login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxHermitianIsomorphisms revision 1 of 7

1 2 3 4 5 6 7
Editor: Bill Page
Time: 2011/06/25 17:36:05 GMT-7
Note: new

changed:
-
\begin{axiom}
p:=complex(Rp,Ip)
q:=complex(Rq,Iq)
r:=complex(Rr,Ir)
ρ:=matrix [[t/2+p,q],[r,t/2-p]]
trace ρ
d:=determinant ρ
test(p^2+r*q=(1/4)*t^2-d)
\end{axiom}
\begin{axiom}
h:=matrix [[a,complex(b,c)],[complex(b,-c),e]]
matrix map(conjugate,transpose(h)::List List ?)
A:=matrix [[Ip,Ir, Rr, 0], [Rq,-2*Rp,0,-Rr],[Iq,0,-2*Rp,Ir],[0,Iq,-Rq,-Ip]]
s1:=solve(determinant(A),Rr)                                               
B:=map(x+->eval(x,s1),A)                                                   
N:=nullSpace(B)                                                            
map((x,y)+->x=y,[a,b,c,e],c*N.1+e*N.2)  
B*(c*N(1)+e*N(2))
eq27:=map((x,y)+->x=y,[a,b,c,e],c*N.1+e*N.2)
eq28:=map(x+->eval(x,eq27),matrix [[a,b+%I*c],[b-%I*c,e]])  
\end{axiom}

axiom
p:=complex(Rp,Ip)

\label{eq1}Rp +{Ip \  i}(1)
Type: Complex(Polynomial(Integer))
axiom
q:=complex(Rq,Iq)

\label{eq2}Rq +{Iq \  i}(2)
Type: Complex(Polynomial(Integer))
axiom
r:=complex(Rr,Ir)

\label{eq3}Rr +{Ir \  i}(3)
Type: Complex(Polynomial(Integer))
axiom
ρ:=matrix [[t/2+p,q],[r,t/2-p]]

\label{eq4}\left[ 
\begin{array}{cc}
{{{1 \over 2}\  t}+ Rp +{i \  Ip}}&{Rq +{i \  Iq}}
\
{Rr +{i \  Ir}}&{{{1 \over 2}\  t}- Rp -{i \  Ip}}
(4)
Type: Matrix(Polynomial(Complex(Fraction(Integer))))
axiom
trace ρ

\label{eq5}t(5)
Type: Polynomial(Complex(Fraction(Integer)))
axiom
d:=determinant ρ

\label{eq6}\begin{array}{@{}l}
\displaystyle
{{1 \over 4}\ {t^2}}+{{\left(- Rq -{i \  Iq}\right)}\  Rr}-{i \  Ir \  Rq}-{Rp^2}-{2 \  i \  Ip \  Rp}+ 
\
\
\displaystyle
{Iq \  Ir}+{Ip^2}
(6)
Type: Polynomial(Complex(Fraction(Integer)))
axiom
test(p^2+r*q=(1/4)*t^2-d)

\label{eq7} \mbox{\rm true} (7)
Type: Boolean

axiom
h:=matrix [[a,complex(b,c)],[complex(b,-c),e]]

\label{eq8}\left[ 
\begin{array}{cc}
a &{{i \  c}+ b}
\
{-{i \  c}+ b}& e 
(8)
Type: Matrix(Polynomial(Complex(Integer)))
axiom
matrix map(conjugate,transpose(h)::List List ?)
There are 67 exposed and 8 unexposed library operations named map having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op map to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named map with argument type(s) Variable(conjugate) List(List(Polynomial(Complex(Integer))))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. A:=matrix [[Ip,Ir, Rr, 0], [Rq,-2*Rp,0,-Rr],[Iq,0,-2*Rp,Ir],[0,Iq,-Rq,-Ip]]

\label{eq9}\left[ 
\begin{array}{cccc}
Ip & Ir & Rr & 0 
\
Rq & -{2 \  Rp}& 0 & - Rr 
\
Iq & 0 & -{2 \  Rp}& Ir 
\
0 & Iq & - Rq & - Ip 
(9)
Type: Matrix(Polynomial(Integer))
axiom
s1:=solve(determinant(A),Rr)

\label{eq10}\left[{Rr ={{-{Ir \  Rq}-{2 \  Ip \  Rp}}\over Iq}}\right](10)
Type: List(Equation(Fraction(Polynomial(Integer))))
axiom
B:=map(x+->eval(x,s1),A)

\label{eq11}\left[ 
\begin{array}{cccc}
Ip & Ir &{{-{Ir \  Rq}-{2 \  Ip \  Rp}}\over Iq}& 0 
\
Rq & -{2 \  Rp}& 0 &{{{Ir \  Rq}+{2 \  Ip \  Rp}}\over Iq}
\
Iq & 0 & -{2 \  Rp}& Ir 
\
0 & Iq & - Rq & - Ip 
(11)
Type: Matrix(Fraction(Polynomial(Integer)))
axiom
N:=nullSpace(B)

\label{eq12}\left[{\left[{{2 \  Rp}\over Iq}, \:{Rq \over Iq}, \: 1, \: 0 \right]}, \:{\left[ -{Ir \over Iq}, \:{Ip \over Iq}, \: 0, \: 1 \right]}\right](12)
Type: List(Vector(Fraction(Polynomial(Integer))))
axiom
map((x,y)+->x=y,[a,b,c,e],c*N.1+e*N.2)

\label{eq13}\left[{a ={{-{Ir \  e}+{2 \  Rp \  c}}\over Iq}}, \:{b ={{{Ip \  e}+{Rq \  c}}\over Iq}}, \:{c = c}, \:{e = e}\right](13)
Type: List(Equation(Fraction(Polynomial(Integer))))
axiom
B*(c*N(1)+e*N(2))

\label{eq14}\left[ 0, \: 0, \: 0, \: 0 \right](14)
Type: Vector(Fraction(Polynomial(Integer)))
axiom
eq27:=map((x,y)+->x=y,[a,b,c,e],c*N.1+e*N.2)

\label{eq15}\left[{a ={{-{Ir \  e}+{2 \  Rp \  c}}\over Iq}}, \:{b ={{{Ip \  e}+{Rq \  c}}\over Iq}}, \:{c = c}, \:{e = e}\right](15)
Type: List(Equation(Fraction(Polynomial(Integer))))
axiom
eq28:=map(x+->eval(x,eq27),matrix [[a,b+%I*c],[b-%I*c,e]])

\label{eq16}\left[ 
\begin{array}{cc}
{{-{Ir \  e}+{2 \  Rp \  c}}\over Iq}&{{{Ip \  e}+{{\left(Rq +{\%I \  Iq}\right)}\  c}}\over Iq}
\
{{{Ip \  e}+{{\left(Rq -{\%I \  Iq}\right)}\  c}}\over Iq}& e (16)
Type: Matrix(Fraction(Polynomial(Integer)))