 SEC.
compiling exported coerce : List None -> $
Time: 0.01 SEC.
compiling exported coerce : K -> $
Time: 0.01 SEC.
compiling exported elt : ($,$) -> $
Time: 0 SEC.
compiling exported elt : ($,PositiveInteger) -> $
Time: 0 SEC.
compiling exported elt : ($,PositiveInteger,PositiveInteger) -> $
Time: 0.01 SEC.
compiling exported elt : ($,PositiveInteger,PositiveInteger,PositiveInteger) -> $
Time: 0 SEC.
compiling exported apply : ($,$) -> $
Time: 0 SEC.
compiling exported * : ($,$) -> $
Time: 0 SEC.
compiling exported ^ : ($,NonNegativeInteger) -> $
Time: 0.01 SEC.
compiling exported / : ($,$) -> $
Time: 20.16 SEC.
compiling exported / : (Tuple $,$) -> $
Time: 0.05 SEC.
compiling exported / : ($,Tuple $) -> $
Time: 0 SEC.
compiling exported / : (Tuple $,Tuple $) -> $
Time: 0.01 SEC.
compiling exported * : (K,$) -> $
Time: 0.02 SEC.
compiling exported * : ($,K) -> $
Time: 0 SEC.
compiling exported * : (Integer,$) -> $
Time: 0 SEC.
compiling exported inp : List K -> $
Time: 0 SEC.
compiling exported inp : List $ -> $
Time: 0.02 SEC.
compiling exported out : List K -> $
Time: 0.02 SEC.
compiling exported out : List $ -> $
Time: 0.02 SEC.
compiling local show : $ -> OutputForm
Time: 0.16 SEC.
compiling exported coerce : $ -> OutputForm
Time: 0.02 SEC.
****** Domain: K already in scope
augmenting K: (Evalable K)
(time taken in buildFunctor: 10)
;;; *** |LazyLinearOperator| REDEFINED
;;; *** |LazyLinearOperator| REDEFINED
Time: 0.03 SEC.
Warnings:
[1] dom: domain has no value
[2] cod: codomain has no value
[3] /: l1 has no value
[4] /: t1 has no value
Cumulative Statistics for Constructor LazyLinearOperator
Time: 21.67 seconds
finalizing NRLIB LAZY
Processing LazyLinearOperator for Browser database:
--------(inp (% (List K)))---------
--->-->LazyLinearOperator((inp (% (List %)))): Not documented!!!!
--------(out (% (List K)))---------
--->-->LazyLinearOperator((out (% (List %)))): Not documented!!!!
--->-->LazyLinearOperator((arity ((Prop %) %))): Not documented!!!!
--->-->LazyLinearOperator((basisVectors ((List %)))): Not documented!!!!
--->-->LazyLinearOperator((basisForms ((List %)))): Not documented!!!!
--->-->LazyLinearOperator((tensor (T$ %))): Not documented!!!!
--->-->LazyLinearOperator((map (% (Mapping K K) %))): Not documented!!!!
--->-->LazyLinearOperator((eval (% %))): Not documented!!!!
--->-->LazyLinearOperator((ravel ((List K) %))): Not documented!!!!
--->-->LazyLinearOperator((unravel (% (Prop %) (List K)))): Not documented!!!!
--------(coerce (% (List NAT)))---------
--->-->LazyLinearOperator((coerce (% (List NAT)))): Improper first word in comments: identity
"identity for composition and permutations of its products"
--------(coerce (% (List (None))))---------
--->-->LazyLinearOperator((coerce (% (List (None))))): Improper first word in comments: []
"[] = 1"
--->-->LazyLinearOperator((elt (% % %))): Not documented!!!!
--->-->LazyLinearOperator((elt (% % NAT))): Not documented!!!!
--->-->LazyLinearOperator((elt (% % NAT NAT))): Not documented!!!!
--->-->LazyLinearOperator((elt (% % NAT NAT NAT))): Not documented!!!!
--->-->LazyLinearOperator((/ (% (Tuple %) (Tuple %)))): Not documented!!!!
--->-->LazyLinearOperator((/ (% (Tuple %) %))): Not documented!!!!
--------(/ (% % (Tuple %)))---------
--->-->LazyLinearOperator((/ (% % (Tuple %)))): Improper first word in comments: yet
"yet another syntax for product"
--------(ev (% NAT))---------
--->-->LazyLinearOperator((ev (% NAT))): Improper first word in comments:
"(2,{}0)-tensor for evaluation"
--------(co (% NAT))---------
--->-->LazyLinearOperator((co (% NAT))): Improper first word in comments:
"(0,{}2)-tensor for co-evaluation"
--->-->LazyLinearOperator(constructor): Not documented!!!!
--->-->LazyLinearOperator(): Missing Description
; compiling file "/var/zope2/var/LatexWiki/LAZY.NRLIB/LAZY.lsp" (written 03 MAY 2011 09:21:12 PM):
; /var/zope2/var/LatexWiki/LAZY.NRLIB/LAZY.fasl written
; compilation finished in 0:00:14.834
------------------------------------------------------------------------
LazyLinearOperator is now explicitly exposed in frame initial
LazyLinearOperator will be automatically loaded when needed from
/var/zope2/var/LatexWiki/LAZY.NRLIB/LAZY
>> System error:
The bounding indices 163 and 162 are bad for a sequence of length 162.
See also:
The ANSI Standard, Glossary entry for "bounding index designator"
The ANSI Standard, writeup for Issue SUBSEQ-OUT-OF-BOUNDS:IS-AN-ERROR
Tests
axiom
L:=LAZY(2,OVAR [],EXPR INT)
Type: Type
axiom
I:L:=[1]
Type: LazyLinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
X:L:=[2,1]
Type: LazyLinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
I*X*X*I
Type: LazyLinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
-- braid
B3:=(I*X)/(X*I)
[1,0]
[0,1]
[0,0]
Type: LazyLinearOperator
?(2,
OrderedVariableList
?([]),
Expression(Integer))
axiom
test(B3/B3/B3 = I*I*I)
[0,0]
[0,0]
[0,0]
[0,0]
[0,0]
[0,0]
Type: Boolean