login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxHermitianIsomorphisms revision 4 of 7

1 2 3 4 5 6 7
Editor: Bill Page
Time: 2011/06/26 11:49:55 GMT-7
Note: jacobian

changed:
-eq27:=map((x,y)+->x=y,[a,b,c,e],c*N.1+e*N.2)
-eq28:=map(x+->eval(x,eq27),matrix [[a,b+%I*c],[b-%I*c,e]])
s2:=map((x,y)+->x=y,[a,b,c,e],c*N.1+e*N.2)
h1:=map(x+->eval(x,s2),h)
map(x+->eval(x,s1),htranspose(ρ)*h1-h1*ρ)

axiom
p:Complex Fraction Polynomial Integer:=complex(Rp,Ip)

\label{eq1}Rp +{Ip \  i}(1)
Type: Complex(Fraction(Polynomial(Integer)))
axiom
q:Complex Fraction Polynomial Integer:=complex(Rq,Iq)

\label{eq2}Rq +{Iq \  i}(2)
Type: Complex(Fraction(Polynomial(Integer)))
axiom
r:Complex Fraction Polynomial Integer:=complex(Rr,Ir)

\label{eq3}Rr +{Ir \  i}(3)
Type: Complex(Fraction(Polynomial(Integer)))
axiom
t:Complex Fraction Polynomial Integer:=complex(Rt,0)

\label{eq4}Rt(4)
Type: Complex(Fraction(Polynomial(Integer)))
axiom
ρ:=matrix [[t/2+p,q],[r,t/2-p]]

\label{eq5}\left[ 
\begin{array}{cc}
{{{Rt +{2 \  Rp}}\over 2}+{Ip \  i}}&{Rq +{Iq \  i}}
\
{Rr +{Ir \  i}}&{{{Rt -{2 \  Rp}}\over 2}-{Ip \  i}}
(5)
Type: Matrix(Complex(Fraction(Polynomial(Integer))))
axiom
trace ρ

\label{eq6}Rt(6)
Type: Complex(Fraction(Polynomial(Integer)))
axiom
d:=determinant ρ

\label{eq7}\begin{array}{@{}l}
\displaystyle
{{{Rt^2}-{4 \  Rq \  Rr}-{4 \ {Rp^2}}+{4 \  Iq \  Ir}+{4 \ {Ip^2}}}\over 4}+ 
\
\
\displaystyle
{{\left(-{Iq \  Rr}-{Ir \  Rq}-{2 \  Ip \  Rp}\right)}\  i}
(7)
Type: Complex(Fraction(Polynomial(Integer)))
axiom
test(p^2+r*q=(1/4)*t^2-d)

\label{eq8} \mbox{\rm true} (8)
Type: Boolean

axiom
h:Matrix Complex Polynomial Integer:=matrix [[a,complex(b,c)],[complex(b,-c),e]]

\label{eq9}\left[ 
\begin{array}{cc}
a &{b +{c \  i}}
\
{b -{c \  i}}& e 
(9)
Type: Matrix(Complex(Polynomial(Integer)))
axiom
htranspose(h)==map(x+->conjugate(x),transpose h)
Type: Void
axiom
test(h = htranspose h)
axiom
Compiling function htranspose with type Matrix(Complex(Polynomial(
      Integer))) -> Matrix(Complex(Polynomial(Integer)))

\label{eq10} \mbox{\rm true} (10)
Type: Boolean

axiom
H:=htranspose(ρ)*h-h*ρ
axiom
Compiling function htranspose with type Matrix(Complex(Fraction(
      Polynomial(Integer)))) -> Matrix(Complex(Fraction(Polynomial(
      Integer))))

\label{eq11}\left[ 
\begin{array}{cc}
{{\left(-{2 \  Rr \  c}-{2 \  Ir \  b}-{2 \  Ip \  a}\right)}\  i}&{{Rr \  e}+{2 \  Rp \  b}-{Rq \  a}+{{\left(-{Ir \  e}+{2 \  Rp \  c}-{Iq \  a}\right)}\  i}}
\
{-{Rr \  e}-{2 \  Rp \  b}+{Rq \  a}+{{\left(-{Ir \  e}+{2 \  Rp \  c}-{Iq \  a}\right)}\  i}}&{{\left({2 \  Ip \  e}+{2 \  Rq \  c}-{2 \  Iq \  b}\right)}\  i}
(11)
Type: Matrix(Complex(Fraction(Polynomial(Integer))))
axiom
Hlist:=concat(H::List List ?)

\label{eq12}\begin{array}{@{}l}
\displaystyle
\left[{{\left(-{2 \  Rr \  c}-{2 \  Ir \  b}-{2 \  Ip \  a}\right)}\  i}, \: \right.
\
\
\displaystyle
\left.{{Rr \  e}+{2 \  Rp \  b}-{Rq \  a}+{{\left(-{Ir \  e}+{2 \  Rp \  c}-{Iq \  a}\right)}\  i}}, \: \right.
\
\
\displaystyle
\left.{-{Rr \  e}-{2 \  Rp \  b}+{Rq \  a}+{{\left(-{Ir \  e}+{2 \  Rp \  c}-{Iq \  a}\right)}\  i}}, \: \right.
\
\
\displaystyle
\left.{{\left({2 \  Ip \  e}+{2 \  Rq \  c}-{2 \  Iq \  b}\right)}\  i}\right] 
(12)
Type: List(Complex(Fraction(Polynomial(Integer))))
axiom
Hreal:=removeDuplicates(select(x+->(x~=0),concat(map(x+->real x, Hlist),map(x+->imag x, Hlist))))

\label{eq13}\begin{array}{@{}l}
\displaystyle
\left[{{Rr \  e}+{2 \  Rp \  b}-{Rq \  a}}, \:{-{Rr \  e}-{2 \  Rp \  b}+{Rq \  a}}, \: \right.
\
\
\displaystyle
\left.{-{2 \  Rr \  c}-{2 \  Ir \  b}-{2 \  Ip \  a}}, \:{-{Ir \  e}+{2 \  Rp \  c}-{Iq \  a}}, \: \right.
\
\
\displaystyle
\left.{{2 \  Ip \  e}+{2 \  Rq \  c}-{2 \  Iq \  b}}\right] 
(13)
Type: List(Fraction(Polynomial(Integer)))
axiom
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame initial H1:=jacobian(Hreal,[a,b,c,e]::List Symbol)

\label{eq14}\left[ 
\begin{array}{cccc}
- Rq &{2 \  Rp}& 0 & Rr 
\
Rq & -{2 \  Rp}& 0 & - Rr 
\
-{2 \  Ip}& -{2 \  Ir}& -{2 \  Rr}& 0 
\
- Iq & 0 &{2 \  Rp}& - Ir 
\
0 & -{2 \  Iq}&{2 \  Rq}&{2 \  Ip}
(14)
Type: Matrix(Fraction(Polynomial(Integer)))

axiom
s1:=solve(determinant subMatrix(H1,2,5,1,4),Rr)

\label{eq15}\left[{Rr ={{-{Ir \  Rq}-{2 \  Ip \  Rp}}\over Iq}}\right](15)
Type: List(Equation(Fraction(Polynomial(Integer))))
axiom
H2:=map(x+->eval(x,s1),H1)

\label{eq16}\left[ 
\begin{array}{cccc}
- Rq &{2 \  Rp}& 0 &{{-{Ir \  Rq}-{2 \  Ip \  Rp}}\over Iq}
\
Rq & -{2 \  Rp}& 0 &{{{Ir \  Rq}+{2 \  Ip \  Rp}}\over Iq}
\
-{2 \  Ip}& -{2 \  Ir}&{{{2 \  Ir \  Rq}+{4 \  Ip \  Rp}}\over Iq}& 0 
\
- Iq & 0 &{2 \  Rp}& - Ir 
\
0 & -{2 \  Iq}&{2 \  Rq}&{2 \  Ip}
(16)
Type: Matrix(Fraction(Polynomial(Integer)))
axiom
N:=nullSpace(H2)

\label{eq17}\left[{\left[{{2 \  Rp}\over Iq}, \:{Rq \over Iq}, \: 1, \: 0 \right]}, \:{\left[ -{Ir \over Iq}, \:{Ip \over Iq}, \: 0, \: 1 \right]}\right](17)
Type: List(Vector(Fraction(Polynomial(Integer))))
axiom
H2*(c*N(1)+e*N(2))

\label{eq18}\left[ 0, \: 0, \: 0, \: 0, \: 0 \right](18)
Type: Vector(Fraction(Polynomial(Integer)))
axiom
s2:=map((x,y)+->x=y,[a,b,c,e],c*N.1+e*N.2)

\label{eq19}\left[{a ={{-{Ir \  e}+{2 \  Rp \  c}}\over Iq}}, \:{b ={{{Ip \  e}+{Rq \  c}}\over Iq}}, \:{c = c}, \:{e = e}\right](19)
Type: List(Equation(Fraction(Polynomial(Integer))))
axiom
h1:=map(x+->eval(x,s2),h)

\label{eq20}\left[ 
\begin{array}{cc}
{{-{Ir \  e}+{2 \  Rp \  c}}\over Iq}&{{{Ip \  e}+{{\left(Rq +{i \  Iq}\right)}\  c}}\over Iq}
\
{{{Ip \  e}+{{\left(Rq -{i \  Iq}\right)}\  c}}\over Iq}& e 
(20)
Type: Matrix(Fraction(Polynomial(Complex(Integer))))
axiom
map(x+->eval(x,s1),htranspose(ρ)*h1-h1*ρ)

\label{eq21}\left[ 
\begin{array}{cc}
0 & 0 
\
0 & 0 
(21)
Type: Matrix(Fraction(Polynomial(Complex(Integer))))