This page demonstrates one of the very early attempts to do something similar to MuPAD? combinat's "decomposable objects" in Aldor/Axiom. Meanwhile, we adopted the point of view of species, as shown on SandBoxSpecies?
aldor
#include "axiom.as"
macro CCC == CombinatorialClassCategory;
import from Integer;
import from List Integer;
import from OutputForm;
CombinatorialClassCategory: Category == with {
list: Integer -> List %;
count: Integer -> Integer;
import from NonNegativeInteger;
default count(i: Integer): Integer == (#list(i))::Integer;
coerce: % -> OutputForm;
}
Primitive(n: Integer): CombinatorialClassCategory == add {
Rep == Integer;
count(i: Integer): Integer == if i=n then 1 else 0;
list(i: Integer): List % == if i=n then [per 1] else [];
coerce(x: %): OutputForm == message(" ")
}
Epsilon: CombinatorialClassCategory == Primitive(0) add;
Atom: CombinatorialClassCategory == Primitive(1) add;
UnionClass(S1: CCC, S2: CCC): CCC == add {
Rep == Union(s1: S1, s2: S2);
count(i: Integer): Integer == count(i)$S1 + count(i)$S2;
import from Rep;
import from List S1;
import from List S2;
list(i: Integer): List % == {
result: List % := [];
for a in list(i)$S1 repeat result := cons(per union a, result);
for b in list(i)$S2 repeat result := cons(per union b, result);
result;
}
coerce(x: %): OutputForm == {
(rep x) case s1 => ((rep x).s1)::OutputForm;
((rep x).s2)::OutputForm;
}
}
CrossClass(S1: CCC, S2: CCC): with {
CombinatorialClassCategory
} == add {
Rep == Record(t1: S1, t2: S2);
count(i: Integer): Integer == {
result := 0;
for k in 1 .. i-1 repeat {
result := result + count(k)$S1 * count(i-k)$S2;
}
result;
}
import from Rep;
import from List S1;
import from List S2;
list(i: Integer): List % == {
result: List % := [];
for k in 1..i-1 repeat {
for a in list(k)$S1 repeat {
for b in list(i-k)$S2 repeat {
result := cons(per record(a, b), result);
}
}
}
result;
}
coerce(x: %): OutputForm == {
a := ((rep x).t1)::OutputForm;
b := ((rep x).t2)::OutputForm;
c: List OutputForm := [a, b];
vconcat [hconcat [hspace 1, message("o")], hconcat [hspace 1, message("/"), hspace 1, message("\")], hconcat [a,hspace 3,b]]
}
}
TreeClass: CombinatorialClassCategory == UnionClass(Atom, CrossClass(TreeClass, TreeClass)
) add;
aldor
Compiling FriCAS source code from file
/var/zope2/var/LatexWiki/386348539091125073-25px001.as using
AXIOM-XL compiler and options
-O -Fasy -Fao -Flsp -laxiom -Mno-AXL_W_WillObsolete -DAxiom -Y $AXIOM/algebra
Use the system command )set compiler args to change these
options.
#1 (Warning) Deprecated message prefix: use `ALDOR_' instead of `_AXL'
Compiling Lisp source code from file
./386348539091125073-25px001.lsp
Issuing )library command for 386348539091125073-25px001
Reading /var/zope2/var/LatexWiki/386348539091125073-25px001.asy
TreeClass is now explicitly exposed in frame initial
TreeClass will be automatically loaded when needed from
/var/zope2/var/LatexWiki/386348539091125073-25px001
CombinatorialClassCategory is now explicitly exposed in frame
initial
CombinatorialClassCategory will be automatically loaded when needed
from /var/zope2/var/LatexWiki/386348539091125073-25px001
UnionClass is now explicitly exposed in frame initial
UnionClass will be automatically loaded when needed from
/var/zope2/var/LatexWiki/386348539091125073-25px001
Atom is now explicitly exposed in frame initial
Atom will be automatically loaded when needed from
/var/zope2/var/LatexWiki/386348539091125073-25px001
CrossClass is now explicitly exposed in frame initial
CrossClass will be automatically loaded when needed from
/var/zope2/var/LatexWiki/386348539091125073-25px001
Primitive is now explicitly exposed in frame initial
Primitive will be automatically loaded when needed from
/var/zope2/var/LatexWiki/386348539091125073-25px001
Epsilon is now explicitly exposed in frame initial
Epsilon will be automatically loaded when needed from
/var/zope2/var/LatexWiki/386348539091125073-25px001
axiom
[count(i)$TreeClass for i in 1..7]
Type: List Integer
axiom
)set output tex off
axiom
)set output algebra on
(list(5)$TreeClass)::List OutputForm
(2)
[ o , o , o , o ,
/ \ / \ / \ / \
o o o o
/ \ / \ / \ / \
o o o o o
/ \ / \ / \ / \ / \
o o o
/ \ / \ / \
o , o , o , o ,
/ \ / \ / \ / \
o o o o o o o
/ \ / \ / \ / \ / \ / \
/ \
o o o o
/ \ / \ / \ / \
o
/ \
o , o , o , o ,
/ \ / \ / \ / \
o o o o o
/ \ / \ / \ / \ / \
o o o o o
/ \ / \ / \ / \ / \
o o
/ \ / \
o , o ]
/ \ / \
o o
/ \ / \
o o
/ \ / \
o o
/ \ / \