login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxHermitianIsomorphisms revision 5 of 7

1 2 3 4 5 6 7
Editor: Bill Page
Time: 2011/06/26 12:54:18 GMT-7
Note: jacobian

changed:
-p:Complex Fraction Polynomial Integer:=complex(Rp,Ip)
-q:Complex Fraction Polynomial Integer:=complex(Rq,Iq)
-r:Complex Fraction Polynomial Integer:=complex(Rr,Ir)
-t:Complex Fraction Polynomial Integer:=complex(Rt,0)
p:Complex Fraction Polynomial Integer:=complex(ℜp,𝔍p)
q:Complex Fraction Polynomial Integer:=complex(ℜq,𝔍q)
r:Complex Fraction Polynomial Integer:=complex(ℜr,𝔍r)
t:Complex Fraction Polynomial Integer:=complex(ℜt,0)

added:
s0:=solve(imag d,ℜr)
eval(trace(ρ*ρ),s0)

changed:
-s1:=solve(determinant subMatrix(H1,2,5,1,4),Rr)
s1:=solve(determinant subMatrix(H1,2,5,1,4),ℜr)

axiom
p:Complex Fraction Polynomial Integer:=complex(ℜp,𝔍p)

\label{eq1}� � p +{�� � p \  i}(1)
Type: Complex(Fraction(Polynomial(Integer)))
axiom
q:Complex Fraction Polynomial Integer:=complex(ℜq,𝔍q)

\label{eq2}� � q +{�� � q \  i}(2)
Type: Complex(Fraction(Polynomial(Integer)))
axiom
r:Complex Fraction Polynomial Integer:=complex(ℜr,𝔍r)

\label{eq3}� � r +{�� � r \  i}(3)
Type: Complex(Fraction(Polynomial(Integer)))
axiom
t:Complex Fraction Polynomial Integer:=complex(ℜt,0)

\label{eq4}� � t(4)
Type: Complex(Fraction(Polynomial(Integer)))
axiom
ρ:=matrix [[t/2+p,q],[r,t/2-p]]

\label{eq5}\left[ 
\begin{array}{cc}
{{{� � t +{2 \  � � p}}\over 2}+{�� � p \  i}}&{� � q +{�� � q \  i}}
\
{� � r +{�� � r \  i}}&{{{� � t -{2 \  � � p}}\over 2}-{�� � p \  i}}
(5)
Type: Matrix(Complex(Fraction(Polynomial(Integer))))
axiom
trace ρ

\label{eq6}� � t(6)
Type: Complex(Fraction(Polynomial(Integer)))
axiom
d:=determinant ρ

\label{eq7}{{{4 \  �� � q \  �� � r}+{4 \ {�� � p^2}}+{� � t^2}-{4 \  � � q \  � � r}-{4 \ {� � p^2}}}\over 4}+{{\left(-{� � q \  �� � r}-{� � r \  �� � q}-{2 \  � � p \  �� � p}\right)}\  i}(7)
Type: Complex(Fraction(Polynomial(Integer)))
axiom
s0:=solve(imag d,ℜr)

\label{eq8}\left[{� � r ={{-{� � q \  �� � r}-{2 \  � � p \  �� � p}}\over �� � q}}\right](8)
Type: List(Equation(Fraction(Polynomial(Integer))))
axiom
eval(trace(ρ*ρ),s0)

\label{eq9}{{{\left(-{4 \ {�� � q^2}}-{4 \ {� � q^2}}\right)}\  �� � r}+{{\left(-{4 \ {�� � p^2}}+{� � t^2}+{4 \ {� � p^2}}\right)}\  �� � q}-{8 \  � � p \  � � q \  �� � p}}\over{2 \  �� � q}(9)
Type: Fraction(Polynomial(Complex(Integer)))
axiom
test(p^2+r*q=(1/4)*t^2-d)

\label{eq10} \mbox{\rm true} (10)
Type: Boolean

axiom
h:Matrix Complex Polynomial Integer:=matrix [[a,complex(b,c)],[complex(b,-c),e]]

\label{eq11}\left[ 
\begin{array}{cc}
a &{b +{c \  i}}
\
{b -{c \  i}}& e 
(11)
Type: Matrix(Complex(Polynomial(Integer)))
axiom
htranspose(h)==map(x+->conjugate(x),transpose h)
Type: Void
axiom
test(h = htranspose h)
axiom
Compiling function htranspose with type Matrix(Complex(Polynomial(
      Integer))) -> Matrix(Complex(Polynomial(Integer)))

\label{eq12} \mbox{\rm true} (12)
Type: Boolean

axiom
H:=htranspose(ρ)*h-h*ρ
axiom
Compiling function htranspose with type Matrix(Complex(Fraction(
      Polynomial(Integer)))) -> Matrix(Complex(Fraction(Polynomial(
      Integer))))

\label{eq13}\left[ 
\begin{array}{cc}
{{\left(-{2 \  b \  �� � r}-{2 \  a \  �� � p}-{2 \  c \  � � r}\right)}\  i}&{{e \  � � r}-{a \  � � q}+{2 \  b \  � � p}+{{\left(-{e \  �� � r}-{a \  �� � q}+{2 \  c \  � � p}\right)}\  i}}
\
{-{e \  � � r}+{a \  � � q}-{2 \  b \  � � p}+{{\left(-{e \  �� � r}-{a \  �� � q}+{2 \  c \  � � p}\right)}\  i}}&{{\left(-{2 \  b \  �� � q}+{2 \  e \  �� � p}+{2 \  c \  � � q}\right)}\  i}
(13)
Type: Matrix(Complex(Fraction(Polynomial(Integer))))
axiom
Hlist:=concat(H::List List ?)

\label{eq14}\left[{{\left(-{2 \  b \  �� � r}-{2 \  a \  �� � p}-{2 \  c \  � � r}\right)}\  i}, \:{{e \  � � r}-{a \  � � q}+{2 \  b \  � � p}+{{\left(-{e \  �� � r}-{a \  �� � q}+{2 \  c \  � � p}\right)}\  i}}, \:{-{e \  � � r}+{a \  � � q}-{2 \  b \  � � p}+{{\left(-{e \  �� � r}-{a \  �� � q}+{2 \  c \  � � p}\right)}\  i}}, \:{{\left(-{2 \  b \  �� � q}+{2 \  e \  �� � p}+{2 \  c \  � � q}\right)}\  i}\right](14)
Type: List(Complex(Fraction(Polynomial(Integer))))
axiom
Hreal:=removeDuplicates(select(x+->(x~=0),concat(map(x+->real x, Hlist),map(x+->imag x, Hlist))))

\label{eq15}\left[{{e \  � � r}-{a \  � � q}+{2 \  b \  � � p}}, \:{-{e \  � � r}+{a \  � � q}-{2 \  b \  � � p}}, \:{-{2 \  b \  �� � r}-{2 \  a \  �� � p}-{2 \  c \  � � r}}, \:{-{e \  �� � r}-{a \  �� � q}+{2 \  c \  � � p}}, \:{-{2 \  b \  �� � q}+{2 \  e \  �� � p}+{2 \  c \  � � q}}\right](15)
Type: List(Fraction(Polynomial(Integer)))
axiom
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame initial H1:=jacobian(Hreal,[a,b,c,e]::List Symbol)

\label{eq16}\left[ 
\begin{array}{cccc}
- � � q &{2 \  � � p}& 0 & � � r 
\
� � q & -{2 \  � � p}& 0 & - � � r 
\
-{2 \  �� � p}& -{2 \  �� � r}& -{2 \  � � r}& 0 
\
- �� � q & 0 &{2 \  � � p}& - �� � r 
\
0 & -{2 \  �� � q}&{2 \  � � q}&{2 \  �� � p}
(16)
Type: Matrix(Fraction(Polynomial(Integer)))

axiom
s1:=solve(determinant subMatrix(H1,2,5,1,4),ℜr)

\label{eq17}\left[{� � r ={{-{� � q \  �� � r}-{2 \  � � p \  �� � p}}\over �� � q}}\right](17)
Type: List(Equation(Fraction(Polynomial(Integer))))
axiom
H2:=map(x+->eval(x,s1),H1)

\label{eq18}\left[ 
\begin{array}{cccc}
- � � q &{2 \  � � p}& 0 &{{-{� � q \  �� � r}-{2 \  � � p \  �� � p}}\over �� � q}
\
� � q & -{2 \  � � p}& 0 &{{{� � q \  �� � r}+{2 \  � � p \  �� � p}}\over �� � q}
\
-{2 \  �� � p}& -{2 \  �� � r}&{{{2 \  � � q \  �� � r}+{4 \  � � p \  �� � p}}\over �� � q}& 0 
\
- �� � q & 0 &{2 \  � � p}& - �� � r 
\
0 & -{2 \  �� � q}&{2 \  � � q}&{2 \  �� � p}
(18)
Type: Matrix(Fraction(Polynomial(Integer)))
axiom
N:=nullSpace(H2)

\label{eq19}\left[{\left[{{2 \  � � p}\over �� � q}, \:{� � q \over �� � q}, \: 1, \: 0 \right]}, \:{\left[ -{�� � r \over �� � q}, \:{�� � p \over �� � q}, \: 0, \: 1 \right]}\right](19)
Type: List(Vector(Fraction(Polynomial(Integer))))
axiom
H2*(c*N(1)+e*N(2))

\label{eq20}\left[ 0, \: 0, \: 0, \: 0, \: 0 \right](20)
Type: Vector(Fraction(Polynomial(Integer)))
axiom
s2:=map((x,y)+->x=y,[a,b,c,e],c*N.1+e*N.2)

\label{eq21}\left[{a ={{-{e \  �� � r}+{2 \  c \  � � p}}\over �� � q}}, \:{b ={{{e \  �� � p}+{c \  � � q}}\over �� � q}}, \:{c = c}, \:{e = e}\right](21)
Type: List(Equation(Fraction(Polynomial(Integer))))
axiom
h1:=map(x+->eval(x,s2),h)

\label{eq22}\left[ 
\begin{array}{cc}
{{-{e \  �� � r}+{2 \  c \  � � p}}\over �� � q}&{{{i \  c \  �� � q}+{e \  �� � p}+{c \  � � q}}\over �� � q}
\
{{-{i \  c \  �� � q}+{e \  �� � p}+{c \  � � q}}\over �� � q}& e 
(22)
Type: Matrix(Fraction(Polynomial(Complex(Integer))))
axiom
map(x+->eval(x,s1),htranspose(ρ)*h1-h1*ρ)

\label{eq23}\left[ 
\begin{array}{cc}
0 & 0 
\
0 & 0 
(23)
Type: Matrix(Fraction(Polynomial(Complex(Integer))))