axiom
p:=complex(Rp,Ip)
Type: Complex(Polynomial(Integer))
axiom
q:=complex(Rq,Iq)
Type: Complex(Polynomial(Integer))
axiom
r:=complex(Rr,Ir)
Type: Complex(Polynomial(Integer))
axiom
ρ:=matrix [[t/2+p,q],[r,t/2-p]]
Type: Matrix(Polynomial(Complex(Fraction(Integer))))
axiom
trace ρ
Type: Polynomial(Complex(Fraction(Integer)))
axiom
d:=determinant ρ
Type: Polynomial(Complex(Fraction(Integer)))
axiom
test(p^2+r*q=(1/4)*t^2-d)
Type: Boolean
axiom
h:=matrix [[a,complex(b,c)],[complex(b,-c),e]]
Type: Matrix(Polynomial(Complex(Integer)))
axiom
matrix map(conjugate,transpose(h)::List List ?)
There are 67 exposed and 8 unexposed library operations named map
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue
)display op map
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.
Cannot find a definition or applicable library operation named map
with argument type(s)
Variable(conjugate)
List(List(Polynomial(Complex(Integer))))
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
A:=matrix [[Ip,Ir, Rr, 0], [Rq,-2*Rp,0,-Rr],[Iq,0,-2*Rp,Ir],[0,Iq,-Rq,-Ip]]
Type: Matrix(Polynomial(Integer))
axiom
s1:=solve(determinant(A),Rr)
Type: List(Equation(Fraction(Polynomial(Integer))))
axiom
B:=map(x+->eval(x,s1),A)
Type: Matrix(Fraction(Polynomial(Integer)))
axiom
N:=nullSpace(B)
Type: List(Vector(Fraction(Polynomial(Integer))))
axiom
map((x,y)+->x=y,[a,b,c,e],c*N.1+e*N.2)
Type: List(Equation(Fraction(Polynomial(Integer))))
axiom
B*(c*N(1)+e*N(2))
Type: Vector(Fraction(Polynomial(Integer)))
axiom
eq27:=map((x,y)+->x=y,[a,b,c,e],c*N.1+e*N.2)
Type: List(Equation(Fraction(Polynomial(Integer))))
axiom
eq28:=map(x+->eval(x,eq27),matrix [[a,b+%I*c],[b-%I*c,e]])
Type: Matrix(Fraction(Polynomial(Integer)))