Add conjugate
fricas
(1) -> )library BOP BOP1
BasicOperator is now explicitly exposed in frame initial
BasicOperator will be automatically loaded when needed from
/var/aw/var/LatexWiki/BOP.NRLIB/BOP
BasicOperatorFunctions1 is now explicitly exposed in frame initial
BasicOperatorFunctions1 will be automatically loaded when needed
from /var/aw/var/LatexWiki/BOP1.NRLIB/BOP1
spad
)abbrev category COMBOPC CombinatorialOpsCategory
++ Category for summations and products
++ Author: Manuel Bronstein
++ Date Created: ???
++ Date Last Updated: 22 February 1993 (JHD/BMT)
++ Description:
++ CombinatorialOpsCategory is the category obtaining by adjoining
++ summations and products to the usual combinatorial operations;
CombinatorialOpsCategory() : Category ==
CombinatorialFunctionCategory with
factorials : % -> %
++ factorials(f) rewrites the permutations and binomials in f
++ in terms of factorials;
factorials : (%, Symbol) -> %
++ factorials(f, x) rewrites the permutations and binomials in f
++ involving x in terms of factorials;
summation : (%, Symbol) -> %
++ summation(f(n), n) returns the formal sum S(n) which verifies
++ S(n+1) - S(n) = f(n);
summation : (%, SegmentBinding %) -> %
++ summation(f(n), n = a..b) returns f(a) + ... + f(b) as a
++ formal sum;
product : (%, Symbol) -> %
++ product(f(n), n) returns the formal product P(n) which verifies
++ P(n+1)/P(n) = f(n);
product : (%, SegmentBinding %) -> %
++ product(f(n), n = a..b) returns f(a) * ... * f(b) as a
++ formal product;
)abbrev package COMBF CombinatorialFunction
++ Provides the usual combinatorial functions
++ Author: Manuel Bronstein, Martin Rubey
++ Date Created: 2 Aug 1988
++ Date Last Updated: 30 October 2005
++ Description:
++ Provides combinatorial functions over an integral domain.
++ Keywords: combinatorial, function, factorial.
++ Examples: )r COMBF INPUT
CombinatorialFunction(R, F) : Exports == Implementation where
R : Join(Comparable, IntegralDomain)
F : FunctionSpace R
OP ==> BasicOperator
K ==> Kernel F
SE ==> Symbol
O ==> OutputForm
SMP ==> SparseMultivariatePolynomial(R, K)
Z ==> Integer
POWER ==> '%power
OPEXP ==> 'exp
SPECIALDIFF ==> '%specialDiff
SPECIALDISP ==> '%specialDisp
SPECIALEQUAL ==> '%specialEqual
Exports ==> with
belong? : OP -> Boolean
++ belong?(op) is true if op is a combinatorial operator;
operator : OP -> OP
++ operator(op) returns a copy of op with the domain-dependent
++ properties appropriate for F;
++ error if op is not a combinatorial operator;
"^" : (F, F) -> F
++ a ^ b is the formal exponential a^b;
binomial : (F, F) -> F
++ binomial(n, r) returns the number of subsets of r objects
++ taken among n objects, i.e. n!/(r! * (n-r)!);
permutation : (F, F) -> F
++ permutation(n, r) returns the number of permutations of
++ n objects taken r at a time, i.e. n!/(n-r)!;
factorial : F -> F
++ factorial(n) returns the factorial of n, i.e. n!;
factorials : F -> F
++ factorials(f) rewrites the permutations and binomials in f
++ in terms of factorials;
factorials : (F, SE) -> F
++ factorials(f, x) rewrites the permutations and binomials in f
++ involving x in terms of factorials;
summation : (F, SE) -> F
++ summation(f(n), n) returns the formal sum S(n) which verifies
++ S(n+1) - S(n) = f(n);
summation : (F, SegmentBinding F) -> F
++ summation(f(n), n = a..b) returns f(a) + ... + f(b) as a
++ formal sum;
product : (F, SE) -> F
++ product(f(n), n) returns the formal product P(n) which verifies
++ P(n+1)/P(n) = f(n);
product : (F, SegmentBinding F) -> F
++ product(f(n), n = a..b) returns f(a) * ... * f(b) as a
++ formal product;
iifact : F -> F
++ iifact(x) should be local but conditional;
iibinom : List F -> F
++ iibinom(l) should be local but conditional;
iiperm : List F -> F
++ iiperm(l) should be local but conditional;
iipow : List F -> F
++ iipow(l) should be local but conditional;
iidsum : List F -> F
++ iidsum(l) should be local but conditional;
iidprod : List F -> F
++ iidprod(l) should be local but conditional;
ipow : List F -> F
++ ipow(l) should be local but conditional;
Implementation ==> add
COMB := 'comb
ifact : F -> F
iiipow : List F -> F
iperm : List F -> F
ibinom : List F -> F
isum : List F -> F
idsum : List F -> F
iprod : List F -> F
idprod : List F -> F
dsum : List F -> O
ddsum : List F -> O
dprod : List F -> O
ddprod : List F -> O
equalsumprod : (K, K) -> Boolean
equaldsumprod : (K, K) -> Boolean
fourth : List F -> F
dvpow1 : List F -> F
dvpow2 : List F -> F
summand : List F -> F
dvsum : (List F, SE) -> F
dvdsum : (List F, SE) -> F
dvprod : (List F, SE) -> F
dvdprod : (List F, SE) -> F
facts : (F, List SE) -> F
K2fact : (K, List SE) -> F
smpfact : (SMP, List SE) -> F
-- Must be a macro to produce fresh symbol for each use
dummy ==> new()$SE :: F
opfact := operator('factorial)$CommonOperators
opperm := operator('permutation)$CommonOperators
opbinom := operator('binomial)$CommonOperators
opsum := operator('summation)$CommonOperators
opdsum := operator('%defsum)$CommonOperators
opprod := operator('product)$CommonOperators
opdprod := operator('%defprod)$CommonOperators
oppow := operator(POWER::Symbol)$CommonOperators
factorial x == opfact x
binomial(x, y) == opbinom [x, y]
permutation(x, y) == opperm [x, y]
import from F
import from Kernel F
number?(x : F) : Boolean ==
if R has RetractableTo(Z) then
ground?(x) or
((retractIfCan(x)@Union(Fraction(Z),"failed")) case Fraction(Z))
else
ground?(x)
x ^ y ==
-- Do some basic simplifications
is?(x, POWER) =>
args : List F := argument first kernels x
not(#args = 2) => error "Too many arguments to ^"
number?(first args) and number?(y) =>
oppow [first(args)^y, second args]
oppow [first args, (second args)* y]
-- Generic case
exp : Union(Record(val:F,exponent:Z),"failed") := isPower x
exp case Record(val : F, exponent : Z) =>
expr := exp::Record(val : F, exponent : Z)
oppow [expr.val, (expr.exponent)*y]
oppow [x, y]
belong? op == has?(op, COMB)
fourth l == third rest l
dvpow1 l == second(l) * first(l) ^ (second l - 1)
factorials x == facts(x, variables x)
factorials(x, v) == facts(x, [v])
facts(x, l) == smpfact(numer x, l) / smpfact(denom x, l)
summand l == eval(first l, retract(second l)@K, third l)
product(x : F, i : SE) ==
dm := dummy
opprod [eval(x, k := kernel(i)$K, dm), dm, k::F]
summation(x : F, i : SE) ==
dm := dummy
opsum [eval(x, k := kernel(i)$K, dm), dm, k::F]
dvsum(l, x) ==
opsum [differentiate(first l, x), second l, third l]
dvdsum(l, x) ==
x = retract(y := third l)@SE => 0
if member?(x, variables(h := third rest rest l)) or
member?(x, variables(g := third rest l)) then
error "a sum cannot be differentiated with respect to a bound"
else
opdsum [differentiate(first l, x), second l, y, g, h]
dvprod(l, x) ==
dm := retract(dummy)@SE
f := eval(first l, retract(second l)@K, dm::F)
p := product(f, dm)
opsum [differentiate(first l, x)/first l * p, second l, third l]
dvdprod(l, x) ==
x = retract(y := third l)@SE => 0
if member?(x, variables(h := third rest rest l)) or
member?(x, variables(g := third rest l)) then
error "a product cannot be differentiated with respect to a bound"
else
opdsum cons(differentiate(first l, x)/first l, rest l) * opdprod l
dprod l ==
prod(summand(l)::O, third(l)::O)
ddprod l ==
prod(summand(l)::O, third(l)::O = fourth(l)::O, fourth(rest l)::O)
dsum l ==
sum(summand(l)::O, third(l)::O)
ddsum l ==
sum(summand(l)::O, third(l)::O = fourth(l)::O, fourth(rest l)::O)
equalsumprod(s1, s2) ==
l1 := argument s1
l2 := argument s2
(eval(first l1, retract(second l1)@K, second l2) = first l2)
equaldsumprod(s1, s2) ==
l1 := argument s1
l2 := argument s2
((third rest l1 = third rest l2) and
(third rest rest l1 = third rest rest l2) and
(eval(first l1, retract(second l1)@K, second l2) = first l2))
product(x : F, s : SegmentBinding F) ==
k := kernel(variable s)$K
dm := dummy
opdprod [eval(x, k, dm), dm, k::F, lo segment s, hi segment s]
summation(x : F, s : SegmentBinding F) ==
k := kernel(variable s)$K
dm := dummy
opdsum [eval(x, k, dm), dm, k::F, lo segment s, hi segment s]
smpfact(p, l) ==
map(x +-> K2fact(x, l), x +-> x::F, p)$PolynomialCategoryLifting(
IndexedExponents K, K, R, SMP, F)
K2fact(k, l) ==
empty? [v for v in variables(kf := k::F) | member?(v, l)] => kf
empty?(args : List F := [facts(a, l) for a in argument k]) => kf
is?(k, opperm) =>
factorial(n := first args) / factorial(n - second args)
is?(k, opbinom) =>
n := first args
p := second args
factorial(n) / (factorial(p) * factorial(n-p))
(operator k) args
operator op ==
is?(op, 'factorial) => opfact
is?(op, 'permutation) => opperm
is?(op, 'binomial) => opbinom
is?(op, 'summation) => opsum
is?(op, '%defsum) => opdsum
is?(op, 'product) => opprod
is?(op, '%defprod) => opdprod
is?(op, POWER) => oppow
error "Not a combinatorial operator"
iprod l ==
zero? first l => 0
-- one? first l => 1
(first l = 1) => 1
kernel(opprod, l)
isum l ==
zero? first l => 0
kernel(opsum, l)
idprod l ==
member?(retract(second l)@SE, variables first l) =>
kernel(opdprod, l)
first(l) ^ (fourth rest l - fourth l + 1)
idsum l ==
member?(retract(second l)@SE, variables first l) =>
kernel(opdsum, l)
first(l) * (fourth rest l - fourth l + 1)
ifact x ==
-- zero? x or one? x => 1
zero? x or (x = 1) => 1
kernel(opfact, x)
ibinom l ==
n := first l
((p := second l) = 0) or (p = n) => 1
-- one? p or (p = n - 1) => n
(p = 1) or (p = n - 1) => n
kernel(opbinom, l)
iperm l ==
zero? second l => 1
kernel(opperm, l)
if R has RetractableTo Z then
iidsum l ==
(r1 := retractIfCan(fourth l)@Union(Z,"failed"))
case "failed" or
(r2 := retractIfCan(fourth rest l)@Union(Z,"failed"))
case "failed" or
(k := retractIfCan(second l)@Union(K,"failed")) case "failed"
=> idsum l
+/[eval(first l, k::K, i::F) for i in r1::Z .. r2::Z]
iidprod l ==
(r1 := retractIfCan(fourth l)@Union(Z,"failed"))
case "failed" or
(r2 := retractIfCan(fourth rest l)@Union(Z,"failed"))
case "failed" or
(k := retractIfCan(second l)@Union(K,"failed")) case "failed"
=> idprod l
*/[eval(first l, k::K, i::F) for i in r1::Z .. r2::Z]
iiipow l ==
(u := isExpt(x := first l, OPEXP)) case "failed" => kernel(oppow, l)
rec := u::Record(var : K, exponent : Z)
y := first argument(rec.var)
(r := retractIfCan(y)@Union(Fraction Z, "failed")) case
"failed" => kernel(oppow, l)
(operator(rec.var)) (rec.exponent * y * second l)
if F has RadicalCategory then
ipow l ==
(r := retractIfCan(second l)@Union(Fraction Z,"failed"))
case "failed" => iiipow l
first(l) ^ (r::Fraction(Z))
else
ipow l ==
(r := retractIfCan(second l)@Union(Z, "failed"))
case "failed" => iiipow l
first(l) ^ (r::Z)
else
ipow l ==
zero?(x := first l) =>
zero? second l => error "0 ^ 0"
0
-- one? x or zero?(n := second l) => 1
(x = 1) or zero?(n : F := second l) => 1
-- one? n => x
(n = 1) => x
(u := isExpt(x, OPEXP)) case "failed" => kernel(oppow, l)
rec := u::Record(var : K, exponent : Z)
-- one?(y := first argument(rec.var)) or y = -1 =>
((y := first argument(rec.var))=1) or y = -1 =>
(operator(rec.var)) (rec.exponent * y * n)
kernel(oppow, l)
if R has CombinatorialFunctionCategory then
iifact x ==
(r := retractIfCan(x)@Union(R,"failed")) case "failed" => ifact x
factorial(r::R)::F
iiperm l ==
(r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or
(r2 := retractIfCan(second l)@Union(R,"failed")) case "failed"
=> iperm l
permutation(r1::R, r2::R)::F
if R has RetractableTo(Z) and F has Algebra(Fraction(Z)) then
-- Try to explicitly evaluete binomial coefficient
-- We currently simplify binomial coefficients for non-negative
-- integral second argument, using the formula
-- $$ \binom{n}{k}=\frac{1}{k!}\prod_{i=0..k-1} (n-i), $$
iibinom l ==
(s := retractIfCan(second l)@Union(R,"failed")) case R and
(t := retractIfCan(s)@Union(Z,"failed")) case Z and t>0 =>
ans := 1::F
for i in 0..t-1 repeat
ans := ans*(first l - i::R::F)
(1/factorial t) * ans
(s := retractIfCan(first l-second l)@Union(R,"failed")) case R and
(t := retractIfCan(s)@Union(Z,"failed")) case Z and t>0 =>
ans := 1::F
for i in 1..t repeat
ans := ans*(second l+i::R::F)
(1/factorial t) * ans
(r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or
(r2 := retractIfCan(second l)@Union(R,"failed")) case "failed"
=> ibinom l
binomial(r1::R, r2::R)::F
else
iibinom l ==
(r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or
(r2 := retractIfCan(second l)@Union(R,"failed")) case "failed"
=> ibinom l
binomial(r1::R, r2::R)::F
else
iifact x == ifact x
iibinom l == ibinom l
iiperm l == iperm l
if R has ElementaryFunctionCategory then
iipow l ==
(r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or
(r2 := retractIfCan(second l)@Union(R,"failed")) case "failed"
=> ipow l
(r1::R ^ r2::R)::F
else
iipow l == ipow l
if F has ElementaryFunctionCategory then
dvpow2 l == if zero?(first l) then
0
else
log(first l) * first(l) ^ second(l)
evaluate(opfact, iifact)$BasicOperatorFunctions1(F)
evaluate(oppow, iipow)
evaluate(opperm, iiperm)
evaluate(opbinom, iibinom)
evaluate(opsum, isum)
evaluate(opdsum, iidsum)
evaluate(opprod, iprod)
evaluate(opdprod, iidprod)
derivative(oppow, [dvpow1, dvpow2])
setProperty(opsum, SPECIALDIFF, dvsum@((List F, SE) -> F) pretend None)
setProperty(opdsum, SPECIALDIFF, dvdsum@((List F, SE)->F) pretend None)
setProperty(opprod, SPECIALDIFF, dvprod@((List F, SE)->F) pretend None)
setProperty(opdprod, SPECIALDIFF, dvdprod@((List F, SE)->F) pretend None)
setProperty(opsum, SPECIALDISP, dsum@(List F -> O) pretend None)
setProperty(opdsum, SPECIALDISP, ddsum@(List F -> O) pretend None)
setProperty(opprod, SPECIALDISP, dprod@(List F -> O) pretend None)
setProperty(opdprod, SPECIALDISP, ddprod@(List F -> O) pretend None)
setProperty(opsum, SPECIALEQUAL, equalsumprod@((K, K) -> Boolean) pretend None)
setProperty(opdsum, SPECIALEQUAL, equaldsumprod@((K, K) -> Boolean) pretend None)
setProperty(opprod, SPECIALEQUAL, equalsumprod@((K, K) -> Boolean) pretend None)
setProperty(opdprod, SPECIALEQUAL, equaldsumprod@((K, K) -> Boolean) pretend None)
)abbrev package FSPECF FunctionalSpecialFunction
)boot $tryRecompileArguments := nil
++ Provides the special functions
++ Author: Manuel Bronstein
++ Date Created: 18 Apr 1989
++ Description: Provides some special functions over an integral domain.
++ Keywords: special, function.
++ Date Last Updated: 2 October 2014
++ Added: 'conjugate'
++ Modied: 'abs'
FunctionalSpecialFunction(R, F) : Exports == Implementation where
R : Join(Comparable, IntegralDomain)
F : FunctionSpace R
OP ==> BasicOperator
K ==> Kernel F
SE ==> Symbol
SPECIALDIFF ==> '%specialDiff
Exports ==> with
belong? : OP -> Boolean
++ belong?(op) is true if op is a special function operator;
operator : OP -> OP
++ operator(op) returns a copy of op with the domain-dependent
++ properties appropriate for F;
++ error if op is not a special function operator
abs : F -> F
++ abs(f) returns the absolute value operator applied to f
conjugate: F -> F
++ conjugate(f) returns the conjugate operator applied to f
Gamma : F -> F
++ Gamma(f) returns the formal Gamma function applied to f
Gamma : (F, F) -> F
++ Gamma(a, x) returns the incomplete Gamma function applied to a and x
Beta : (F, F) -> F
++ Beta(x, y) returns the beta function applied to x and y
digamma : F->F
++ digamma(x) returns the digamma function applied to x
polygamma : (F, F) ->F
++ polygamma(x, y) returns the polygamma function applied to x and y
besselJ : (F, F) -> F
++ besselJ(x, y) returns the besselj function applied to x and y
besselY : (F, F) -> F
++ besselY(x, y) returns the bessely function applied to x and y
besselI : (F, F) -> F
++ besselI(x, y) returns the besseli function applied to x and y
besselK : (F, F) -> F
++ besselK(x, y) returns the besselk function applied to x and y
airyAi : F -> F
++ airyAi(x) returns the Airy Ai function applied to x
airyAiPrime : F -> F
++ airyAiPrime(x) returns the derivative of Airy Ai function applied to x
airyBi : F -> F
++ airyBi(x) returns the Airy Bi function applied to x
airyBiPrime : F -> F
++ airyBiPrime(x) returns the derivative of Airy Bi function applied to x
lambertW : F -> F
++ lambertW(x) is the Lambert W function at x
polylog : (F, F) -> F
++ polylog(s, x) is the polylogarithm of order s at x
weierstrassP : (F, F, F) -> F
++ weierstrassP(g2, g3, x)
weierstrassPPrime : (F, F, F) -> F
++ weierstrassPPrime(g2, g3, x)
weierstrassSigma : (F, F, F) -> F
++ weierstrassSigma(g2, g3, x)
weierstrassZeta : (F, F, F) -> F
++ weierstrassZeta(g2, g3, x)
-- weierstrassPInverse : (F, F, F) -> F
-- ++ weierstrassPInverse(g2, g3, z) is the inverse of Weierstrass
-- ++ P function, defined by the formula
-- ++ \spad{weierstrassP(g2, g3, weierstrassPInverse(g2, g3, z)) = z}
whittakerM : (F, F, F) -> F
++ whittakerM(k, m, z) is the Whittaker M function
whittakerW : (F, F, F) -> F
++ whittakerW(k, m, z) is the Whittaker W function
angerJ : (F, F) -> F
++ angerJ(v, z) is the Anger J function
weberE : (F, F) -> F
++ weberE(v, z) is the Weber E function
struveH : (F, F) -> F
++ struveH(v, z) is the Struve H function
struveL : (F, F) -> F
++ struveL(v, z) is the Struve L function defined by the formula
++ \spad{struveL(v, z) = -%i^exp(-v*%pi*%i/2)*struveH(v, %i*z)}
hankelH1 : (F, F) -> F
++ hankelH1(v, z) is first Hankel function (Bessel function of
++ the third kind)
hankelH2 : (F, F) -> F
++ hankelH2(v, z) is the second Hankel function (Bessel function of
++ the third kind)
lommelS1 : (F, F, F) -> F
++ lommelS1(mu, nu, z) is the Lommel s function
lommelS2 : (F, F, F) -> F
++ lommelS2(mu, nu, z) is the Lommel S function
kummerM : (F, F, F) -> F
++ kummerM(a, b, z) is the Kummer M function
kummerU : (F, F, F) -> F
++ kummerU(a, b, z) is the Kummer U function
legendreP : (F, F, F) -> F
++ legendreP(nu, mu, z) is the Legendre P function
legendreQ : (F, F, F) -> F
++ legendreQ(nu, mu, z) is the Legendre Q function
kelvinBei : (F, F) -> F
++ kelvinBei(v, z) is the Kelvin bei function defined by equality
++ \spad{kelvinBei(v, z) = imag(besselJ(v, exp(3*%pi*%i/4)*z))}
++ for z and v real
kelvinBer : (F, F) -> F
++ kelvinBer(v, z) is the Kelvin ber function defined by equality
++ \spad{kelvinBer(v, z) = real(besselJ(v, exp(3*%pi*%i/4)*z))}
++ for z and v real
kelvinKei : (F, F) -> F
++ kelvinKei(v, z) is the Kelvin kei function defined by equality
++ \spad{kelvinKei(v, z) =
++ imag(exp(-v*%pi*%i/2)*besselK(v, exp(%pi*%i/4)*z))}
++ for z and v real
kelvinKer : (F, F) -> F
++ kelvinKer(v, z) is the Kelvin kei function defined by equality
++ \spad{kelvinKer(v, z) =
++ real(exp(-v*%pi*%i/2)*besselK(v, exp(%pi*%i/4)*z))}
++ for z and v real
ellipticK : F -> F
++ ellipticK(m) is the complete elliptic integral of the
++ first kind: \spad{ellipticK(m) =
++ integrate(1/sqrt((1-t^2)*(1-m*t^2)), t = 0..1)}
ellipticE : F -> F
++ ellipticE(m) is the complete elliptic integral of the
++ second kind: \spad{ellipticE(m) =
++ integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t = 0..1)}
ellipticE : (F, F) -> F
++ ellipticE(z, m) is the incomplete elliptic integral of the
++ second kind: \spad{ellipticE(z, m) =
++ integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t = 0..z)}
ellipticF : (F, F) -> F
++ ellipticF(z, m) is the incomplete elliptic integral of the
++ first kind : \spad{ellipticF(z, m) =
++ integrate(1/sqrt((1-t^2)*(1-m*t^2)), t = 0..z)}
ellipticPi : (F, F, F) -> F
++ ellipticPi(z, n, m) is the incomplete elliptic integral of
++ the third kind: \spad{ellipticPi(z, n, m) =
++ integrate(1/((1-n*t^2)*sqrt((1-t^2)*(1-m*t^2))), t = 0..z)}
jacobiSn : (F, F) -> F
++ jacobiSn(z, m) is the Jacobi elliptic sn function, defined
++ by the formula \spad{jacobiSn(ellipticF(z, m), m) = z}
jacobiCn : (F, F) -> F
++ jacobiCn(z, m) is the Jacobi elliptic cn function, defined
++ by \spad{jacobiCn(z, m)^2 + jacobiSn(z, m)^2 = 1} and
++ \spad{jacobiCn(0, m) = 1}
jacobiDn : (F, F) -> F
++ jacobiDn(z, m) is the Jacobi elliptic dn function, defined
++ by \spad{jacobiDn(z, m)^2 + m*jacobiSn(z, m)^2 = 1} and
++ \spad{jacobiDn(0, m) = 1}
jacobiZeta : (F, F) -> F
++ jacobiZeta(z, m) is the Jacobi elliptic zeta function, defined
++ by \spad{D(jacobiZeta(z, m), z) =
++ jacobiDn(z, m)^2 - ellipticE(m)/ellipticK(m)} and
++ \spad{jacobiZeta(0, m) = 0}.
jacobiTheta : (F, F) -> F
++ jacobiTheta(q, z) is the third Jacobi Theta function
lerchPhi : (F, F, F) -> F
++ lerchPhi(z, s, a) is the Lerch Phi function
riemannZeta : F -> F
++ riemannZeta(z) is the Riemann Zeta function
charlierC : (F, F, F) -> F
++ charlierC(n, a, z) is the Charlier polynomial
hermiteH : (F, F) -> F
++ hermiteH(n, z) is the Hermite polynomial
jacobiP : (F, F, F, F) -> F
++ jacobiP(n, a, b, z) is the Jacobi polynomial
laguerreL: (F, F, F) -> F
++ laguerreL(n, a, z) is the Laguerre polynomial
meixnerM : (F, F, F, F) -> F
++ meixnerM(n, b, c, z) is the Meixner polynomial
if F has RetractableTo(Integer) then
hypergeometricF : (List F, List F, F) -> F
++ hypergeometricF(la, lb, z) is the generalized hypergeometric
++ function
meijerG : (List F, List F, List F, List F, F) -> F
++ meijerG(la, lb, lc, ld, z) is the meijerG function
-- Functions below should be local but conditional
iiGamma : F -> F
++ iiGamma(x) should be local but conditional;
iiabs : F -> F
++ iiabs(x) should be local but conditional;
iiconjugate: F -> F
++ iiconjugate(x) should be local but conditional;
iiBeta : List F -> F
++ iiBeta(x) should be local but conditional;
iidigamma : F -> F
++ iidigamma(x) should be local but conditional;
iipolygamma : List F -> F
++ iipolygamma(x) should be local but conditional;
iiBesselJ : List F -> F
++ iiBesselJ(x) should be local but conditional;
iiBesselY : List F -> F
++ iiBesselY(x) should be local but conditional;
iiBesselI : List F -> F
++ iiBesselI(x) should be local but conditional;
iiBesselK : List F -> F
++ iiBesselK(x) should be local but conditional;
iiAiryAi : F -> F
++ iiAiryAi(x) should be local but conditional;
iiAiryAiPrime : F -> F
++ iiAiryAiPrime(x) should be local but conditional;
iiAiryBi : F -> F
++ iiAiryBi(x) should be local but conditional;
iiAiryBiPrime : F -> F
++ iiAiryBiPrime(x) should be local but conditional;
iAiryAi : F -> F
++ iAiryAi(x) should be local but conditional;
iAiryAiPrime : F -> F
++ iAiryAiPrime(x) should be local but conditional;
iAiryBi : F -> F
++ iAiryBi(x) should be local but conditional;
iAiryBiPrime : F -> F
++ iAiryBiPrime(x) should be local but conditional;
iiHypergeometricF : List F -> F
++ iiHypergeometricF(l) should be local but conditional;
iiPolylog : (F, F) -> F
++ iiPolylog(x, s) should be local but conditional;
iLambertW : F -> F
++ iLambertW(x) should be local but conditional;
Implementation ==> add
SPECIAL := 'special
INP ==> InputForm
SPECIALINPUT ==> '%specialInput
iabs : F -> F
iGamma : F -> F
iBeta : (F, F) -> F
idigamma : F -> F
iiipolygamma : (F, F) -> F
iiiBesselJ : (F, F) -> F
iiiBesselY : (F, F) -> F
iiiBesselI : (F, F) -> F
iiiBesselK : (F, F) -> F
iPolylog : List F -> F
iWeierstrassP : (F, F, F) -> F
iWeierstrassPPrime : (F, F, F) -> F
iWeierstrassSigma : (F, F, F) -> F
iWeierstrassZeta : (F, F, F) -> F
iiWeierstrassP : List F -> F
iiWeierstrassPPrime : List F -> F
iiWeierstrassSigma : List F -> F
iiWeierstrassZeta : List F -> F
iiMeijerG : List F -> F
opabs := operator('abs)$CommonOperators
opconjugate := operator('conjugate)$CommonOperators
opsqrt := operator('sqrt)$CommonOperators
opGamma := operator('Gamma)$CommonOperators
opGamma2 := operator('Gamma2)$CommonOperators
opBeta := operator('Beta)$CommonOperators
opdigamma := operator('digamma)$CommonOperators
oppolygamma := operator('polygamma)$CommonOperators
opBesselJ := operator('besselJ)$CommonOperators
opBesselY := operator('besselY)$CommonOperators
opBesselI := operator('besselI)$CommonOperators
opBesselK := operator('besselK)$CommonOperators
opAiryAi := operator('airyAi)$CommonOperators
opAiryAiPrime := operator('airyAiPrime)$CommonOperators
opAiryBi := operator('airyBi)$CommonOperators
opAiryBiPrime := operator('airyBiPrime)$CommonOperators
opLambertW := operator('lambertW)$CommonOperators
opPolylog := operator('polylog)$CommonOperators
opWeierstrassP := operator('weierstrassP)$CommonOperators
opWeierstrassPPrime := operator('weierstrassPPrime)$CommonOperators
opWeierstrassSigma := operator('weierstrassSigma)$CommonOperators
opWeierstrassZeta := operator('weierstrassZeta)$CommonOperators
opHypergeometricF := operator('hypergeometricF)$CommonOperators
opMeijerG := operator('meijerG)$CommonOperators
opCharlierC := operator('charlierC)$CommonOperators
opHermiteH := operator('hermiteH)$CommonOperators
opJacobiP := operator('jacobiP)$CommonOperators
opLaguerreL := operator('laguerreL)$CommonOperators
opMeixnerM := operator('meixnerM)$CommonOperators
op_log_gamma := operator('%logGamma)$CommonOperators
op_eis := operator('%eis)$CommonOperators
op_erfs := operator('%erfs)$CommonOperators
op_erfis := operator('%erfis)$CommonOperators
abs x == opabs x
conjugate x == opconjugate x
Gamma(x) == opGamma(x)
Gamma(a, x) == opGamma2(a, x)
Beta(x, y) == opBeta(x, y)
digamma x == opdigamma(x)
polygamma(k, x)== oppolygamma(k, x)
besselJ(a, x) == opBesselJ(a, x)
besselY(a, x) == opBesselY(a, x)
besselI(a, x) == opBesselI(a, x)
besselK(a, x) == opBesselK(a, x)
airyAi(x) == opAiryAi(x)
airyAiPrime(x) == opAiryAiPrime(x)
airyBi(x) == opAiryBi(x)
airyBiPrime(x) == opAiryBiPrime(x)
lambertW(x) == opLambertW(x)
polylog(s, x) == opPolylog(s, x)
weierstrassP(g2, g3, x) == opWeierstrassP(g2, g3, x)
weierstrassPPrime(g2, g3, x) == opWeierstrassPPrime(g2, g3, x)
weierstrassSigma(g2, g3, x) == opWeierstrassSigma(g2, g3, x)
weierstrassZeta(g2, g3, x) == opWeierstrassZeta(g2, g3, x)
if F has RetractableTo(Integer) then
hypergeometricF(a, b, z) ==
nai := #a
nbi := #b
z = 0 and nai <= nbi + 1 => 1
p := (#a)::F
q := (#b)::F
opHypergeometricF concat(concat(a, concat(b, [z])), [p, q])
meijerG(a, b, c, d, z) ==
n1 := (#a)::F
n2 := (#b)::F
m1 := (#c)::F
m2 := (#d)::F
opMeijerG concat(concat(a, concat(b,
concat(c, concat(d, [z])))), [n1, n2, m1, m2])
import from List Kernel(F)
opdiff := operator(operator('%diff)$CommonOperators)$F
dummy ==> new()$SE :: F
ahalf : F := recip(2::F)::F
athird : F := recip(3::F)::F
afourth : F := recip(4::F)::F
asixth : F := recip(6::F)::F
twothirds : F := 2*athird
threehalfs : F := 3*ahalf
-- Helpers for partially defined derivatives
grad2(l : List F, t : SE, op : OP, d2 : (F, F) -> F ) : F ==
x1 := l(1)
x2 := l(2)
dm := dummy
differentiate(x1, t)*kernel(opdiff, [op [dm, x2], dm, x1])
+ differentiate(x2, t)*d2(x1, x2)
grad3(l : List F, t : SE, op : OP, d3 : (F, F, F) -> F ) : F ==
x1 := l(1)
x2 := l(2)
x3 := l(3)
dm1 := dummy
dm2 := dummy
differentiate(x1, t)*kernel(opdiff, [op [dm1, x2, x3], dm1, x1])
+ differentiate(x2, t)*kernel(opdiff, [op [x1, dm2, x3], dm2, x2])
+ differentiate(x3, t)*d3(x1, x2, x3)
grad4(l : List F, t : SE, op : OP, d4 : (F, F, F, F) -> F ) : F ==
x1 := l(1)
x2 := l(2)
x3 := l(3)
x4 := l(4)
dm1 := dummy
dm2 := dummy
dm3 := dummy
kd1 := kernel(opdiff, [op [dm1, x2, x3, x4], dm1, x1])
kd2 := kernel(opdiff, [op [x1, dm2, x3, x4], dm2, x2])
kd3 := kernel(opdiff, [op [x1, x2, dm3, x4], dm3, x3])
differentiate(x1, t)*kd1 + differentiate(x2, t)*kd2 +
differentiate(x3, t)*kd3 +
differentiate(x4, t)*d4(x1, x2, x3, x4)
-- handle WeierstrassPInverse
)if false
opWeierstrassPInverse := operator('weierstrassPInverse)$CommonOperators
weierstrassPInverse(g2, g3, z) == opWeierstrassPInverse(g2, g3, z)
eWeierstrassPInverse(g2 : F, g3 : F, z : F) : F ==
kernel(opWeierstrassPInverse, [g2, g3, z])
elWeierstrassPInverse(l : List F) : F == eWeierstrassPInverse(l(1), l(2), l(3))
evaluate(opWeierstrassPInverse, elWeierstrassPInverse)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eWeierstrassPInverseGrad_g2(l : List F) : F ==
g2 := l(1)
g3 := l(2)
z := l(3)
error "unimplemented"
eWeierstrassPInverseGrad_g3(l : List F) : F ==
g2 := l(1)
g3 := l(2)
z := l(3)
error "unimplemented"
eWeierstrassPInverseGrad_z(l : List F) : F ==
g2 := l(1)
g3 := l(2)
z := l(3)
1/sqrt(4*z^3 - g2*z - g3)
derivative(opWeierstrassPInverse, [eWeierstrassPInverseGrad_g2,
eWeierstrassPInverseGrad_g3, eWeierstrassPInverseGrad_z])
)endif
-- handle WhittakerM
opWhittakerM := operator('whittakerM)$CommonOperators
whittakerM(k, m, z) == opWhittakerM(k, m, z)
eWhittakerM(k : F, m : F, z : F) : F ==
kernel(opWhittakerM, [k, m, z])
elWhittakerM(l : List F) : F == eWhittakerM(l(1), l(2), l(3))
evaluate(opWhittakerM, elWhittakerM)$BasicOperatorFunctions1(F)
eWhittakerMGrad_z(k : F, m : F, z : F) : F ==
(ahalf - k/z)*whittakerM(k, m, z) +
(ahalf + k + m)*whittakerM(k + 1, m, z)/z
dWhittakerM(l : List F, t : SE) : F ==
grad3(l, t, opWhittakerM, eWhittakerMGrad_z)
setProperty(opWhittakerM, SPECIALDIFF, dWhittakerM@((List F, SE)->F)
pretend None)
-- handle WhittakerW
opWhittakerW := operator('whittakerW)$CommonOperators
whittakerW(k, m, z) == opWhittakerW(k, m, z)
eWhittakerW(k : F, m : F, z : F) : F ==
kernel(opWhittakerW, [k, m, z])
elWhittakerW(l : List F) : F == eWhittakerW(l(1), l(2), l(3))
evaluate(opWhittakerW, elWhittakerW)$BasicOperatorFunctions1(F)
eWhittakerWGrad_z(k : F, m : F, z : F) : F ==
(ahalf - k/z)*whittakerW(k, m, z) - whittakerW(k + 1, m, z)/z
dWhittakerW(l : List F, t : SE) : F ==
grad3(l, t, opWhittakerW, eWhittakerWGrad_z)
setProperty(opWhittakerW, SPECIALDIFF, dWhittakerW@((List F, SE)->F)
pretend None)
-- handle AngerJ
opAngerJ := operator('angerJ)$CommonOperators
angerJ(v, z) == opAngerJ(v, z)
if F has TranscendentalFunctionCategory then
eAngerJ(v : F, z : F) : F ==
z = 0 => sin(v*pi())/(v*pi())
kernel(opAngerJ, [v, z])
elAngerJ(l : List F) : F == eAngerJ(l(1), l(2))
evaluate(opAngerJ, elAngerJ)$BasicOperatorFunctions1(F)
eAngerJGrad_z(v : F, z : F) : F ==
-angerJ(v + 1, z) + v*angerJ(v, z)/z - sin(v*pi())/(pi()*z)
dAngerJ(l : List F, t : SE) : F ==
grad2(l, t, opAngerJ, eAngerJGrad_z)
setProperty(opAngerJ, SPECIALDIFF, dAngerJ@((List F, SE)->F)
pretend None)
else
eeAngerJ(l : List F) : F == kernel(opAngerJ, l)
evaluate(opAngerJ, eeAngerJ)$BasicOperatorFunctions1(F)
-- handle WeberE
opWeberE := operator('weberE)$CommonOperators
weberE(v, z) == opWeberE(v, z)
if F has TranscendentalFunctionCategory then
eWeberE(v : F, z : F) : F ==
z = 0 => 2*sin(ahalf*v*pi())^2/(v*pi())
kernel(opWeberE, [v, z])
elWeberE(l : List F) : F == eWeberE(l(1), l(2))
evaluate(opWeberE, elWeberE)$BasicOperatorFunctions1(F)
eWeberEGrad_z(v : F, z : F) : F ==
-weberE(v + 1, z) + v*weberE(v, z)/z - (1 - cos(v*pi()))/(pi()*z)
dWeberE(l : List F, t : SE) : F ==
grad2(l, t, opWeberE, eWeberEGrad_z)
setProperty(opWeberE, SPECIALDIFF, dWeberE@((List F, SE)->F)
pretend None)
else
eeWeberE(l : List F) : F == kernel(opWeberE, l)
evaluate(opWeberE, eeWeberE)$BasicOperatorFunctions1(F)
-- handle StruveH
opStruveH := operator('struveH)$CommonOperators
struveH(v, z) == opStruveH(v, z)
eStruveH(v : F, z : F) : F ==
kernel(opStruveH, [v, z])
elStruveH(l : List F) : F == eStruveH(l(1), l(2))
evaluate(opStruveH, elStruveH)$BasicOperatorFunctions1(F)
if F has TranscendentalFunctionCategory
and F has RadicalCategory then
eStruveHGrad_z(v : F, z : F) : F ==
-struveH(v + 1, z) + v*struveH(v, z)/z +
(ahalf*z)^v/(sqrt(pi())*Gamma(v + threehalfs))
dStruveH(l : List F, t : SE) : F ==
grad2(l, t, opStruveH, eStruveHGrad_z)
setProperty(opStruveH, SPECIALDIFF, dStruveH@((List F, SE)->F)
pretend None)
-- handle StruveL
opStruveL := operator('struveL)$CommonOperators
struveL(v, z) == opStruveL(v, z)
eStruveL(v : F, z : F) : F ==
kernel(opStruveL, [v, z])
elStruveL(l : List F) : F == eStruveL(l(1), l(2))
evaluate(opStruveL, elStruveL)$BasicOperatorFunctions1(F)
if F has TranscendentalFunctionCategory
and F has RadicalCategory then
eStruveLGrad_z(v : F, z : F) : F ==
struveL(v + 1, z) + v*struveL(v, z)/z +
(ahalf*z)^v/(sqrt(pi())*Gamma(v + threehalfs))
dStruveL(l : List F, t : SE) : F ==
grad2(l, t, opStruveL, eStruveLGrad_z)
setProperty(opStruveL, SPECIALDIFF, dStruveL@((List F, SE)->F)
pretend None)
-- handle HankelH1
opHankelH1 := operator('hankelH1)$CommonOperators
hankelH1(v, z) == opHankelH1(v, z)
eHankelH1(v : F, z : F) : F ==
kernel(opHankelH1, [v, z])
elHankelH1(l : List F) : F == eHankelH1(l(1), l(2))
evaluate(opHankelH1, elHankelH1)$BasicOperatorFunctions1(F)
eHankelH1Grad_z(v : F, z : F) : F ==
-hankelH1(v + 1, z) + v*hankelH1(v, z)/z
dHankelH1(l : List F, t : SE) : F ==
grad2(l, t, opHankelH1, eHankelH1Grad_z)
setProperty(opHankelH1, SPECIALDIFF, dHankelH1@((List F, SE)->F)
pretend None)
-- handle HankelH2
opHankelH2 := operator('hankelH2)$CommonOperators
hankelH2(v, z) == opHankelH2(v, z)
eHankelH2(v : F, z : F) : F ==
kernel(opHankelH2, [v, z])
elHankelH2(l : List F) : F == eHankelH2(l(1), l(2))
evaluate(opHankelH2, elHankelH2)$BasicOperatorFunctions1(F)
eHankelH2Grad_z(v : F, z : F) : F ==
-hankelH2(v + 1, z) + v*hankelH2(v, z)/z
dHankelH2(l : List F, t : SE) : F ==
grad2(l, t, opHankelH2, eHankelH2Grad_z)
setProperty(opHankelH2, SPECIALDIFF, dHankelH2@((List F, SE)->F)
pretend None)
-- handle LommelS1
opLommelS1 := operator('lommelS1)$CommonOperators
lommelS1(m, v, z) == opLommelS1(m, v, z)
eLommelS1(m : F, v : F, z : F) : F ==
kernel(opLommelS1, [m, v, z])
elLommelS1(l : List F) : F == eLommelS1(l(1), l(2), l(3))
evaluate(opLommelS1, elLommelS1)$BasicOperatorFunctions1(F)
eLommelS1Grad_z(m : F, v : F, z : F) : F ==
-v*lommelS1(m, v, z)/z + (m + v - 1)*lommelS1(m - 1, v - 1, z)
dLommelS1(l : List F, t : SE) : F ==
grad3(l, t, opLommelS1, eLommelS1Grad_z)
setProperty(opLommelS1, SPECIALDIFF, dLommelS1@((List F, SE)->F)
pretend None)
-- handle LommelS2
opLommelS2 := operator('lommelS2)$CommonOperators
lommelS2(mu, nu, z) == opLommelS2(mu, nu, z)
eLommelS2(mu : F, nu : F, z : F) : F ==
kernel(opLommelS2, [mu, nu, z])
elLommelS2(l : List F) : F == eLommelS2(l(1), l(2), l(3))
evaluate(opLommelS2, elLommelS2)$BasicOperatorFunctions1(F)
eLommelS2Grad_z(m : F, v : F, z : F) : F ==
-v*lommelS2(m, v, z)/z + (m + v - 1)*lommelS2(m - 1, v - 1, z)
dLommelS2(l : List F, t : SE) : F ==
grad3(l, t, opLommelS2, eLommelS2Grad_z)
setProperty(opLommelS2, SPECIALDIFF, dLommelS2@((List F, SE)->F)
pretend None)
-- handle KummerM
opKummerM := operator('kummerM)$CommonOperators
kummerM(mu, nu, z) == opKummerM(mu, nu, z)
eKummerM(a : F, b : F, z : F) : F ==
z = 0 => 1
kernel(opKummerM, [a, b, z])
elKummerM(l : List F) : F == eKummerM(l(1), l(2), l(3))
evaluate(opKummerM, elKummerM)$BasicOperatorFunctions1(F)
eKummerMGrad_z(a : F, b : F, z : F) : F ==
((z + a - b)*kummerM(a, b, z)+(b - a)*kummerM(a - 1, b, z))/z
dKummerM(l : List F, t : SE) : F ==
grad3(l, t, opKummerM, eKummerMGrad_z)
setProperty(opKummerM, SPECIALDIFF, dKummerM@((List F, SE)->F)
pretend None)
-- handle KummerU
opKummerU := operator('kummerU)$CommonOperators
kummerU(a, b, z) == opKummerU(a, b, z)
eKummerU(a : F, b : F, z : F) : F ==
kernel(opKummerU, [a, b, z])
elKummerU(l : List F) : F == eKummerU(l(1), l(2), l(3))
evaluate(opKummerU, elKummerU)$BasicOperatorFunctions1(F)
eKummerUGrad_z(a : F, b : F, z : F) : F ==
((z + a - b)*kummerU(a, b, z) - kummerU(a - 1, b, z))/z
dKummerU(l : List F, t : SE) : F ==
grad3(l, t, opKummerU, eKummerUGrad_z)
setProperty(opKummerU, SPECIALDIFF, dKummerU@((List F, SE)->F)
pretend None)
-- handle LegendreP
opLegendreP := operator('legendreP)$CommonOperators
legendreP(nu, mu, z) == opLegendreP(nu, mu, z)
eLegendreP(nu : F, mu : F, z : F) : F ==
kernel(opLegendreP, [nu, mu, z])
elLegendreP(l : List F) : F == eLegendreP(l(1), l(2), l(3))
evaluate(opLegendreP, elLegendreP)$BasicOperatorFunctions1(F)
eLegendrePGrad_z(nu : F, mu : F, z : F) : F ==
(nu - mu + 1)*legendreP(nu + 1, mu, z) -
(nu + 1)*z*legendreP(nu, mu, z)
dLegendreP(l : List F, t : SE) : F ==
grad3(l, t, opLegendreP, eLegendrePGrad_z)
setProperty(opLegendreP, SPECIALDIFF, dLegendreP@((List F, SE)->F)
pretend None)
-- handle LegendreQ
opLegendreQ := operator('legendreQ)$CommonOperators
legendreQ(nu, mu, z) == opLegendreQ(nu, mu, z)
eLegendreQ(nu : F, mu : F, z : F) : F ==
kernel(opLegendreQ, [nu, mu, z])
elLegendreQ(l : List F) : F == eLegendreQ(l(1), l(2), l(3))
evaluate(opLegendreQ, elLegendreQ)$BasicOperatorFunctions1(F)
eLegendreQGrad_z(nu : F, mu : F, z : F) : F ==
(nu - mu + 1)*legendreQ(nu + 1, mu, z) -
(nu + 1)*z*legendreQ(nu, mu, z)
dLegendreQ(l : List F, t : SE) : F ==
grad3(l, t, opLegendreQ, eLegendreQGrad_z)
setProperty(opLegendreQ, SPECIALDIFF, dLegendreQ@((List F, SE)->F)
pretend None)
-- handle KelvinBei
opKelvinBei := operator('kelvinBei)$CommonOperators
kelvinBei(v, z) == opKelvinBei(v, z)
eKelvinBei(v : F, z : F) : F ==
kernel(opKelvinBei, [v, z])
elKelvinBei(l : List F) : F == eKelvinBei(l(1), l(2))
evaluate(opKelvinBei, elKelvinBei)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eKelvinBeiGrad_z(v : F, z : F) : F ==
ahalf*sqrt(2::F)*(kelvinBei(v + 1, z) - kelvinBer(v + 1, z)) +
v*kelvinBei(v, z)/z
dKelvinBei(l : List F, t : SE) : F ==
grad2(l, t, opKelvinBei, eKelvinBeiGrad_z)
setProperty(opKelvinBei, SPECIALDIFF, dKelvinBei@((List F, SE)->F)
pretend None)
-- handle KelvinBer
opKelvinBer := operator('kelvinBer)$CommonOperators
kelvinBer(v, z) == opKelvinBer(v, z)
eKelvinBer(v : F, z : F) : F ==
kernel(opKelvinBer, [v, z])
elKelvinBer(l : List F) : F == eKelvinBer(l(1), l(2))
evaluate(opKelvinBer, elKelvinBer)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eKelvinBerGrad_z(v : F, z : F) : F ==
ahalf*sqrt(2::F)*(kelvinBer(v + 1, z) + kelvinBei(v + 1, z)) +
v*kelvinBer(v, z)/z
dKelvinBer(l : List F, t : SE) : F ==
grad2(l, t, opKelvinBer, eKelvinBerGrad_z)
setProperty(opKelvinBer, SPECIALDIFF, dKelvinBer@((List F, SE)->F)
pretend None)
-- handle KelvinKei
opKelvinKei := operator('kelvinKei)$CommonOperators
kelvinKei(v, z) == opKelvinKei(v, z)
eKelvinKei(v : F, z : F) : F ==
kernel(opKelvinKei, [v, z])
elKelvinKei(l : List F) : F == eKelvinKei(l(1), l(2))
evaluate(opKelvinKei, elKelvinKei)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eKelvinKeiGrad_z(v : F, z : F) : F ==
ahalf*sqrt(2::F)*(kelvinKei(v + 1, z) - kelvinKer(v + 1, z)) +
v*kelvinKei(v, z)/z
dKelvinKei(l : List F, t : SE) : F ==
grad2(l, t, opKelvinKei, eKelvinKeiGrad_z)
setProperty(opKelvinKei, SPECIALDIFF, dKelvinKei@((List F, SE)->F)
pretend None)
-- handle KelvinKer
opKelvinKer := operator('kelvinKer)$CommonOperators
kelvinKer(v, z) == opKelvinKer(v, z)
eKelvinKer(v : F, z : F) : F ==
kernel(opKelvinKer, [v, z])
elKelvinKer(l : List F) : F == eKelvinKer(l(1), l(2))
evaluate(opKelvinKer, elKelvinKer)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eKelvinKerGrad_z(v : F, z : F) : F ==
ahalf*sqrt(2::F)*(kelvinKer(v + 1, z) + kelvinKei(v + 1, z)) +
v*kelvinKer(v, z)/z
dKelvinKer(l : List F, t : SE) : F ==
grad2(l, t, opKelvinKer, eKelvinKerGrad_z)
setProperty(opKelvinKer, SPECIALDIFF, dKelvinKer@((List F, SE)->F)
pretend None)
-- handle EllipticK
opEllipticK := operator('ellipticK)$CommonOperators
ellipticK(m) == opEllipticK(m)
eEllipticK(m : F) : F ==
kernel(opEllipticK, [m])
elEllipticK(l : List F) : F == eEllipticK(l(1))
evaluate(opEllipticK, elEllipticK)$BasicOperatorFunctions1(F)
dEllipticK(m : F) : F ==
ahalf*(ellipticE(m) - (1 - m)*ellipticK(m))/(m*(1 - m))
derivative(opEllipticK, dEllipticK)
-- handle one argument EllipticE
opEllipticE := operator('ellipticE)$CommonOperators
ellipticE(m) == opEllipticE(m)
eEllipticE(m : F) : F ==
kernel(opEllipticE, [m])
elEllipticE(l : List F) : F == eEllipticE(l(1))
evaluate(opEllipticE, elEllipticE)$BasicOperatorFunctions1(F)
dEllipticE(m : F) : F ==
ahalf*(ellipticE(m) - ellipticK(m))/m
derivative(opEllipticE, dEllipticE)
-- handle two argument EllipticE
opEllipticE2 := operator('ellipticE2)$CommonOperators
ellipticE(z, m) == opEllipticE2(z, m)
eEllipticE2(z : F, m : F) : F ==
z = 0 => 0
z = 1 => eEllipticE(m)
kernel(opEllipticE2, [z, m])
elEllipticE2(l : List F) : F == eEllipticE2(l(1), l(2))
evaluate(opEllipticE2, elEllipticE2)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eEllipticE2Grad_z(l : List F) : F ==
z := l(1)
m := l(2)
sqrt(1 - m*z^2)/sqrt(1 - z^2)
eEllipticE2Grad_m(l : List F) : F ==
z := l(1)
m := l(2)
ahalf*(ellipticE(z, m) - ellipticF(z, m))/m
derivative(opEllipticE2, [eEllipticE2Grad_z, eEllipticE2Grad_m])
inEllipticE2(li : List INP) : INP ==
convert cons(convert('ellipticE), li)
input(opEllipticE2, inEllipticE2@((List INP) -> INP))
-- handle EllipticF
opEllipticF := operator('ellipticF)$CommonOperators
ellipticF(z, m) == opEllipticF(z, m)
eEllipticF(z : F, m : F) : F ==
z = 0 => 0
z = 1 => ellipticK(m)
kernel(opEllipticF, [z, m])
elEllipticF(l : List F) : F == eEllipticF(l(1), l(2))
evaluate(opEllipticF, elEllipticF)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eEllipticFGrad_z(l : List F) : F ==
z := l(1)
m := l(2)
1/(sqrt(1 - m*z^2)*sqrt(1 - z^2))
eEllipticFGrad_m(l : List F) : F ==
z := l(1)
m := l(2)
ahalf*((ellipticE(z, m) - (1 - m)*ellipticF(z, m))/m -
z*sqrt(1 - z^2)/sqrt(1 - m*z^2))/(1 - m)
derivative(opEllipticF, [eEllipticFGrad_z, eEllipticFGrad_m])
-- handle EllipticPi
opEllipticPi := operator('ellipticPi)$CommonOperators
ellipticPi(z, n, m) == opEllipticPi(z, n, m)
eEllipticPi(z : F, n : F, m : F) : F ==
z = 0 => 0
kernel(opEllipticPi, [z, n, m])
elEllipticPi(l : List F) : F == eEllipticPi(l(1), l(2), l(3))
evaluate(opEllipticPi, elEllipticPi)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eEllipticPiGrad_z(l : List F) : F ==
z := l(1)
n := l(2)
m := l(3)
1/((1 - n*z^2)*sqrt(1 - m*z^2)*sqrt(1 - z^2))
eEllipticPiGrad_n(l : List F) : F ==
z := l(1)
n := l(2)
m := l(3)
t1 := -(n^2 - m)*ellipticPi(z, n, m)/((n - 1)*(n - m)*n)
t2 := ellipticF(z, m)/((n - 1)*n)
t3 := -ellipticE(z, m)/((n - 1)*(n - m))
t4 := n*z*sqrt(1 - m*z^2)*sqrt(1 - z^2)/
((1 - n*z^2)*(n - 1)*(n - m))
ahalf*(t1 + t2 + t3 + t4)
eEllipticPiGrad_m(l : List F) : F ==
z := l(1)
n := l(2)
m := l(3)
t1 := m*z*sqrt(1 - z^2)/sqrt(1 - m*z^2)
t2 := (-ellipticE(z, m) + t1)/(1 - m)
ahalf*(ellipticPi(z, n, m) + t2)/(n - m)
derivative(opEllipticPi, [eEllipticPiGrad_z, eEllipticPiGrad_n,
eEllipticPiGrad_m])
-- handle JacobiSn
opJacobiSn := operator('jacobiSn)$CommonOperators
jacobiSn(z, m) == opJacobiSn(z, m)
eJacobiSn(z : F, m : F) : F ==
z = 0 => 0
if is?(z, opEllipticF) then
args := argument(retract(z)@K)
m = args(2) => return args(1)
kernel(opJacobiSn, [z, m])
elJacobiSn : List F -> F
elJacobiSn(l : List F) : F == eJacobiSn(l(1), l(2))
evaluate(opJacobiSn, elJacobiSn)$BasicOperatorFunctions1(F)
jacobiGradHelper(z : F, m : F) : F ==
(z - ellipticE(jacobiSn(z, m), m)/(1 - m))/m
eJacobiSnGrad_z(l : List F) : F ==
z := l(1)
m := l(2)
jacobiCn(z, m)*jacobiDn(z, m)
eJacobiSnGrad_m(l : List F) : F ==
z := l(1)
m := l(2)
ahalf*(eJacobiSnGrad_z(l)*jacobiGradHelper(z, m) +
jacobiSn(z, m)*jacobiCn(z, m)^2/(1 - m))
derivative(opJacobiSn, [eJacobiSnGrad_z, eJacobiSnGrad_m])
-- handle JacobiCn
opJacobiCn := operator('jacobiCn)$CommonOperators
jacobiCn(z, m) == opJacobiCn(z, m)
eJacobiCn(z : F, m : F) : F ==
z = 0 => 1
kernel(opJacobiCn, [z, m])
elJacobiCn(l : List F) : F == eJacobiCn(l(1), l(2))
evaluate(opJacobiCn, elJacobiCn)$BasicOperatorFunctions1(F)
eJacobiCnGrad_z(l : List F) : F ==
z := l(1)
m := l(2)
-jacobiSn(z, m)*jacobiDn(z, m)
eJacobiCnGrad_m(l : List F) : F ==
z := l(1)
m := l(2)
ahalf*(eJacobiCnGrad_z(l)*jacobiGradHelper(z, m) -
jacobiSn(z, m)^2*jacobiCn(z, m)/(1 - m))
derivative(opJacobiCn, [eJacobiCnGrad_z, eJacobiCnGrad_m])
-- handle JacobiDn
opJacobiDn := operator('jacobiDn)$CommonOperators
jacobiDn(z, m) == opJacobiDn(z, m)
eJacobiDn(z : F, m : F) : F ==
z = 0 => 1
kernel(opJacobiDn, [z, m])
elJacobiDn(l : List F) : F == eJacobiDn(l(1), l(2))
evaluate(opJacobiDn, elJacobiDn)$BasicOperatorFunctions1(F)
eJacobiDnGrad_z(l : List F) : F ==
z := l(1)
m := l(2)
-m*jacobiSn(z, m)*jacobiCn(z, m)
eJacobiDnGrad_m(l : List F) : F ==
z := l(1)
m := l(2)
ahalf*(eJacobiDnGrad_z(l)*jacobiGradHelper(z, m) -
jacobiSn(z, m)^2*jacobiDn(z, m)/(1 - m))
derivative(opJacobiDn, [eJacobiDnGrad_z, eJacobiDnGrad_m])
-- handle JacobiZeta
opJacobiZeta := operator('jacobiZeta)$CommonOperators
jacobiZeta(z, m) == opJacobiZeta(z, m)
eJacobiZeta(z : F, m : F) : F ==
z = 0 => 0
kernel(opJacobiZeta, [z, m])
elJacobiZeta(l : List F) : F == eJacobiZeta(l(1), l(2))
evaluate(opJacobiZeta, elJacobiZeta)$BasicOperatorFunctions1(F)
eJacobiZetaGrad_z(l : List F) : F ==
z := l(1)
m := l(2)
dn := jacobiDn(z, m)
dn*dn - ellipticE(m)/ellipticK(m)
eJacobiZetaGrad_m(l : List F) : F ==
z := l(1)
m := l(2)
ek := ellipticK(m)
ee := ellipticE(m)
er := ee/ek
dn := jacobiDn(z, m)
res1 := (dn*dn + m - 1)*jacobiZeta(z, m)
res2 := res1 + (m - 1)*z*dn*dn
res3 := res2 - m*jacobiCn(z, m)*jacobiDn(z, m)*jacobiSn(z, m)
res4 := res3 + z*(1 - m + dn*dn)*er
ahalf*(res4 - z*er*er)/(m*m - m)
derivative(opJacobiZeta, [eJacobiZetaGrad_z, eJacobiZetaGrad_m])
-- handle JacobiTheta
opJacobiTheta := operator('jacobiTheta)$CommonOperators
jacobiTheta(q, z) == opJacobiTheta(q, z)
eJacobiTheta(q : F, z : F) : F ==
kernel(opJacobiTheta, [q, z])
elJacobiTheta(l : List F) : F == eJacobiTheta(l(1), l(2))
evaluate(opJacobiTheta, elJacobiTheta)$BasicOperatorFunctions1(F)
-- handle LerchPhi
opLerchPhi := operator('lerchPhi)$CommonOperators
lerchPhi(z, s, a) == opLerchPhi(z, s, a)
eLerchPhi(z : F, s : F, a : F) : F ==
-- z = 0 => 1/a^s
a = 1 => polylog(s, z)/z
kernel(opLerchPhi, [z, s, a])
elLerchPhi(l : List F) : F == eLerchPhi(l(1), l(2), l(3))
evaluate(opLerchPhi, elLerchPhi)$BasicOperatorFunctions1(F)
dLerchPhi(l : List F, t : SE) : F ==
z := l(1)
s := l(2)
a := l(3)
dz := differentiate(z, t)*(lerchPhi(z, s - 1, a) -
a*lerchPhi(z, s, a))/z
da := -differentiate(a, t)*s*lerchPhi(z, s + 1, a)
dm := dummy
differentiate(s, t)*kernel(opdiff, [opLerchPhi [z, dm, a], dm, s])
+ dz + da
setProperty(opLerchPhi, SPECIALDIFF, dLerchPhi@((List F, SE)->F)
pretend None)
-- handle RiemannZeta
opRiemannZeta := operator('riemannZeta)$CommonOperators
riemannZeta(z) == opRiemannZeta(z)
eRiemannZeta(z : F) : F ==
kernel(opRiemannZeta, [z])
elRiemannZeta(l : List F) : F == eRiemannZeta(l(1))
evaluate(opRiemannZeta, elRiemannZeta)$BasicOperatorFunctions1(F)
-- orthogonal polynomials
charlierC(n : F, a : F, z : F) : F == opCharlierC(n, a, z)
eCharlierC(n : F, a : F, z : F) : F ==
n = 0 => 1
n = 1 => (z - a)/a
kernel(opCharlierC, [n, a, z])
elCharlierC(l : List F) : F == eCharlierC(l(1), l(2), l(3))
evaluate(opCharlierC, elCharlierC)$BasicOperatorFunctions1(F)
hermiteH(n : F, z: F) : F == opHermiteH(n, z)
eHermiteH(n : F, z: F) : F ==
n = -1 => 0
n = 0 => 1
n = 1 => (2::F)*z
kernel(opHermiteH, [n, z])
elHermiteH(l : List F) : F == eHermiteH(l(1), l(2))
evaluate(opHermiteH, elHermiteH)$BasicOperatorFunctions1(F)
eHermiteHGrad_z(n : F, z : F) : F == (2::F)*n*hermiteH(n - 1, z)
dHermiteH(l : List F, t : SE) : F ==
grad2(l, t, opHermiteH, eHermiteHGrad_z)
setProperty(opHermiteH, SPECIALDIFF, dHermiteH@((List F, SE)->F)
pretend None)
jacobiP(n : F, a : F, b : F, z : F) : F == opJacobiP(n, a, b, z)
eJacobiP(n : F, a : F, b : F, z : F) : F ==
n = -1 => 0
n = 0 => 1
n = 1 => ahalf*(a - b) + (1 + ahalf*(a + b))*z
kernel(opJacobiP, [n, a, b, z])
elJacobiP(l : List F) : F == eJacobiP(l(1), l(2), l(3), l(4))
evaluate(opJacobiP, elJacobiP)$BasicOperatorFunctions1(F)
eJacobiPGrad_z(n : F, a : F, b : F, z : F) : F ==
ahalf*(a + b + n + 1)*jacobiP(n - 1, a + 1, b + 1, z)
dJacobiP(l : List F, t : SE) : F ==
grad4(l, t, opJacobiP, eJacobiPGrad_z)
setProperty(opJacobiP, SPECIALDIFF, dJacobiP@((List F, SE)->F)
pretend None)
laguerreL(n : F, a : F, z : F) : F == opLaguerreL(n, a, z)
eLaguerreL(n : F, a : F, z : F) : F ==
n = -1 => 0
n = 0 => 1
n = 1 => (1 + a - z)
kernel(opLaguerreL, [n, a, z])
elLaguerreL(l : List F) : F == eLaguerreL(l(1), l(2), l(3))
evaluate(opLaguerreL, elLaguerreL)$BasicOperatorFunctions1(F)
eLaguerreLGrad_z(n : F, a : F, z : F) : F ==
laguerreL(n - 1, a + 1, z)
dLaguerreL(l : List F, t : SE) : F ==
grad3(l, t, opLaguerreL, eLaguerreLGrad_z)
setProperty(opLaguerreL, SPECIALDIFF, dLaguerreL@((List F, SE)->F)
pretend None)
meixnerM(n : F, b : F, c : F, z : F) : F == opMeixnerM(n, b, c, z)
eMeixnerM(n : F, b : F, c : F, z : F) : F ==
n = 0 => 1
n = 1 => (c - 1)*z/(c*b) + 1
kernel(opMeixnerM, [n, b, c, z])
elMeixnerM(l : List F) : F == eMeixnerM(l(1), l(2), l(3), l(4))
evaluate(opMeixnerM, elMeixnerM)$BasicOperatorFunctions1(F)
--
belong? op == has?(op, SPECIAL)
operator op ==
is?(op, 'abs) => opabs
is?(op, 'conjugate)=> opconjugate
is?(op, 'Gamma) => opGamma
is?(op, 'Gamma2) => opGamma2
is?(op, 'Beta) => opBeta
is?(op, 'digamma) => opdigamma
is?(op, 'polygamma)=> oppolygamma
is?(op, 'besselJ) => opBesselJ
is?(op, 'besselY) => opBesselY
is?(op, 'besselI) => opBesselI
is?(op, 'besselK) => opBesselK
is?(op, 'airyAi) => opAiryAi
is?(op, 'airyAiPrime) => opAiryAiPrime
is?(op, 'airyBi) => opAiryBi
is?(op, 'airyBiPrime) => opAiryBiPrime
is?(op, 'lambertW) => opLambertW
is?(op, 'polylog) => opPolylog
is?(op, 'weierstrassP) => opWeierstrassP
is?(op, 'weierstrassPPrime) => opWeierstrassPPrime
is?(op, 'weierstrassSigma) => opWeierstrassSigma
is?(op, 'weierstrassZeta) => opWeierstrassZeta
is?(op, 'hypergeometricF) => opHypergeometricF
is?(op, 'meijerG) => opMeijerG
-- is?(op, 'weierstrassPInverse) => opWeierstrassPInverse
is?(op, 'whittakerM) => opWhittakerM
is?(op, 'whittakerW) => opWhittakerW
is?(op, 'angerJ) => opAngerJ
is?(op, 'weberE) => opWeberE
is?(op, 'struveH) => opStruveH
is?(op, 'struveL) => opStruveL
is?(op, 'hankelH1) => opHankelH1
is?(op, 'hankelH2) => opHankelH2
is?(op, 'lommelS1) => opLommelS1
is?(op, 'lommelS2) => opLommelS2
is?(op, 'kummerM) => opKummerM
is?(op, 'kummerU) => opKummerU
is?(op, 'legendreP) => opLegendreP
is?(op, 'legendreQ) => opLegendreQ
is?(op, 'kelvinBei) => opKelvinBei
is?(op, 'kelvinBer) => opKelvinBer
is?(op, 'kelvinKei) => opKelvinKei
is?(op, 'kelvinKer) => opKelvinKer
is?(op, 'ellipticK) => opEllipticK
is?(op, 'ellipticE) => opEllipticE
is?(op, 'ellipticE2) => opEllipticE2
is?(op, 'ellipticF) => opEllipticF
is?(op, 'ellipticPi) => opEllipticPi
is?(op, 'jacobiSn) => opJacobiSn
is?(op, 'jacobiCn) => opJacobiCn
is?(op, 'jacobiDn) => opJacobiDn
is?(op, 'jacobiZeta) => opJacobiZeta
is?(op, 'jacobiTheta) => opJacobiTheta
is?(op, 'lerchPhi) => opLerchPhi
is?(op, 'riemannZeta) => opRiemannZeta
is?(op, 'charlierC) => opCharlierC
is?(op, 'hermiteH) => opHermiteH
is?(op, 'jacobiP) => opJacobiP
is?(op, 'laguerreL) => opLaguerreL
is?(op, 'meixnerM) => opMeixnerM
is?(op, '%logGamma) => op_log_gamma
is?(op, '%eis) => op_eis
is?(op, '%erfs) => op_erfs
is?(op, '%erfis) => op_erfis
error "Not a special operator"
-- Could put more unconditional special rules for other functions here
iGamma x ==
-- one? x => x
(x = 1) => x
kernel(opGamma, x)
iabs x ==
zero? x => 0
one? x => 1
is?(x, opabs) => x
is?(x, opconjugate) => kernel(opabs, argument(retract(x)@K)(1))
smaller?(x, 0) => kernel(opabs, -x)
kernel(opabs, x)
if R has abs : R -> R then
import from Polynomial R
iiabs x ==
(r := retractIfCan(x)@Union(Fraction Polynomial R, "failed"))
case "failed" => iabs x
f := r::Fraction Polynomial R
(a := retractIfCan(numer f)@Union(R, "failed")) case "failed" or
(b := retractIfCan(denom f)@Union(R,"failed")) case "failed" => iabs x
abs(a::R)::F / abs(b::R)::F
else
if F has RadicalCategory and R has conjugate : R -> R then
iiabs x ==
(r := retractIfCan(x)@Union(R, "failed"))
case "failed" => iabs x
sqrt( (r::R*conjugate(r::R))::F)
else iiabs x == iabs x
iconjugate(k:K):F ==
--output("in: ",k::OutputForm)$OutputPackage
if symbolIfCan(k) case Symbol then
x:=kernel(opconjugate, k::F)
else
op:=operator(operator(name(k))$CommonOperators)$Expression(R)
--output("op: ",properties(op)::OutputForm)$OutputPackage
--output("conj op: ",properties(conjugate op)::OutputForm)$OutputPackage
x := conjugate(op) argument(k)
--output("out: ",x::OutputForm)$OutputPackage
return x
iiconjugate(x:F):F ==
--output("iin: ",x::OutputForm)$OutputPackage
if (s:=isPlus(x)) case List F then
--output("isPlus: ",s::OutputForm)$OutputPackage
x := reduce(_+$F,map(iiconjugate,s))
else if (s:=isTimes(x)) case List F then
--output("isTimes: ",s::OutputForm)$OutputPackage
x:= reduce(_*$F,map(iiconjugate,s))
else if #(ks:List K:=kernels(x))>0 then
--output("kernels: ",ks::OutputForm)$OutputPackage
x := eval(x,ks, _
map((k:Kernel F):F +-> (height(k)=0 =>k::F;iconjugate k), _
ks)$ListFunctions2(Kernel F,F))
else if R has conjugate:R->R and F has RetractableTo(R) then
if (r:=retractIfCan(x)@Union(R,"failed")) case R then
x:=conjugate(r::R)::F
--output("iout: ",x::OutputForm)$OutputPackage
return x
iBeta(x, y) == kernel(opBeta, [x, y])
idigamma x == kernel(opdigamma, x)
iiipolygamma(n, x) == kernel(oppolygamma, [n, x])
iiiBesselJ(x, y) == kernel(opBesselJ, [x, y])
iiiBesselY(x, y) == kernel(opBesselY, [x, y])
iiiBesselI(x, y) == kernel(opBesselI, [x, y])
iiiBesselK(x, y) == kernel(opBesselK, [x, y])
import from Fraction(Integer)
if F has ElementaryFunctionCategory then
iAiryAi x ==
zero?(x) => 1::F/((3::F)^twothirds*Gamma(twothirds))
kernel(opAiryAi, x)
iAiryAiPrime x ==
zero?(x) => -1::F/((3::F)^athird*Gamma(athird))
kernel(opAiryAiPrime, x)
iAiryBi x ==
zero?(x) => 1::F/((3::F)^asixth*Gamma(twothirds))
kernel(opAiryBi, x)
iAiryBiPrime x ==
zero?(x) => (3::F)^asixth/Gamma(athird)
kernel(opAiryBiPrime, x)
else
iAiryAi x == kernel(opAiryAi, x)
iAiryAiPrime x == kernel(opAiryAiPrime, x)
iAiryBi x == kernel(opAiryBi, x)
iAiryBiPrime x == kernel(opAiryBiPrime, x)
if F has ElementaryFunctionCategory then
iLambertW(x) ==
zero?(x) => 0
x = exp(1$F) => 1$F
x = -exp(-1$F) => -1$F
kernel(opLambertW, x)
else
iLambertW(x) ==
zero?(x) => 0
kernel(opLambertW, x)
if F has ElementaryFunctionCategory then
if F has LiouvillianFunctionCategory then
iiPolylog(s, x) ==
s = 1 => -log(1 - x)
s = 2::F => dilog(1 - x)
kernel(opPolylog, [s, x])
else
iiPolylog(s, x) ==
s = 1 => -log(1 - x)
kernel(opPolylog, [s, x])
else
iiPolylog(s, x) == kernel(opPolylog, [s, x])
iPolylog(l) == iiPolylog(first l, second l)
iWeierstrassP(g2, g3, x) == kernel(opWeierstrassP, [g2, g3, x])
iWeierstrassPPrime(g2, g3, x) == kernel(opWeierstrassPPrime, [g2, g3, x])
iWeierstrassSigma(g2, g3, x) ==
x = 0 => 0
kernel(opWeierstrassSigma, [g2, g3, x])
iWeierstrassZeta(g2, g3, x) == kernel(opWeierstrassZeta, [g2, g3, x])
-- Could put more conditional special rules for other functions here
if R has SpecialFunctionCategory then
iiGamma x ==
(r := retractIfCan(x)@Union(R,"failed")) case "failed" => iGamma x
Gamma(r::R)::F
iiBeta l ==
(r := retractIfCan(first l)@Union(R,"failed")) case "failed" or _
(s := retractIfCan(second l)@Union(R,"failed")) case "failed" _
=> iBeta(first l, second l)
Beta(r::R, s::R)::F
iidigamma x ==
(r := retractIfCan(x)@Union(R,"failed")) case "failed" => idigamma x
digamma(r::R)::F
iipolygamma l ==
(s := retractIfCan(first l)@Union(R,"failed")) case "failed" or _
(r := retractIfCan(second l)@Union(R,"failed")) case "failed" _
=> iiipolygamma(first l, second l)
polygamma(s::R, r::R)::F
iiBesselJ l ==
(r := retractIfCan(first l)@Union(R,"failed")) case "failed" or _
(s := retractIfCan(second l)@Union(R,"failed")) case "failed" _
=> iiiBesselJ(first l, second l)
besselJ(r::R, s::R)::F
iiBesselY l ==
(r := retractIfCan(first l)@Union(R,"failed")) case "failed" or _
(s := retractIfCan(second l)@Union(R,"failed")) case "failed" _
=> iiiBesselY(first l, second l)
besselY(r::R, s::R)::F
iiBesselI l ==
(r := retractIfCan(first l)@Union(R,"failed")) case "failed" or _
(s := retractIfCan(second l)@Union(R,"failed")) case "failed" _
=> iiiBesselI(first l, second l)
besselI(r::R, s::R)::F
iiBesselK l ==
(r := retractIfCan(first l)@Union(R,"failed")) case "failed" or _
(s := retractIfCan(second l)@Union(R,"failed")) case "failed" _
=> iiiBesselK(first l, second l)
besselK(r::R, s::R)::F
iiAiryAi x ==
(r := retractIfCan(x)@Union(R,"failed")) case "failed" => iAiryAi x
airyAi(r::R)::F
iiAiryAiPrime x ==
(r := retractIfCan(x)@Union(R,"failed")) case "failed" => iAiryAiPrime x
airyAiPrime(r::R)::F
iiAiryBi x ==
(r := retractIfCan(x)@Union(R,"failed")) case "failed" => iAiryBi x
airyBi(r::R)::F
iiAiryBi x ==
(r := retractIfCan(x)@Union(R,"failed")) case "failed" => iAiryBiPrime x
airyBiPrime(r::R)::F
else
if R has RetractableTo Integer then
iiGamma x ==
(r := retractIfCan(x)@Union(Integer, "failed")) case Integer
and (r::Integer >= 1) => factorial(r::Integer - 1)::F
iGamma x
else
iiGamma x == iGamma x
iiBeta l == iBeta(first l, second l)
iidigamma x == idigamma x
iipolygamma l == iiipolygamma(first l, second l)
iiBesselJ l == iiiBesselJ(first l, second l)
iiBesselY l == iiiBesselY(first l, second l)
iiBesselI l == iiiBesselI(first l, second l)
iiBesselK l == iiiBesselK(first l, second l)
iiAiryAi x == iAiryAi x
iiAiryAiPrime x == iAiryAiPrime x
iiAiryBi x == iAiryBi x
iiAiryBiPrime x == iAiryBiPrime x
iiWeierstrassP l == iWeierstrassP(first l, second l, third l)
iiWeierstrassPPrime l == iWeierstrassPPrime(first l, second l, third l)
iiWeierstrassSigma l == iWeierstrassSigma(first l, second l, third l)
iiWeierstrassZeta l == iWeierstrassZeta(first l, second l, third l)
-- Default behaviour is to build a kernel
evaluate(opGamma, iiGamma)$BasicOperatorFunctions1(F)
evaluate(opabs, iiabs)$BasicOperatorFunctions1(F)
evaluate(conjugate(opabs), (x:F):F +-> iiabs(x))$BasicOperatorFunctions1(F)
evaluate(opconjugate, iiconjugate)$BasicOperatorFunctions1(F)
evaluate(conjugate(opconjugate), (x:F):F +-> x)$BasicOperatorFunctions1(F)
-- evaluate(opGamma2 , iiGamma2 )$BasicOperatorFunctions1(F)
evaluate(opBeta , iiBeta )$BasicOperatorFunctions1(F)
evaluate(opdigamma , iidigamma )$BasicOperatorFunctions1(F)
evaluate(oppolygamma , iipolygamma)$BasicOperatorFunctions1(F)
evaluate(opBesselJ , iiBesselJ )$BasicOperatorFunctions1(F)
evaluate(opBesselY , iiBesselY )$BasicOperatorFunctions1(F)
evaluate(opBesselI , iiBesselI )$BasicOperatorFunctions1(F)
evaluate(opBesselK , iiBesselK )$BasicOperatorFunctions1(F)
evaluate(opAiryAi , iiAiryAi )$BasicOperatorFunctions1(F)
evaluate(opAiryAiPrime, iiAiryAiPrime)$BasicOperatorFunctions1(F)
evaluate(opAiryBi , iiAiryBi )$BasicOperatorFunctions1(F)
evaluate(opAiryBiPrime, iiAiryBiPrime)$BasicOperatorFunctions1(F)
evaluate(opLambertW, iLambertW)$BasicOperatorFunctions1(F)
evaluate(opPolylog, iPolylog)$BasicOperatorFunctions1(F)
evaluate(opWeierstrassP, iiWeierstrassP)$BasicOperatorFunctions1(F)
evaluate(opWeierstrassPPrime,
iiWeierstrassPPrime)$BasicOperatorFunctions1(F)
evaluate(opWeierstrassSigma, iiWeierstrassSigma)$BasicOperatorFunctions1(F)
evaluate(opWeierstrassZeta, iiWeierstrassZeta)$BasicOperatorFunctions1(F)
evaluate(opHypergeometricF, iiHypergeometricF)$BasicOperatorFunctions1(F)
evaluate(opMeijerG, iiMeijerG)$BasicOperatorFunctions1(F)
diff1(op : OP, n : F, x : F) : F ==
dm := dummy
kernel(opdiff, [op [dm, x], dm, n])
iBesselJ(l : List F, t : SE) : F ==
n := first l; x := second l
differentiate(n, t)*diff1(opBesselJ, n, x)
+ differentiate(x, t) * ahalf * (besselJ (n-1, x) - besselJ (n+1, x))
iBesselY(l : List F, t : SE) : F ==
n := first l; x := second l
differentiate(n, t)*diff1(opBesselY, n, x)
+ differentiate(x, t) * ahalf * (besselY (n-1, x) - besselY (n+1, x))
iBesselI(l : List F, t : SE) : F ==
n := first l; x := second l
differentiate(n, t)*diff1(opBesselI, n, x)
+ differentiate(x, t)* ahalf * (besselI (n-1, x) + besselI (n+1, x))
iBesselK(l : List F, t : SE) : F ==
n := first l; x := second l
differentiate(n, t)*diff1(opBesselK, n, x)
- differentiate(x, t)* ahalf * (besselK (n-1, x) + besselK (n+1, x))
dPolylog(l : List F, t : SE) : F ==
s := first l; x := second l
differentiate(s, t)*diff1(opPolylog, s, x)
+ differentiate(x, t)*polylog(s-1, x)/x
ipolygamma(l : List F, x : SE) : F ==
import from List(Symbol)
member?(x, variables first l) =>
error "cannot differentiate polygamma with respect to the first argument"
n := first l; y := second l
differentiate(y, x)*polygamma(n+1, y)
iBetaGrad1(l : List F) : F ==
x := first l; y := second l
Beta(x, y)*(digamma x - digamma(x+y))
iBetaGrad2(l : List F) : F ==
x := first l; y := second l
Beta(x, y)*(digamma y - digamma(x+y))
if F has ElementaryFunctionCategory then
iGamma2(l : List F, t : SE) : F ==
a := first l; x := second l
differentiate(a, t)*diff1(opGamma2, a, x)
- differentiate(x, t)* x ^ (a - 1) * exp(-x)
setProperty(opGamma2, SPECIALDIFF, iGamma2@((List F, SE)->F)
pretend None)
inGamma2(li : List INP) : INP ==
convert cons(convert('Gamma), li)
input(opGamma2, inGamma2@((List INP) -> INP))
dLambertW(x : F) : F ==
lw := lambertW(x)
lw/(x*(1+lw))
iWeierstrassPGrad1(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
delta := g2^3 - 27*g3^2
wp := weierstrassP(g2, g3, x)
(weierstrassPPrime(g2, g3, x)*(-9*ahalf*g3
*weierstrassZeta(g2, g3, x) + afourth*g2^2*x)
- 9*g3*wp^2 + ahalf*g2^2*wp + 3*ahalf*g2*g3)/delta
iWeierstrassPGrad2(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
delta := g2^3 - 27*g3^2
wp := weierstrassP(g2, g3, x)
(weierstrassPPrime(g2, g3, x)*(3*g2*weierstrassZeta(g2, g3, x)
- 9*ahalf*g3*x) + 6*g2*wp^2 - 9*g3*wp-g2^2)/delta
iWeierstrassPGrad3(l : List F) : F ==
weierstrassPPrime(first l, second l, third l)
iWeierstrassPPrimeGrad1(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
delta := g2^3 - 27*g3^2
wp := weierstrassP(g2, g3, x)
wpp := weierstrassPPrime(g2, g3, x)
wpp2 := 6*wp^2 - ahalf*g2
(wpp2*(-9*ahalf*g3*weierstrassZeta(g2, g3, x) + afourth*g2^2*x)
+ wpp*(9*ahalf*g3*wp + afourth*g2^2) - 18*g3*wp*wpp
+ ahalf*g2^2*wpp)/delta
iWeierstrassPPrimeGrad2(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
delta := g2^3 - 27*g3^2
wp := weierstrassP(g2, g3, x)
wpp := weierstrassPPrime(g2, g3, x)
wpp2 := 6*wp^2 - ahalf*g2
(wpp2*(3*g2*weierstrassZeta(g2, g3, x) - 9*ahalf*g3*x)
+ wpp*(-3*g2*wp - 9*ahalf*g3) + 12*g2*wp*wpp - 9*g3*wpp)/delta
iWeierstrassPPrimeGrad3(l : List F) : F ==
g2 := first l
6*weierstrassP(g2, second l, third l)^2 - ahalf*g2
iWeierstrassSigmaGrad1(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
delta := g2^3 - 27*g3^2
ws := weierstrassSigma(g2, g3, x)
wz := weierstrassZeta(g2, g3, x)
wsp := wz*ws
wsp2 := - weierstrassP(g2, g3, x)*ws + wz^2*ws
afourth*(-9*g3*wsp2 - g2^2*ws
- 3*afourth*g2*g3*x^2*ws + g2^2*x*wsp)/delta
iWeierstrassSigmaGrad2(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
delta := g2^3 - 27*g3^2
ws := weierstrassSigma(g2, g3, x)
wz := weierstrassZeta(g2, g3, x)
wsp := wz*ws
wsp2 := - weierstrassP(g2, g3, x)*ws + wz^2*ws
ahalf*(3*g2*wsp2 + 9*g3*ws
+ afourth*g2^2*x^2*ws - 9*g3*x*wsp)/delta
iWeierstrassSigmaGrad3(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
weierstrassZeta(g2, g3, x)*weierstrassSigma(g2, g3, x)
iWeierstrassZetaGrad1(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
delta := g2^3 - 27*g3^2
wp := weierstrassP(g2, g3, x)
(ahalf*weierstrassZeta(g2, g3, x)*(9*g3*wp + ahalf*g2^2)
- ahalf*g2*x*(ahalf*g2*wp+3*afourth*g3)
+ 9*afourth*g3*weierstrassPPrime(g2, g3, x))/delta
iWeierstrassZetaGrad2(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
delta := g2^3 - 27*g3^2
wp := weierstrassP(g2, g3, x)
(-3*weierstrassZeta(g2, g3, x)*(g2*wp + 3*ahalf*g3) +
ahalf*x*(9*g3*wp + ahalf*g2^2)
- 3*ahalf*g2*weierstrassPPrime(g2, g3, x))/delta
iWeierstrassZetaGrad3(l : List F) : F ==
-weierstrassP(first l, second l, third l)
OF ==> OutputForm
SEX ==> SExpression
NNI ==> NonNegativeInteger
dconjugate(lo : List OF) : OF == overbar lo.1
display(opconjugate,dconjugate)
if F has RetractableTo(Integer) then
get_int_listf : List F -> List Integer
get_int_listo : (Integer, List OF) -> List Integer
get_int_listi : (Integer, List INP) -> List Integer
get_int_listf(lf : List F) : List Integer ==
map(z +-> retract(z)@Integer, lf)$ListFunctions2(F, Integer)
replace_i(lp : List F, v : F, i : NNI) : List F ==
concat(first(lp, (i - 1)::NNI), cons(v, rest(lp, i)))
iiHypergeometricF(l) ==
n := #l
z := l(n-2)
if z = 0 then
nn := (n - 2)::NNI
pq := rest(l, nn)
pqi := get_int_listf(pq)
p := first(pqi)
q := first(rest(pqi))
p <= q + 1 => return 1
kernel(opHypergeometricF, l)
idvsum(op : BasicOperator, n : Integer, l : List F, x : Symbol) : F ==
res : F := 0
for i in 1..n for a in l repeat
dm := dummy
nl := replace_i(l, dm, i)
res := res + differentiate(a, x)*kernel(opdiff, [op nl, dm, a])
res
dvhypergeom(l : List F, x : Symbol) : F ==
n := #l
nn := (n - 2)::NNI
pq := rest(l, nn)
pqi := get_int_listf(pq)
ol := l
l := first(l, nn)
l1 := reverse(l)
z := first(l1)
p := first(pqi)
q := first(rest(pqi))
aprod := 1@F
nl := []@(List F)
for i in 1..p repeat
a := first(l)
nl := cons(a + 1, nl)
aprod := aprod * a
l := rest(l)
bprod := 1@F
for i in 1..q repeat
b := first(l)
nl := cons(b + 1, nl)
bprod := bprod * b
l := rest(l)
nl0 := reverse!(nl)
nl1 := cons(z, pq)
nl := concat(nl0, nl1)
aprod := aprod/bprod
idvsum(opHypergeometricF, nn - 1, ol, x) +
differentiate(z, x)*aprod*opHypergeometricF(nl)
add_pairs_to_list(lp : List List F, l : List F) : List F ==
for p in lp repeat
#p ~= 2 => error "not a list of pairs"
l := cons(p(2), cons(p(1), l))
l
dvmeijer(l : List F, x : Symbol) : F ==
n := #l
nn := (n - 4)::NNI
l0 := l
nl := rest(l, nn)
nli := get_int_listf(nl)
l := first(l, nn)
l1 := reverse(l)
z := first(l1)
n1 := first(nli)
n2 := nli(2)
a := first l
sign : F := 1
if n1 > 0 or n2 > 0 then
na := a - 1
if n1 = 0 then sign := -1
l2 := cons(na, rest l)
else
na := a
if nli(3) > 0 then sign := -1
l2 := cons(a + 1, rest l)
nm : F := opMeijerG(concat(l2, nl))
om : F := opMeijerG(l0)
idvsum(opMeijerG, nn - 1, l0, x) +
differentiate(z, x)*(sign*nm + na*om)/z
get_if_list(n : Integer, lf : List INP) : List List INP ==
a := []@(List INP)
for i in 1..n repeat
a := cons(first(lf), a)
lf := rest(lf)
a := cons(convert('construct), reverse!(a))
[a, lf]
get_if_lists(ln : List Integer, lf : List INP) : List List INP ==
rl := []@(List List INP)
for n in ln repeat
al := get_if_list(n, lf)
rl := cons(first(al), rl)
lf := first(rest(al))
rl := reverse!(rl)
cons(lf, rl)
get_int_listi(n : Integer, lo : List INP) : List Integer ==
n0 := (#lo - n)::NNI
lo := rest(lo, n0)
rl := []@(List Integer)
for i in 1..n repeat
p := integer(first(lo) pretend SEX)$SEX
rl := cons(p, rl)
lo := rest(lo)
rl := reverse!(rl)
rl
get_of_list(n : Integer, lo : List OF) : List List OF ==
a := []@(List OF)
for i in 1..n repeat
a := cons(first(lo), a)
lo := rest(lo)
a := reverse!(a)
[a, lo]
get_of_lists(ln : List Integer, lo : List OF) : List List OF ==
rl := []@(List List OF)
for n in ln repeat
al := get_of_list(n, lo)
rl := cons(first(al), rl)
lo := first(rest(al))
rl := reverse!(rl)
cons(lo, rl)
get_int_listo(n : Integer, lo : List OF) : List Integer ==
n0 := (#lo - n)::NNI
lo := rest(lo, n0)
rl := []@(List Integer)
for i in 1..n repeat
p := integer(first(lo) pretend SEX)$SEX
rl := cons(p, rl)
lo := rest(lo)
rl := reverse!(rl)
rl
dhyper0(op : OF, lo : List OF) : OF ==
n0 := (#lo - 2)::NNI
pql := get_int_listo(2, lo)
lo := first(lo, n0)
al := get_of_lists(pql, lo)
lo := first(al)
al := rest(al)
a := first al
b := first(rest(al))
z := first(lo)
prefix(op, [bracket a, bracket b, z])
dhyper(lo : List OF) : OF ==
dhyper0("hypergeometricF"::Symbol::OF, lo)
ddhyper(lo : List OF) : OF ==
dhyper0(first lo, rest lo)
dmeijer0(op : OF, lo : List OF) : OF ==
n0 := (#lo - 4)::NNI
nl := get_int_listo(4, lo)
lo := first(lo, n0)
al := get_of_lists(nl, lo)
lo := first(al)
al := rest(al)
z := first(lo)
prefix(op, concat(
map(bracket, al)$ListFunctions2(List OF, OF), [z]))
dmeijer(lo : List OF) : OF ==
dmeijer0('meijerG::OF, lo)
ddmeijer(lo : List OF) : OF ==
dmeijer0(first lo, rest lo)
setProperty(opHypergeometricF, '%diffDisp,
ddhyper@(List OF -> OF) pretend None)
setProperty(opMeijerG, '%diffDisp,
ddmeijer@(List OF -> OF) pretend None)
display(opHypergeometricF, dhyper)
display(opMeijerG, dmeijer)
setProperty(opHypergeometricF, SPECIALDIFF,
dvhypergeom@((List F, Symbol)->F) pretend None)
setProperty(opMeijerG, SPECIALDIFF, dvmeijer@((List F, Symbol)->F)
pretend None)
inhyper(lf : List INP) : INP ==
pqi := get_int_listi(2, lf)
al := get_if_lists(pqi, lf)
lf := first(al)
al := rest(al)
a := first al
ai : INP := convert(a)
b := first(rest(al))
bi : INP := convert(b)
zi := first(lf)
li : List INP := [convert('hypergeometricF), ai, bi, zi]
convert(li)
input(opHypergeometricF, inhyper@((List INP) -> INP))
inmeijer(lf : List INP) : INP ==
pqi := get_int_listi(4, lf)
al := get_if_lists(pqi, lf)
lf := first(al)
al := rest(al)
a := first al
ai : INP := convert(a)
al := rest(al)
b := first(al)
bi : INP := convert(b)
al := rest(al)
c := first(al)
ci : INP := convert(c)
al := rest(al)
d := first(al)
di : INP := convert(d)
zi := first(lf)
li : List INP := [convert('meijerG), ai, bi, ci, di, zi]
convert(li)
input(opMeijerG, inmeijer@((List INP) -> INP))
else
iiHypergeometricF(l) == kernel(opHypergeometricF, l)
iiMeijerG(l) == kernel(opMeijerG, l)
d_eis(x : F) : F == -kernel(op_eis, x) + 1/x
if F has TranscendentalFunctionCategory
and F has RadicalCategory then
d_erfs(x : F) : F == 2*x*kernel(op_erfs, x) - 2::F/sqrt(pi())
d_erfis(x : F) : F == -2*x*kernel(op_erfis, x) + 2::F/sqrt(pi())
derivative(op_erfs, d_erfs)
derivative(op_erfis, d_erfis)
-- differentiate(abs(g(z)),z)
--dvabs : (List F, SE) -> F
--dvabs(arg, z) ==
-- g := first arg
-- conjugate(g)*inv(2*abs(g))*differentiate(g,z)+g*inv(2*abs(g))*differentiate(conjugate(g),z)
--setProperty(opabs, SPECIALDIFF, dvabs@((List F, SE)->F) pretend None)
derivative(opabs, (x : F) : F +-> conjugate(x)*inv(2*abs(x)))
-- Wirtinger derivate of non-holomorphic functions
derivative(opconjugate, (x : F) : F +-> 0)
derivative(conjugate opconjugate, (x : F) : F +-> 1)
derivative(opGamma, (x : F) : F +-> digamma(x)*Gamma(x))
derivative(op_log_gamma, (x : F) : F +-> digamma(x))
derivative(opBeta, [iBetaGrad1, iBetaGrad2])
derivative(opdigamma, (x : F) : F +-> polygamma(1, x))
derivative(op_eis, d_eis)
derivative(opAiryAi, (x : F) : F +-> airyAiPrime(x))
derivative(opAiryAiPrime, (x : F) : F +-> x*airyAi(x))
derivative(opAiryBi, (x : F) : F +-> airyBiPrime(x))
derivative(opAiryBiPrime, (x : F) : F +-> x*airyBi(x))
derivative(opLambertW, dLambertW)
derivative(opWeierstrassP, [iWeierstrassPGrad1, iWeierstrassPGrad2,
iWeierstrassPGrad3])
derivative(opWeierstrassPPrime, [iWeierstrassPPrimeGrad1,
iWeierstrassPPrimeGrad2, iWeierstrassPPrimeGrad3])
derivative(opWeierstrassSigma, [iWeierstrassSigmaGrad1,
iWeierstrassSigmaGrad2, iWeierstrassSigmaGrad3])
derivative(opWeierstrassZeta, [iWeierstrassZetaGrad1,
iWeierstrassZetaGrad2, iWeierstrassZetaGrad3])
setProperty(oppolygamma, SPECIALDIFF, ipolygamma@((List F, SE)->F)
pretend None)
setProperty(opBesselJ, SPECIALDIFF, iBesselJ@((List F, SE)->F)
pretend None)
setProperty(opBesselY, SPECIALDIFF, iBesselY@((List F, SE)->F)
pretend None)
setProperty(opBesselI, SPECIALDIFF, iBesselI@((List F, SE)->F)
pretend None)
setProperty(opBesselK, SPECIALDIFF, iBesselK@((List F, SE)->F)
pretend None)
setProperty(opPolylog, SPECIALDIFF, dPolylog@((List F, SE)->F)
pretend None)
)abbrev package SUMFS FunctionSpaceSum
++ Top-level sum function
++ Author: Manuel Bronstein
++ Date Created: ???
++ Date Last Updated: 19 April 1991
++ Description: computes sums of top-level expressions;
FunctionSpaceSum(R, F) : Exports == Implementation where
R : Join(IntegralDomain, Comparable,
RetractableTo Integer, LinearlyExplicitRingOver Integer)
F : Join(FunctionSpace R, CombinatorialOpsCategory,
AlgebraicallyClosedField, TranscendentalFunctionCategory)
SE ==> Symbol
K ==> Kernel F
Exports ==> with
sum : (F, SE) -> F
++ sum(a(n), n) returns A(n) such that A(n+1) - A(n) = a(n);
sum : (F, SegmentBinding F) -> F
++ sum(f(n), n = a..b) returns f(a) + f(a+1) + ... + f(b);
Implementation ==> add
import from ElementaryFunctionStructurePackage(R, F)
import from GosperSummationMethod(IndexedExponents K, K, R,
SparseMultivariatePolynomial(R, K), F)
import from Segment(F)
innersum : (F, K) -> Union(F, "failed")
notRF? : (F, K) -> Boolean
newk : () -> K
newk() == kernel(new()$SE)
sum(x : F, s : SegmentBinding F) ==
k := kernel(variable s)@K
(u := innersum(x, k)) case "failed" => summation(x, s)
eval(u::F, k, 1 + hi segment s) - eval(u::F, k, lo segment s)
sum(x : F, v : SE) ==
(u := innersum(x, kernel(v)@K)) case "failed" => summation(x,v)
u::F
notRF?(f, k) ==
for kk in tower f repeat
member?(k, tower(kk::F)) and (symbolIfCan(kk) case "failed") =>
return true
false
innersum(x, k) ==
zero? x => 0
notRF?(f := normalize(x / (x1 := eval(x, k, k::F - 1))), k) =>
"failed"
(u := GospersMethod(f, k, newk)) case "failed" => "failed"
x1 * eval(u::F, k, k::F - 1)
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-- SPAD files for the functional world should be compiled in the
-- following order:
--
-- op kl function funcpkgs manip algfunc
-- elemntry constant funceval COMBFUNC fe
spad
Compiling FriCAS source code from file
/var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/554697800083835704-25px002.spad
using old system compiler.
COMBOPC abbreviates category CombinatorialOpsCategory
------------------------------------------------------------------------
initializing NRLIB COMBOPC for CombinatorialOpsCategory
compiling into NRLIB COMBOPC
;;; *** |CombinatorialOpsCategory| REDEFINED
Time: 0 SEC.
finalizing NRLIB COMBOPC
Processing CombinatorialOpsCategory for Browser database:
--------constructor---------
--------(factorials (% %))---------
--------(factorials (% % (Symbol)))---------
--------(summation (% % (Symbol)))---------
--------(summation (% % (SegmentBinding %)))---------
--------(product (% % (Symbol)))---------
--------(product (% % (SegmentBinding %)))---------
; compiling file "/var/aw/var/LatexWiki/COMBOPC.NRLIB/COMBOPC.lsp" (written 07 OCT 2024 08:03:59 PM):
; wrote /var/aw/var/LatexWiki/COMBOPC.NRLIB/COMBOPC.fasl
; compilation finished in 0:00:00.004
------------------------------------------------------------------------
CombinatorialOpsCategory is now explicitly exposed in frame initial
CombinatorialOpsCategory will be automatically loaded when needed
from /var/aw/var/LatexWiki/COMBOPC.NRLIB/COMBOPC
COMBF abbreviates package CombinatorialFunction
------------------------------------------------------------------------
initializing NRLIB COMBF for CombinatorialFunction
compiling into NRLIB COMBF
****** Domain: R already in scope
processing macro definition dummy ==> ::((Sel (Symbol) new),F)
compiling exported factorial : F -> F
Time: 0.02 SEC.
compiling exported binomial : (F,F) -> F
Time: 0 SEC.
compiling exported permutation : (F,F) -> F
Time: 0 SEC.
importing F
importing Kernel F
compiling local number? : F -> Boolean
****** Domain: R already in scope
augmenting R: (RetractableTo (Integer))
Time: 0 SEC.
compiling exported ^ : (F,F) -> F
Time: 0.02 SEC.
compiling exported belong? : BasicOperator -> Boolean
****** comp fails at level 2 with expression: ******
error in function belong?
(|has?| | << op >> | COMB)
****** level 2 ******
$x:= op
$m:= $
$f:=
((((|op| # #) (|number?| #)) ((|number?| #) (|/\\| #) (< #) (<= #) ...)))
>> Apparent user error:
Cannot coerce op
of mode (BasicOperator)
to mode $
Moved to:
SandBoxCombfuncDiscussion