|
|
last edited 16 years ago by kratt6 |
1 2 3 4 5 6 7 8 | ||
Editor: Bill Page
Time: 2007/11/13 18:33:34 GMT-8 |
||
Note: transferred from axiom-developer.org |
changed: - \begin{aldor} #include "axiom.as" macro CCC == CombinatorialClassCategory; import from Integer; import from List Integer; import from OutputForm; CombinatorialClassCategory: Category == with { list: Integer -> List %; count: Integer -> Integer; import from NonNegativeInteger; default count(i: Integer): Integer == (#list(i))::Integer; coerce: % -> OutputForm; } Primitive(n: Integer): CombinatorialClassCategory == add { Rep == Integer; count(i: Integer): Integer == if i=n then 1 else 0; list(i: Integer): List % == if i=n then [per 1] else []; coerce(x: %): OutputForm == message(" ") } Epsilon: CombinatorialClassCategory == Primitive(0) add; Atom: CombinatorialClassCategory == Primitive(1) add; UnionClass(S1: CCC, S2: CCC): CCC == add { Rep == Union(s1: S1, s2: S2); count(i: Integer): Integer == count(i)$S1 + count(i)$S2; import from Rep; import from List S1; import from List S2; list(i: Integer): List % == { result: List % := []; for a in list(i)$S1 repeat result := cons(per union a, result); for b in list(i)$S2 repeat result := cons(per union b, result); result; } coerce(x: %): OutputForm == { (rep x) case s1 => ((rep x).s1)::OutputForm; ((rep x).s2)::OutputForm; } } CrossClass(S1: CCC, S2: CCC): with { CombinatorialClassCategory } == add { Rep == Record(t1: S1, t2: S2); count(i: Integer): Integer == { result := 0; for k in 1 .. i-1 repeat { result := result + count(k)$S1 * count(i-k)$S2; } result; } import from Rep; import from List S1; import from List S2; list(i: Integer): List % == { result: List % := []; for k in 1..i-1 repeat { for a in list(k)$S1 repeat { for b in list(i-k)$S2 repeat { result := cons(per record(a, b), result); } } } result; } coerce(x: %): OutputForm == { a := ((rep x).t1)::OutputForm; b := ((rep x).t2)::OutputForm; c: List OutputForm := [a, b]; vconcat [hconcat [hspace 1, message("o")], hconcat [hspace 1, message("/"), hspace 1, message("\")], hconcat [a,hspace 3,b]] } } TreeClass: CombinatorialClassCategory == UnionClass(Atom, CrossClass(TreeClass, TreeClass) ) add; \end{aldor} \begin{axiom} [count(i)$TreeClass for i in 1..7] \end{axiom} \begin{axiom} )set output tex off )set output algebra on (list(5)$TreeClass)::List OutputForm \end{axiom}
aldor#include "axiom.as" macro CCC == CombinatorialClassCategory; import from Integer; import from List Integer; import from OutputForm; CombinatorialClassCategory: Category == with { list: Integer -> List %; count: Integer -> Integer; import from NonNegativeInteger; default count(i: Integer): Integer == (#list(i))::Integer; coerce: % -> OutputForm; } Primitive(n: Integer): CombinatorialClassCategory == add { Rep == Integer; count(i: Integer): Integer == if i=n then 1 else 0; list(i: Integer): List % == if i=n then [per 1] else []; coerce(x: %): OutputForm == message(" ") } Epsilon: CombinatorialClassCategory == Primitive(0) add; Atom: CombinatorialClassCategory == Primitive(1) add; UnionClass(S1: CCC, S2: CCC): CCC == add { Rep == Union(s1: S1, s2: S2); count(i: Integer): Integer == count(i)$S1 + count(i)$S2; import from Rep; import from List S1; import from List S2; list(i: Integer): List % == { result: List % := []; for a in list(i)$S1 repeat result := cons(per union a, result); for b in list(i)$S2 repeat result := cons(per union b, result); result; } coerce(x: %): OutputForm == { (rep x) case s1 => ((rep x).s1)::OutputForm; ((rep x).s2)::OutputForm; } } CrossClass(S1: CCC, S2: CCC): with { CombinatorialClassCategory } == add { Rep == Record(t1: S1, t2: S2); count(i: Integer): Integer == { result := 0; for k in 1 .. i-1 repeat { result := result + count(k)$S1 * count(i-k)$S2; } result; } import from Rep; import from List S1; import from List S2; list(i: Integer): List % == { result: List % := []; for k in 1..i-1 repeat { for a in list(k)$S1 repeat { for b in list(i-k)$S2 repeat { result := cons(per record(a, b), result); } } } result; } coerce(x: %): OutputForm == { a := ((rep x).t1)::OutputForm; b := ((rep x).t2)::OutputForm; c: List OutputForm := [a, b]; vconcat [hconcat [hspace 1, message("o")], hconcat [hspace 1, message("/"), hspace 1, message("\")], hconcat [a,hspace 3,b]] } } TreeClass: CombinatorialClassCategory == UnionClass(Atom, CrossClass(TreeClass, TreeClass) ) add;
Compiling FriCAS source code from file /var/zope2/var/LatexWiki/386348539091125073-25px001.as using AXIOM-XL compiler and options -O -Fasy -Fao -Flsp -laxiom -Mno-AXL_W_WillObsolete -DAxiom -Y $AXIOM/algebra Use the system command )set compiler args to change these options. #1 (Warning) Deprecated message prefix: use `ALDOR_' instead of `_AXL' Compiling Lisp source code from file ./386348539091125073-25px001.lsp Issuing )library command for 386348539091125073-25px001 Reading /var/zope2/var/LatexWiki/386348539091125073-25px001.asy TreeClass is now explicitly exposed in frame initial TreeClass will be automatically loaded when needed from /var/zope2/var/LatexWiki/386348539091125073-25px001 CombinatorialClassCategory is now explicitly exposed in frame initial CombinatorialClassCategory will be automatically loaded when needed from /var/zope2/var/LatexWiki/386348539091125073-25px001 UnionClass is now explicitly exposed in frame initial UnionClass will be automatically loaded when needed from /var/zope2/var/LatexWiki/386348539091125073-25px001 Atom is now explicitly exposed in frame initial Atom will be automatically loaded when needed from /var/zope2/var/LatexWiki/386348539091125073-25px001 CrossClass is now explicitly exposed in frame initial CrossClass will be automatically loaded when needed from /var/zope2/var/LatexWiki/386348539091125073-25px001 Primitive is now explicitly exposed in frame initial Primitive will be automatically loaded when needed from /var/zope2/var/LatexWiki/386348539091125073-25px001 Epsilon is now explicitly exposed in frame initial Epsilon will be automatically loaded when needed from /var/zope2/var/LatexWiki/386348539091125073-25px001
axiom[count(i)$TreeClass for i in 1..7]
(1) |
axiom)set output tex off )set output algebra on (list(5)$TreeClass)::List OutputForm (2) [ o , o , o , o , / \ / \ / \ / \ o o o o / \ / \ / \ / \ o o o o o / \ / \ / \ / \ / \ o o o / \ / \ / \ o , o , o , o , / \ / \ / \ / \ o o o o o o o / \ / \ / \ / \ / \ / \ / \ o o o o / \ / \ / \ / \ o / \ o , o , o , o , / \ / \ / \ / \ o o o o o / \ / \ / \ / \ / \ o o o o o / \ / \ / \ / \ / \ o o / \ / \ o , o ] / \ / \ o o / \ / \ o o / \ / \ o o / \ / \