|
|
|
last edited 17 years ago by kratt6 |
| 1 2 3 4 5 6 7 8 | ||
|
Editor: Bill Page
Time: 2007/11/13 18:33:34 GMT-8 |
||
| Note: transferred from axiom-developer.org | ||
changed: - \begin{aldor} #include "axiom.as" macro CCC == CombinatorialClassCategory; import from Integer; import from List Integer; import from OutputForm; CombinatorialClassCategory: Category == with { list: Integer -> List %; count: Integer -> Integer; import from NonNegativeInteger; default count(i: Integer): Integer == (#list(i))::Integer; coerce: % -> OutputForm; } Primitive(n: Integer): CombinatorialClassCategory == add { Rep == Integer; count(i: Integer): Integer == if i=n then 1 else 0; list(i: Integer): List % == if i=n then [per 1] else []; coerce(x: %): OutputForm == message(" ") } Epsilon: CombinatorialClassCategory == Primitive(0) add; Atom: CombinatorialClassCategory == Primitive(1) add; UnionClass(S1: CCC, S2: CCC): CCC == add { Rep == Union(s1: S1, s2: S2); count(i: Integer): Integer == count(i)$S1 + count(i)$S2; import from Rep; import from List S1; import from List S2; list(i: Integer): List % == { result: List % := []; for a in list(i)$S1 repeat result := cons(per union a, result); for b in list(i)$S2 repeat result := cons(per union b, result); result; } coerce(x: %): OutputForm == { (rep x) case s1 => ((rep x).s1)::OutputForm; ((rep x).s2)::OutputForm; } } CrossClass(S1: CCC, S2: CCC): with { CombinatorialClassCategory } == add { Rep == Record(t1: S1, t2: S2); count(i: Integer): Integer == { result := 0; for k in 1 .. i-1 repeat { result := result + count(k)$S1 * count(i-k)$S2; } result; } import from Rep; import from List S1; import from List S2; list(i: Integer): List % == { result: List % := []; for k in 1..i-1 repeat { for a in list(k)$S1 repeat { for b in list(i-k)$S2 repeat { result := cons(per record(a, b), result); } } } result; } coerce(x: %): OutputForm == { a := ((rep x).t1)::OutputForm; b := ((rep x).t2)::OutputForm; c: List OutputForm := [a, b]; vconcat [hconcat [hspace 1, message("o")], hconcat [hspace 1, message("/"), hspace 1, message("\")], hconcat [a,hspace 3,b]] } } TreeClass: CombinatorialClassCategory == UnionClass(Atom, CrossClass(TreeClass, TreeClass) ) add; \end{aldor} \begin{axiom} [count(i)$TreeClass for i in 1..7] \end{axiom} \begin{axiom} )set output tex off )set output algebra on (list(5)$TreeClass)::List OutputForm \end{axiom}
aldor#include "axiom.as" macro CCC == CombinatorialClassCategory; import from Integer; import from List Integer; import from OutputForm; CombinatorialClassCategory: Category == with { list: Integer -> List %; count: Integer -> Integer; import from NonNegativeInteger; default count(i: Integer): Integer == (#list(i))::Integer; coerce: % -> OutputForm; } Primitive(n: Integer): CombinatorialClassCategory == add { Rep == Integer; count(i: Integer): Integer == if i=n then 1 else 0; list(i: Integer): List % == if i=n then [per 1] else []; coerce(x: %): OutputForm == message(" ") } Epsilon: CombinatorialClassCategory == Primitive(0) add; Atom: CombinatorialClassCategory == Primitive(1) add; UnionClass(S1: CCC, S2: CCC): CCC == add { Rep == Union(s1: S1, s2: S2); count(i: Integer): Integer == count(i)$S1 + count(i)$S2; import from Rep; import from List S1; import from List S2; list(i: Integer): List % == { result: List % := []; for a in list(i)$S1 repeat result := cons(per union a, result); for b in list(i)$S2 repeat result := cons(per union b, result); result; } coerce(x: %): OutputForm == { (rep x) case s1 => ((rep x).s1)::OutputForm; ((rep x).s2)::OutputForm; } } CrossClass(S1: CCC, S2: CCC): with { CombinatorialClassCategory } == add { Rep == Record(t1: S1, t2: S2); count(i: Integer): Integer == { result := 0; for k in 1 .. i-1 repeat { result := result + count(k)$S1 * count(i-k)$S2; } result; } import from Rep; import from List S1; import from List S2; list(i: Integer): List % == { result: List % := []; for k in 1..i-1 repeat { for a in list(k)$S1 repeat { for b in list(i-k)$S2 repeat { result := cons(per record(a, b), result); } } } result; } coerce(x: %): OutputForm == { a := ((rep x).t1)::OutputForm; b := ((rep x).t2)::OutputForm; c: List OutputForm := [a, b]; vconcat [hconcat [hspace 1, message("o")], hconcat [hspace 1, message("/"), hspace 1, message("\")], hconcat [a,hspace 3,b]] } } TreeClass: CombinatorialClassCategory == UnionClass(Atom, CrossClass(TreeClass, TreeClass) ) add;
Compiling FriCAS source code from file
/var/zope2/var/LatexWiki/386348539091125073-25px001.as using
AXIOM-XL compiler and options
-O -Fasy -Fao -Flsp -laxiom -Mno-AXL_W_WillObsolete -DAxiom -Y $AXIOM/algebra
Use the system command )set compiler args to change these
options.
#1 (Warning) Deprecated message prefix: use `ALDOR_' instead of `_AXL'
Compiling Lisp source code from file
./386348539091125073-25px001.lsp
Issuing )library command for 386348539091125073-25px001
Reading /var/zope2/var/LatexWiki/386348539091125073-25px001.asy
TreeClass is now explicitly exposed in frame initial
TreeClass will be automatically loaded when needed from
/var/zope2/var/LatexWiki/386348539091125073-25px001
CombinatorialClassCategory is now explicitly exposed in frame
initial
CombinatorialClassCategory will be automatically loaded when needed
from /var/zope2/var/LatexWiki/386348539091125073-25px001
UnionClass is now explicitly exposed in frame initial
UnionClass will be automatically loaded when needed from
/var/zope2/var/LatexWiki/386348539091125073-25px001
Atom is now explicitly exposed in frame initial
Atom will be automatically loaded when needed from
/var/zope2/var/LatexWiki/386348539091125073-25px001
CrossClass is now explicitly exposed in frame initial
CrossClass will be automatically loaded when needed from
/var/zope2/var/LatexWiki/386348539091125073-25px001
Primitive is now explicitly exposed in frame initial
Primitive will be automatically loaded when needed from
/var/zope2/var/LatexWiki/386348539091125073-25px001
Epsilon is now explicitly exposed in frame initial
Epsilon will be automatically loaded when needed from
/var/zope2/var/LatexWiki/386348539091125073-25px001axiom[count(i)$TreeClass for i in 1..7]
| (1) |
axiom)set output tex off )set output algebra on (list(5)$TreeClass)::List OutputForm (2) [ o , o , o , o , / \ / \ / \ / \ o o o o / \ / \ / \ / \ o o o o o / \ / \ / \ / \ / \ o o o / \ / \ / \ o , o , o , o , / \ / \ / \ / \ o o o o o o o / \ / \ / \ / \ / \ / \ / \ o o o o / \ / \ / \ / \ o / \ o , o , o , o , / \ / \ / \ / \ o o o o o / \ / \ / \ / \ / \ o o o o o / \ / \ / \ / \ / \ o o / \ / \ o , o ] / \ / \ o o / \ / \ o o / \ / \ o o / \ / \