login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxLinearOperator revision 3 of 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Editor: Bill Page
Time: 2011/05/02 23:40:28 GMT-7
Note: fix Rep

changed:
-LazyLinearOperator(dim:NNI,gen:OrderedFinite,K:CommutativeRing): Exports == Implementation where
LazyLinearOperator(dim:NNI,gener:OrderedFinite,K:CommutativeRing): Exports == Implementation where

changed:
-    L == Record(domain:NNI, codomain:NNI, data:T)
    L ==> Record(domain:NNI, codomain:NNI, data:T)

changed:
-    dom(f:%):NNI == reduce(_+,map((y:RR):NNI +-> (y.gen).domain*y.exp,factors(rep f)))
-    cod(f:%):NNI == reduce(_+,map((y:RR):NNI +-> (y.gen).codomain*y.exp,factors(rep f)))
-    dat(f:%):T == reduce(product,map((y:RR):T +-> (y.gen).data^y.exp,factors(rep f)))
    dom(f:%):NNI ==
      r:NNI := 0
      for y in factors(rep f) repeat
        r:=r+(y.gen.domain)*(y.exp)
      return r
    cod(f:%):NNI ==
      r:NNI := 0
      for y in factors(rep f) repeat
        r:=r+(y.gen.codomain)*(y.exp)
      return r

    prod(f:L,g:L):L ==
      r:T := product(f.data,g.data)
      -- dom(f) + cod(f) + dom(g) + cod(g)
      p:List Integer := concat                _
        [[i for i in 1..(f.domain)],              _
        [(f.domain)+(f.codomain)+i for i in 1..(g.domain)], _
        [(f.domain)+i for i in 1..(f.codomain)],        _
        [(f.domain)+(g.domain)+(f.codomain)+i for i in 1..(g.codomain)]]
        -- dom(f) + dom(g) + cod(f) + cod(g)
      [(f.domain)+(g.domain),(f.codomain)+(g.codomain),reindex(r,p)]

    dat(f:%):L ==
      r:L := [0,0,1$T]
      for y in factors(rep f) repeat
        t:L:=y.gen
        for n in 1..y.exp repeat
          r:=prod(r,t)
      return r

changed:
-      dom(f)=0 and cod(f)=0 => retract(dat f)$T
      dom(f)=0 and cod(f)=0 => retract(dat(f).data)$T

changed:
-      dom(f)=0 and cod(f)=0 => retract(dat f)$T
      dom(f)=0 and cod(f)=0 => retract(dat(f).data)$T

changed:
-    basisVectors():List % == [per [0,1,entries(row(1,i)$SquareMatrix(dim,K))::T] for i in 1..dim]
-    basisForms():List % == [per [1,0,entries(row(1,i)$SquareMatrix(dim,K))::T] for i in 1..dim]
    basisVectors():List % == [per coerce [0,1,entries(row(1,i)$SquareMatrix(dim,K))::T] for i in 1..dim]
    basisForms():List % == [per coerce [1,0,entries(row(1,i)$SquareMatrix(dim,K))::T] for i in 1..dim]

changed:
-    map(f:K->K, g:%):% == per [dom g,cod g,unravel(map(f,ravel dat g))$T]
    map(f:K->K, g:%):% == per coerce [dom g,cod g,unravel(map(f,ravel dat(g).data))$T]

changed:
-    ravel(g:%):List K == ravel dat g
    ravel(g:%):List K == ravel dat(g).data

changed:
-      per [dom(p),cod(p),unravel(r)$T]
-    tensor(x:%):T == dat(x)
      per coerce [dom(p),cod(p),unravel(r)$T]
    tensor(x:%):T == dat(x).data

changed:
-      dat(f)=0 => g
-      dat(g)=0 => f
      dat(f).data=0 => g
      dat(g).data=0 => f

changed:
-      per [dom f,cod f,dat(f)+dat(g)]
      per coerce [dom f,cod f,dat(f).data+dat(g).data]

changed:
-      dat(f)=0 => g
-      dat(g)=0 => f
      dat(f).data=0 => g
      dat(g).data=0 => f

changed:
-      per [dom f, cod f,dat(f)-dat(g)]
-
-    _-(f:%):% == per [dom f, cod f,-dat(f)]
      per coerce [dom f, cod f,dat(f).data-dat(g).data]

    _-(f:%):% == per coerce [dom f, cod f,-dat(f).data]

changed:
-      per [dom f,cod f,0*dat(f)]
      per coerce [dom f,cod f,0*dat(f).data]

changed:
-    0 == per [0,0,0]
-    zero?(f:%):Boolean == dat f = 0 * dat f
    0 == per coerce [0,0,0]
    zero?(f:%):Boolean == dat(f).data = 0 * dat(f).data

changed:
-    1:% == per [0,0,1]
-    one?(f:%):Boolean == dat f = 1$T
    1:% == per coerce [0,0,1]
    one?(f:%):Boolean == dat(f).data = 1$T

changed:
-    I == per([1,1,kroneckerDelta()$T])
-    -- inherited from Ring
-    --(x:% = y:%):Boolean ==
-    --  dom(x) ~= dom(y) or cod(x) ~= cod(y) => error "arity"
-    --  dat(x) = dat(y)
    I == per coerce [1,1,kroneckerDelta()$T]

changed:
-      per [#p,#p,reindex(dat r,p3)]
-    coerce(p:List None):% == per [0,0,1]
      per coerce [#p,#p,reindex(dat(r).data,p3)]
    coerce(p:List None):% == per coerce [0,0,1]

changed:
-    (f:% * g:%):% ==
-      r:T := product(dat f,dat g)
-      -- dom(f) + cod(f) + dom(g) + cod(g)
-      p:List Integer := concat                _
-        [[i for i in 1..dom(f)],              _
-        [dom(f)+cod(f)+i for i in 1..dom(g)], _
-        [dom(f)+i for i in 1..cod(f)],        _
-        [dom(f)+dom(g)+cod(f)+i for i in 1..cod(g)]]
-        -- dom(f) + dom(g) + cod(f) + cod(g)
-      per [dom(f)+dom(g),cod(f)+cod(g),reindex(r,p)]
    (f:% * g:%):% == per(rep f * rep g)

changed:
-      r:T := contract(cod(f),dat f,f1, dat g,1)
-      per [dom(f),cod(g),r]
      r:T := contract(cod(f),dat(f).data,f1, dat(g).data,1)
      per coerce [dom(f),cod(g),r]

removed:
-      --for i in 0..length(f)-1 repeat
-      --  if select(f,i)~=I then
-      --    if f1=0 then f1:=i
-      --    f2:=i

removed:
-      --for i in 0..length(g)-1 repeat
-      --  if select(g,i)~=I then
-      --    if g1=0 then g1:=i
-      --    g2:=i

changed:
-      --f2:=length(f)-1-f2
-      --g2:=length(g)-1-g2
-      --if f1+cod(fr)+f2 ~= g1+dom(gr)+g2 then error "arity"
-      --if cod(fr) < dom(gr) then  -- more inputs
-      --  r:T := contract(cod(fr),dat fr,dom(fr)+1, dat gr,1+f1)
-      --  -- move f1 inputs of gr before inputs of fr and f2 inputs of gr after inputs of fr
-      --  -- r:=reindex(r,[])
-      --  return per [f1+dom(fr)+f2,cod(gr),r]
-      --else  -- more outputs?
-      --  r:T := contract(dom(gr),dat fr,dom(fr)+1+g1, dat gr,1)
-      --  -- move g1 outputs of fr before outputs of gr and g2 outputs of fr after outputs of gr
-      --  -- r:=reindex(r,[])
-      --  return per [dom(fr),g1+cod(gr)+g2,r]
-
-    (x:K * y:%):% == per [dom y, cod y,x*dat(y)]
-    (x:% * y:K):% == per [dom x,cod x,dat(x)*y]
-    (x:Integer * y:%):% == per [dom y,cod y,x*dat(y)]

    (x:K * y:%):% == per coerce [dom y, cod y,x*dat(y).data]
    (x:% * y:K):% == per coerce [dom x,cod x,dat(x).data*y]
    (x:Integer * y:%):% == per coerce [dom y,cod y,x*dat(y).data]

changed:
-    inp(x:List K):% == per [1,0,entries(x)::T]
    inp(x:List K):% == per coerce [1,0,entries(x)::T]

changed:
-      per [(dom(first x)+1),cod(first x),[dat(y) for y in x]::T]$Rep
-    out(x:List K):% == per [0,1,entries(x)::T]
      per coerce [dom(first x)+1, cod(first x), [dat(y).data for y in x]::T]$L
    out(x:List K):% == per coerce [0,1,entries(x)::T]

changed:
-      per [dom(first x),(cod(first x)+1),[dat(y) for y in x]::T]$Rep
      per coerce [dom(first x), cod(first x)+1, [dat(y).data for y in x]::T]$L

changed:
-      dom(x)=0 and cod(x)=0 => return dat(x)::OutputForm
-      if size()$gen > 0 then
-        gens:List OutputForm:=[index(i::PositiveInteger)$gen::OutputForm for i in 1..dim]
      dom(x)=0 and cod(x)=0 => return (dat(x).data)::OutputForm
      if size()$gener > 0 then
        gens:List OutputForm:=[index(i::PositiveInteger)$gener::OutputForm for i in 1..dim]

changed:
-        bases:= []
        bases:List OutputForm:= []

changed:
-        for base in bases for k in ravel dat(x) | k~=0]
        for base in bases for k in ravel dat(x).data | k~=0]

axiom
)lib CARTEN MONAL PROP LIN
CartesianTensor is now explicitly exposed in frame initial CartesianTensor will be automatically loaded when needed from /var/zope2/var/LatexWiki/CARTEN.NRLIB/CARTEN Monoidal is now explicitly exposed in frame initial Monoidal will be automatically loaded when needed from /var/zope2/var/LatexWiki/MONAL.NRLIB/MONAL Prop is now explicitly exposed in frame initial Prop will be automatically loaded when needed from /var/zope2/var/LatexWiki/PROP.NRLIB/PROP LinearOperator is now explicitly exposed in frame initial LinearOperator will be automatically loaded when needed from /var/zope2/var/LatexWiki/LIN.NRLIB/LIN

spad
)abbrev domain LAZY LazyLinearOperator
LazyLinearOperator(dim:NNI,gener:OrderedFinite,K:CommutativeRing): Exports == Implementation where
  NNI ==> NonNegativeInteger
  NAT ==> PositiveInteger
  T ==> CartesianTensor(1,dim,K)
Exports ==> Join(Ring, BiModule(K,K), Monoidal NNI, RetractableTo K) with inp: List K -> % ++ incoming vector inp: List % -> % out: List K -> % ++ output vector out: List % -> % arity: % -> Prop % basisVectors: () -> List % basisForms: () -> List % tensor: % -> T map: (K->K,%) -> % if K has Evalable(K) then Evalable(K) ravel: % -> List K unravel: (Prop %,List K) -> % coerce:(x:List NAT) -> % ++ identity for composition and permutations of its products coerce:(x:List None) -> % ++ [] = 1 elt: (%,%) -> % elt: (%,NAT) -> % elt: (%,NAT,NAT) -> % elt: (%,NAT,NAT,NAT) -> % _/: (Tuple %,Tuple %) -> % _/: (Tuple %,%) -> % _/: (%,Tuple %) -> % ++ yet another syntax for product ev: NAT -> % ++ (2,0)-tensor for evaluation co: NAT -> % ++ (0,2)-tensor for co-evaluation
Implementation ==> add import List NNI import NAT L ==> Record(domain:NNI, codomain:NNI, data:T) -- FreeMonoid provides unevaluated products Rep == FreeMonoid L RR ==> Record(gen:L,exp:NNI) rep(x:%):Rep == x pretend Rep per(x:Rep):% == x pretend %
-- Prop (arity) dom(f:%):NNI == r:NNI := 0 for y in factors(rep f) repeat r:=r+(y.gen.domain)*(y.exp) return r cod(f:%):NNI == r:NNI := 0 for y in factors(rep f) repeat r:=r+(y.gen.codomain)*(y.exp) return r
prod(f:L,g:L):L == r:T := product(f.data,g.data) -- dom(f) + cod(f) + dom(g) + cod(g) p:List Integer := concat _ [[i for i in 1..(f.domain)], _ [(f.domain)+(f.codomain)+i for i in 1..(g.domain)], _ [(f.domain)+i for i in 1..(f.codomain)], _ [(f.domain)+(g.domain)+(f.codomain)+i for i in 1..(g.codomain)]] -- dom(f) + dom(g) + cod(f) + cod(g) [(f.domain)+(g.domain),(f.codomain)+(g.codomain),reindex(r,p)]
dat(f:%):L == r:L := [0,0,1$T] for y in factors(rep f) repeat t:L:=y.gen for n in 1..y.exp repeat r:=prod(r,t) return r arity(f:%):Prop % == f::Prop %
retractIfCan(f:%):Union(K,"failed") == dom(f)=0 and cod(f)=0 => retract(dat(f).data)$T return "failed" retract(f:%):K == dom(f)=0 and cod(f)=0 => retract(dat(f).data)$T error "failed"
-- basis basisVectors():List % == [per coerce [0,1,entries(row(1,i)$SquareMatrix(dim,K))::T] for i in 1..dim] basisForms():List % == [per coerce [1,0,entries(row(1,i)$SquareMatrix(dim,K))::T] for i in 1..dim] ev(n:NAT):% == dx:= basisForms() reduce(_+,[ (dx.i)^n * (dx.i)^n for i in 1..dim]) co(n:NAT):% == Dx:= basisVectors() reduce(_+,[ (Dx.i)^n * (Dx.i)^n for i in 1..dim])
-- manipulation map(f:K->K, g:%):% == per coerce [dom g,cod g,unravel(map(f,ravel dat(g).data))$T] if K has Evalable(K) then eval(g:%,f:List Equation K):% == map((x:K):K+->eval(x,f),g) ravel(g:%):List K == ravel dat(g).data unravel(p:Prop %,r:List K):% == dim^(dom(p)+cod(p)) ~= #r => error "failed" per coerce [dom(p),cod(p),unravel(r)$T] tensor(x:%):T == dat(x).data
-- sum (f:% + g:%):% == dat(f).data=0 => g dat(g).data=0 => f dom(f) ~= dom(g) or cod(f) ~= cod(g) => error "arity" per coerce [dom f,cod f,dat(f).data+dat(g).data]
(f:% - g:%):% == dat(f).data=0 => g dat(g).data=0 => f dom(f) ~= dom(f) or cod(g) ~= cod(g) => error "arity" per coerce [dom f, cod f,dat(f).data-dat(g).data]
_-(f:%):% == per coerce [dom f, cod f,-dat(f).data]
-- repeated sum (p:NNI * f:%):% == p=1 => f q:=subtractIfCan(p,1) q case NNI => q*f + f -- zero map (non-trivial) per coerce [dom f,cod f,0*dat(f).data]
-- identity for sum (trivial zero map) 0 == per coerce [0,0,0] zero?(f:%):Boolean == dat(f).data = 0 * dat(f).data -- identity for product 1:% == per coerce [0,0,1] one?(f:%):Boolean == dat(f).data = 1$T -- identity for composition I == per coerce [1,1,kroneckerDelta()$T] (x:% = y:%):Boolean == zero? (x - y)
-- permutations and identities coerce(p:List NAT):% == r:=I^#p #p = 1 and p.1 = 1 => return r p1:List Integer:=[i for i in 1..#p] p2:List Integer:=[#p+i for i in p] p3:=concat(p1,p2) per coerce [#p,#p,reindex(dat(r).data,p3)] coerce(p:List None):% == per coerce [0,0,1] coerce(x:K):% == 1*x
-- product elt(f:%,g:%):% == f * g elt(f:%,g:NAT):% == f * I^g elt(f:%,g1:NAT,g2:NAT):% == f * [g1 @ NAT,g2 @ NAT]::List NAT::% elt(f:%,g1:NAT,g2:NAT,g3:NAT):% == f * [g1 @ NAT,g2 @ NAT,g3 @ NAT]::List NAT::% apply(f:%,g:%):% == f * g (f:% * g:%):% == per(rep f * rep g)
-- repeated product (f:% ^ p:NNI):% == p=1 => f q:=subtractIfCan(p,1) q case NNI => f^q * f 1
-- composition: -- f/g : A^n -> A^p = f:A^n -> A^m / g:A^m -> A^p (ff:% / gg:%):% == g:=gg; f:=ff -- partial application from the left n:=subtractIfCan(cod ff,dom gg) if n case NNI and n>0 then -- apply g on f from the left, pass extra f outputs on the right print(hconcat([message("arity warning: "), _ over(arity(ff)::OutputForm, _ arity(gg)::OutputForm*(arity(I)::OutputForm)^n::OutputForm) ]))$OutputForm g:=gg*I^n m:=subtractIfCan(dom gg, cod ff) -- apply g on f from the left, add extra g inputs on the left if m case NNI and m>0 then print(hconcat([message("arity warning: "), _ over((arity(I)::OutputForm)^m::OutputForm*arity(ff)::OutputForm, _ arity(gg)::OutputForm)]))$OutputForm f:=I^m*ff f1:Integer:=dom(f)+1 r:T := contract(cod(f),dat(f).data,f1, dat(g).data,1) per coerce [dom(f),cod(g),r]
-- another notation for composition of products (t:Tuple % / x:%):% == t / construct([x])$PrimitiveArray(%)::Tuple(%) (x:% / t:Tuple %):% == construct([x])$PrimitiveArray(%)::Tuple(%) / t (f:Tuple % / g:Tuple %):% == -- optimize leading and trailing identities ? f1:=0; f2:=length(f)-1 fs:List % := [select(f,i) for i in f1..f2] g1:=0; g2:=length(g)-1 gs:List % := [select(g,i) for i in g1..g2] fr:=reduce(elt@(%,%)->%,fs,1) gr:=reduce(elt@(%,%)->%,gs,1) fr / gr
(x:K * y:%):% == per coerce [dom y, cod y,x*dat(y).data] (x:% * y:K):% == per coerce [dom x,cod x,dat(x).data*y] (x:Integer * y:%):% == per coerce [dom y,cod y,x*dat(y).data]
-- constructors inp(x:List K):% == per coerce [1,0,entries(x)::T] inp(x:List %):% == #removeDuplicates([dom(y) for y in x]) ~= 1 or #removeDuplicates([cod(y) for y in x]) ~= 1 => error "arity" per coerce [dom(first x)+1, cod(first x), [dat(y).data for y in x]::T]$L out(x:List K):% == per coerce [0,1,entries(x)::T] out(x:List %):% == #removeDuplicates([dom(y) for y in x])~=1 or #removeDuplicates([cod(y) for y in x])~=1 => error "arity" per coerce [dom(first x), cod(first x)+1, [dat(y).data for y in x]::T]$L
-- display operators using basis coerce(x:%):OutputForm == dom(x)=0 and cod(x)=0 => return (dat(x).data)::OutputForm if size()$gener > 0 then gens:List OutputForm:=[index(i::PositiveInteger)$gener::OutputForm for i in 1..dim] else -- default to numeric indices gens:List OutputForm:=[i::OutputForm for i in 1..dim] -- input basis inps:List OutputForm := [] for i in 1..dom(x) repeat empty? inps => inps:=gens inps:=concat [[(inps.k * gens.j) for j in 1..dim] for k in 1..#inps] -- output basis outs:List OutputForm := [] for i in 1..cod(x) repeat empty? outs => outs:=gens outs:=concat [[(outs.k * gens.j) for j in 1..dim] for k in 1..#outs] -- combine input (superscripts) and/or output(subscripts) to form basis symbols bases:List OutputForm if #inps > 0 and #outs > 0 then bases:=concat([[ scripts(message("|"),[i,j]) for i in outs] for j in inps]) else if #inps > 0 then bases:=[super(message("|"),i) for i in inps] else if #outs > 0 then bases:=[sub(message("|"),j) for j in outs] else bases:List OutputForm:= [] -- merge bases with data to form term list terms:=[(k=1 => base;k::OutputForm*base) for base in bases for k in ravel dat(x).data | k~=0] empty? terms => return 0::OutputForm -- combine the terms return reduce(_+,terms)
spad
   Compiling FriCAS source code from file 
      /var/zope2/var/LatexWiki/4414695053041626152-25px002.spad using 
      old system compiler.
   LAZY abbreviates domain LazyLinearOperator 
------------------------------------------------------------------------
   initializing NRLIB LAZY for LazyLinearOperator 
   compiling into NRLIB LAZY 
   importing List NonNegativeInteger
   importing PositiveInteger
   processing macro definition L ==> Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K)) 
   processing macro definition RR ==> Record(gen: Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K)),exp: NonNegativeInteger) 
   compiling local rep : $ -> FreeMonoid Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K))
      LAZY;rep is replaced by x 
Time: 0.11 SEC.
compiling local per : FreeMonoid Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K)) -> $ LAZY;per is replaced by x Time: 0 SEC.
compiling exported dom : $ -> NonNegativeInteger Time: 0.01 SEC.
compiling exported cod : $ -> NonNegativeInteger Time: 0.02 SEC.
compiling local prod : (Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K)),Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K))) -> Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K)) Time: 0.06 SEC.
compiling local dat : $ -> Record(domain: NonNegativeInteger,codomain: NonNegativeInteger,data: CartesianTensor(One,dim,K)) Time: 0.02 SEC.
compiling exported arity : $ -> Prop $ Time: 0 SEC.
compiling exported retractIfCan : $ -> Union(K,failed) Time: 0.01 SEC.
compiling exported retract : $ -> K Time: 0.02 SEC.
compiling exported basisVectors : () -> List $ Time: 0.05 SEC.
compiling exported basisForms : () -> List $ Time: 0.13 SEC.
compiling exported ev : PositiveInteger -> $ Time: 0.15 SEC.
compiling exported co : PositiveInteger -> $ Time: 0.06 SEC.
compiling exported map : (K -> K,$) -> $ Time: 0.01 SEC.
****** Domain: K already in scope augmenting K: (Evalable K) compiling exported eval : ($,List Equation K) -> $ Time: 0.02 SEC.
compiling exported ravel : $ -> List K Time: 0 SEC.
compiling exported unravel : (Prop $,List K) -> $ Time: 0.02 SEC.
compiling exported tensor : $ -> CartesianTensor(One,dim,K) Time: 0 SEC.
compiling exported + : ($,$) -> $ Time: 0.02 SEC.
compiling exported - : ($,$) -> $ Time: 0.02 SEC.
compiling exported - : $ -> $ Time: 0.01 SEC.
compiling exported * : (NonNegativeInteger,$) -> $ Time: 0.01 SEC.
compiling exported Zero : () -> $ Time: 0.01 SEC.
compiling exported zero? : $ -> Boolean Time: 0.28 SEC.
compiling exported One : () -> $ Time: 0 SEC.
compiling exported one? : $ -> Boolean Time: 0.01 SEC.
compiling exported = : ($,$) -> Boolean Time: 0.01 SEC.
compiling exported coerce : List PositiveInteger -> $ Time: 0.15 SEC.
compiling exported coerce : List None -> $ Time: 0.01 SEC.
compiling exported coerce : K -> $ Time: 0 SEC.
compiling exported elt : ($,$) -> $ Time: 0 SEC.
compiling exported elt : ($,PositiveInteger) -> $ Time: 0.01 SEC.
compiling exported elt : ($,PositiveInteger,PositiveInteger) -> $ Time: 0 SEC.
compiling exported elt : ($,PositiveInteger,PositiveInteger,PositiveInteger) -> $ Time: 0.01 SEC.
compiling exported apply : ($,$) -> $ Time: 0 SEC.
compiling exported * : ($,$) -> $ Time: 0.01 SEC.
compiling exported ^ : ($,NonNegativeInteger) -> $ Time: 0.01 SEC.
compiling exported / : ($,$) -> $ Time: 0.79 SEC.
compiling exported / : (Tuple $,$) -> $ Time: 0.03 SEC.
compiling exported / : ($,Tuple $) -> $ Time: 0.01 SEC.
compiling exported / : (Tuple $,Tuple $) -> $ Time: 0.02 SEC.
compiling exported * : (K,$) -> $ Time: 0 SEC.
compiling exported * : ($,K) -> $ Time: 0.01 SEC.
compiling exported * : (Integer,$) -> $ Time: 0 SEC.
compiling exported inp : List K -> $ Time: 0 SEC.
compiling exported inp : List $ -> $ Time: 0.02 SEC.
compiling exported out : List K -> $ Time: 0.01 SEC.
compiling exported out : List $ -> $ Time: 0.07 SEC.
compiling exported coerce : $ -> OutputForm Time: 0.07 SEC.
****** Domain: K already in scope augmenting K: (Evalable K) (time taken in buildFunctor: 0)
;;; *** |LazyLinearOperator| REDEFINED
;;; *** |LazyLinearOperator| REDEFINED Time: 0.02 SEC.
Warnings: [1] dom: domain has no value [2] cod: codomain has no value
Cumulative Statistics for Constructor LazyLinearOperator Time: 2.31 seconds
finalizing NRLIB LAZY Processing LazyLinearOperator for Browser database: --------(inp (% (List K)))--------- --->-->LazyLinearOperator((inp (% (List %)))): Not documented!!!! --------(out (% (List K)))--------- --->-->LazyLinearOperator((out (% (List %)))): Not documented!!!! --->-->LazyLinearOperator((arity ((Prop %) %))): Not documented!!!! --->-->LazyLinearOperator((basisVectors ((List %)))): Not documented!!!! --->-->LazyLinearOperator((basisForms ((List %)))): Not documented!!!! --->-->LazyLinearOperator((tensor (T$ %))): Not documented!!!! --->-->LazyLinearOperator((map (% (Mapping K K) %))): Not documented!!!! --->-->LazyLinearOperator((ravel ((List K) %))): Not documented!!!! --->-->LazyLinearOperator((unravel (% (Prop %) (List K)))): Not documented!!!! --------(coerce (% (List NAT)))--------- --->-->LazyLinearOperator((coerce (% (List NAT)))): Improper first word in comments: identity "identity for composition and permutations of its products" --------(coerce (% (List (None))))--------- --->-->LazyLinearOperator((coerce (% (List (None))))): Improper first word in comments: [] "[] = 1" --->-->LazyLinearOperator((elt (% % %))): Not documented!!!! --->-->LazyLinearOperator((elt (% % NAT))): Not documented!!!! --->-->LazyLinearOperator((elt (% % NAT NAT))): Not documented!!!! --->-->LazyLinearOperator((elt (% % NAT NAT NAT))): Not documented!!!! --->-->LazyLinearOperator((/ (% (Tuple %) (Tuple %)))): Not documented!!!! --->-->LazyLinearOperator((/ (% (Tuple %) %))): Not documented!!!! --------(/ (% % (Tuple %)))--------- --->-->LazyLinearOperator((/ (% % (Tuple %)))): Improper first word in comments: yet "yet another syntax for product" --------(ev (% NAT))--------- --->-->LazyLinearOperator((ev (% NAT))): Improper first word in comments: "(2,{}0)-tensor for evaluation" --------(co (% NAT))--------- --->-->LazyLinearOperator((co (% NAT))): Improper first word in comments: "(0,{}2)-tensor for co-evaluation" --->-->LazyLinearOperator(constructor): Not documented!!!! --->-->LazyLinearOperator(): Missing Description ; compiling file "/var/zope2/var/LatexWiki/LAZY.NRLIB/LAZY.lsp" (written 02 MAY 2011 11:40:24 PM):
; /var/zope2/var/LatexWiki/LAZY.NRLIB/LAZY.fasl written ; compilation finished in 0:00:02.655 ------------------------------------------------------------------------ LazyLinearOperator is now explicitly exposed in frame initial LazyLinearOperator will be automatically loaded when needed from /var/zope2/var/LatexWiki/LAZY.NRLIB/LAZY
>> System error: The bounding indices 163 and 162 are bad for a sequence of length 162. See also: The ANSI Standard, Glossary entry for "bounding index designator" The ANSI Standard, writeup for Issue SUBSEQ-OUT-OF-BOUNDS:IS-AN-ERROR