A complex vector ℂ-space possesses many different hermitian isomorphisms
. In quantum mechanics a given operator
may be said to be -hermitian if
fricas
(1) -> ℂ:=Complex Fraction Polynomial Integer
Type: Type
fricas
-- dagger
htranspose(h)==map(x+->conjugate(x),transpose h)
Type: Void
fricas
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame
initial
Theorem
The necessary conditions for an operator to possess hermitean isomorphism
is that and .
Two-Dimensions
fricas
p:ℂ:=complex(ℜp,𝔍p)
Type: Complex(Fraction(Polynomial(Integer)))
fricas
q:ℂ:=complex(ℜq,𝔍q)
Type: Complex(Fraction(Polynomial(Integer)))
fricas
r:ℂ:=complex(ℜr,𝔍r)
Type: Complex(Fraction(Polynomial(Integer)))
fricas
t:ℂ:=complex(ℜt,0)
Type: Complex(Fraction(Polynomial(Integer)))
fricas
ρ:Matrix ℂ := matrix [[t/2+p,q],[r,t/2-p]]
Type: Matrix(Complex(Fraction(Polynomial(Integer))))
fricas
trace ρ
Type: Complex(Fraction(Polynomial(Integer)))
fricas
d:=determinant ρ
Type: Complex(Fraction(Polynomial(Integer)))
fricas
test(p^2+r*q=(1/4)*t^2-d)
Type: Boolean
fricas
s0:=solve(imag d,ℜr)
Type: List(Equation(Fraction(Polynomial(Integer))))
fricas
eval(trace(ρ*ρ),s0)
Type: Fraction(Polynomial(Complex(Integer)))
Given an operator , one must find the tensor
for unknown manifold of hermitian isomorphisms .
fricas
h:Matrix ℂ:=matrix [[a,complex(b,c)],[complex(b,-c),e]]
Type: Matrix(Complex(Fraction(Polynomial(Integer))))
fricas
test(h = htranspose h)
fricas
Compiling function htranspose with type Matrix(Complex(Fraction(
Polynomial(Integer)))) -> Matrix(Complex(Fraction(Polynomial(
Integer))))
Type: Boolean
fricas
H:=htranspose(ρ)*h-h*ρ
Type: Matrix(Complex(Fraction(Polynomial(Integer))))
We wish to find expressions for in terms of the components of
. To do this we will determine how the components of depend
on the components of .
fricas
J:=jacobian(concat( map(x+->[real x, imag x], concat(H::List List ?)) ),
[a,b,c,e]::List Symbol)
Type: Matrix(Fraction(Polynomial(Integer)))
The null space (kernel) of the Jacobian
fricas
N:=nullSpace(map(x+->eval(x,s0),J))
Type: List(Vector(Fraction(Polynomial(Integer))))
gives the general solution to the problem.
fricas
s1:=map((x,y)+->x=y,[a,b,c,e],c*N.1+e*N.2)
Type: List(Equation(Fraction(Polynomial(Integer))))
fricas
map(x+->eval(x,concat(s0,s1)),H)
Type: Matrix(Fraction(Polynomial(Complex(Integer))))
SandBoxHermitianIsomorphisms3