1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 | ||
Editor: pagani
Time: 2022/09/03 15:07:39 GMT+0 |
||
Note: |
changed: -[SymbolInteger] -- Package to convert symbols _123 to integers 123 and vv. [SymbolInteger] -- Package to convert symbols _123 to integers 123 and vv. [DependentTypeTest2] -- CoChainCat, ZeroChainCat
This is the front page of the SandBox?. You can try anything you like here but keep in mind that other people are also using these pages to learn and experiment with FriCAS? and Reduce. Please be courteous to others if you correct mistakes and try to explain what you are doing.
Normally, if you edit
any page on MathAction? and click
Save
or if you add a comment to a page, a notice of the
change is sent out to all subscribers on the axiom-developer
email list, see the [Axiom Community]?. Separate notices are
also sent to those users who subscribe
directly to
MathAction?.
If you click Preview
instead of Save
, you will get a chance
to see the result of your calculations and LaTeX? commands but
no email notice is sent out and the result is not saved until
you decide to click Save
or not.
On this page or on any other page with a name beginning with
SandBox? such as SandBoxJohn2?, SandBoxSimple?, SandBoxEtc?, clicking
Save
only sends email notices to users who subscribe
directly to that specific SandBox? page. Saving and adding
comments does not create an email to the email list. You
can safely use these pages for testing without disturbing
anyone who might not care to know about your experiments.
You can also create new SandBox? pages as needed just by editing this page and adding a link to the list of new page below. The link must include at least two uppercase letters and no spaces or alternatively it can be any phrase written inside [ ] brackets as long as it begins with SandBox?. When you Save this page, the link to the new page will appear with a blue question mark ? beside it. Clicking on the blue question mark ? will ask you if you wish to create a new page.
generator
for type Vectorpretend
vs. strong typingSandBoxCS224?
[SandBox kaveh]?
[MathMLFormat]?
extend
to add a category to a previously defined domain.1::EXPR INT
or 1::FRAC INT
[Sandbox Variables Evaluation]?
[SandBox Zero]?
[SandBox Axiom Strengths]?
[[SandBox12TestIndetAndComplex]]?
[SandBoxKMG]?
[SandBoxDGE]?
[new]?
[SandBox]?
Click on the ? to create a new page. You should also edit this page to include a description and a new empty link for the next person.
Here is a simple Axiom command:
\begin{axiom} integrate(1/(a+z^3), z=0..1,"noPole") \end{axiom}
(1) -> integrate(1/(a+z^3),z=0..1, "noPole")
(1) |
And here is a REDUCE command:
\begin{reduce} load_package sfgamma; load_package defint; int(1/(a+z^3), z,0,1); \end{reduce}
load_package sfgamma; | reduce |
Please review the list of [Common Mistakes]? and the list of [MathAction Problems]? if you are have never used MathAction? before. If you are learning to use Axiom and think that someone must have solved some particular problem before you, check this list of Common [Axiom Problems]?.
solve(a*x+b,x)
(2) |
Preview
and Cancel
buttons:
integrate(sin x,x)
(3) |
in response to an exchange of emails with Gabriel Dos Reis concerning the validity of automatic translations of x >= y into not x < y, etc.
)abbrev package REFL Reflect Reflect(T:Type): with constructor? : Symbol -> Boolean == add constructor?(p:Symbol):Boolean == car(devaluate(T)$Lisp)$SExpression = convert(p)$SExpression
Compiling FriCAS source code from file /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/2684009892188271010-25px004.spad using old system compiler. REFL abbreviates package Reflect ------------------------------------------------------------------------ initializing NRLIB REFL for Reflect compiling into NRLIB REFL compiling exported constructor? : Symbol -> Boolean Time: 0.01 SEC.
(time taken in buildFunctor: 0)
;;; *** |Reflect| REDEFINED
;;; *** |Reflect| REDEFINED Time: 0 SEC.
Cumulative Statistics for Constructor Reflect Time: 0.01 seconds
finalizing NRLIB REFL Processing Reflect for Browser database: --->-->Reflect(constructor): Not documented!!!! --->-->Reflect((constructor? ((Boolean) (Symbol)))): Not documented!!!! --->-->Reflect(): Missing Description ; compiling file "/var/aw/var/LatexWiki/REFL.NRLIB/REFL.lsp" (written 03 SEP 2022 03:07:20 PM):
; /var/aw/var/LatexWiki/REFL.NRLIB/REFL.fasl written ; compilation finished in 0:00:00.011 ------------------------------------------------------------------------ Reflect is now explicitly exposed in frame initial Reflect will be automatically loaded when needed from /var/aw/var/LatexWiki/REFL.NRLIB/REFL
T1:=Integer
(4) |
T2:=Polynomial Fraction T1
(5) |
T3:=Complex T2
(6) |
constructor?('Polynomial)$Reflect(T1)
(7) |
constructor?('Polynomial)$Reflect(T2)
(8) |
constructor?('Polynomial)$Reflect(T3)
(9) |
constructor?('Complex)$Reflect(T3)
(10) |
This domain implements the free product of monoids (or groups)
It is the coproduct in the category of monoids (groups).
FreeProduct(A,B)
is the monoid (group) whose elements are
the reduced words in A and B, under the operation of concatenation
followed by reduction:
Ref: http://en.wikipedia.org/wiki/Free_product
Franz Lehner provided the following example of caching the output of a function: SandBoxRemember? MortonCode? (also called z-order) is a method of combining multidimensional "coordinates" into a one-dimensional coordinate or "code" that attempts to preserve locality, i.e. minimize the average Euclidean distance between coordinate locations associated with adjacent codes. Morton codes are computationally less expensive to convert to and from coordinate values than Hilbert codes. SandBoxGroebnerBasis? examples from Ideals, Varieties, and Algorithms Third Edition, 2007 FrobeniusAlgebraVectorSpacesAndPolynomialIdeals? Classifying low dimensional Frobenius algebras [SandBoxSTRING2SPAD]? demonstrates how to call the [SPAD]? compiler from the interpreter.Sandbox with some simple Algebra [SimplifyingAlgebraicExpressions]?
SandBoxObserverAsIdempotent? FriCAS?g:=1/(x*(1-a*(1-x)))
(11) |
integrate(g,x)
(12) |
(13) |
(14) |
)set output algebra on
)set output tex off
r1:=(16*x^14-125*x^10+150*x^6+375*x^2)/(256*x^16+480*x^12+1025*x^8+750*x^4 +625)
14 10 6 2 16 x - 125 x + 150 x + 375 x (13) ------------------------------------------ 16 12 8 4 256 x + 480 x + 1025 x + 750 x + 625
r2:=integrate(r1,x=0..1);
numeric r2
(15) 0.1239829519_8500639758
unparse(simplify(r2)::InputForm)
(16) "(37268*5^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^ (1/2)*atan(((1155*5^(1/2)+2200)*62^(1/2))/((106*5^(1/2)+248)*55^(1/2)*15125^( 1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)*((((-1093842200)*5^( 1/2)+(-2445921555))*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2 )+29421))^(1/2)+((790913912*5^(1/2)+1768578272)*15125^(1/2)+(108750662900*5^( 1/2)+243179512400)))/((790913912*5^(1/2)+1768578272)*15125^(1/2)))^(1/2)+((10 6*5^(1/2)+248)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+294 21))^(1/2)+((-55)*5^(1/2)+(-220))*55^(1/2)*62^(1/2))))+((823788*5^(1/2)+18401 60)*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)*atan(((1155* 5^(1/2)+(-2200))*62^(1/2))/((106*5^(1/2)+(-248))*55^(1/2)*15125^(1/4)*((13144 *5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*((((-1093842200)*5^(1/2)+2 445921555)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29 421)))^(1/2)+((790913912*5^(1/2)+(-1768578272))*15125^(1/2)+(108750662900*5^( 1/2)+(-243179512400))))/((790913912*5^(1/2)+(-1768578272))*15125^(1/2)))^(1/2 )+((106*5^(1/2)+(-248))*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144 *5^(1/2)+(-29421)))^(1/2)+((-55)*5^(1/2)+220)*55^(1/2)*62^(1/2))))+((823788*5 ^(1/2)+1840160)*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)* atan(((1155*5^(1/2)+(-2200))*62^(1/2))/((106*5^(1/2)+(-248))*55^(1/2)*15125^( 1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*(((1093842200* 5^(1/2)+(-2445921555))*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144* 5^(1/2)+(-29421)))^(1/2)+((790913912*5^(1/2)+(-1768578272))*15125^(1/2)+(1087 50662900*5^(1/2)+(-243179512400))))/((790913912*5^(1/2)+(-1768578272))*15125^ (1/2)))^(1/2)+((106*5^(1/2)+(-248))*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30 752))/(13144*5^(1/2)+(-29421)))^(1/2)+(55*5^(1/2)+(-220))*55^(1/2)*62^(1/2))) )+(37268*5^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421))) ^(1/2)*atan(((1155*5^(1/2)+2200)*62^(1/2))/((106*5^(1/2)+248)*55^(1/2)*15125^ (1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)*(((1093842200*5^(1/ 2)+2445921555)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+294 21))^(1/2)+((790913912*5^(1/2)+1768578272)*15125^(1/2)+(108750662900*5^(1/2)+ 243179512400)))/((790913912*5^(1/2)+1768578272)*15125^(1/2)))^(1/2)+((106*5^( 1/2)+248)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^ (1/2)+(55*5^(1/2)+220)*55^(1/2)*62^(1/2))))+(((-4081)*5^(1/2)+(-9548))*55^(1/ 2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*log((10 93842200*5^(1/2)+2445921555)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(131 44*5^(1/2)+29421))^(1/2)+((790913912*5^(1/2)+1768578272)*15125^(1/2)+(1087506 62900*5^(1/2)+243179512400)))+(((-4081)*5^(1/2)+(-9548))*55^(1/2)*62^(1/2)*(( 13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)*log((1093842200*5^(1/2)+(-2 445921555))*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-2 9421)))^(1/2)+(((-790913912)*5^(1/2)+1768578272)*15125^(1/2)+((-108750662900) *5^(1/2)+243179512400)))+((4081*5^(1/2)+9548)*55^(1/2)*62^(1/2)*((13144*5^(1/ 2)+30752)/(13144*5^(1/2)+29421))^(1/2)*log(((-1093842200)*5^(1/2)+2445921555) *62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/ 2)+(((-790913912)*5^(1/2)+1768578272)*15125^(1/2)+((-108750662900)*5^(1/2)+24 3179512400)))+((4081*5^(1/2)+9548)*55^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752) )/(13144*5^(1/2)+(-29421)))^(1/2)*log(((-1093842200)*5^(1/2)+(-2445921555))*6 2^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((790 913912*5^(1/2)+1768578272)*15125^(1/2)+(108750662900*5^(1/2)+243179512400)))+ (((-823788)*5^(1/2)+(-1840160))*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2 )+29421))^(1/2)*atan(((231*5^(1/2)+(-440))*62^(1/2))/((106*5^(1/2)+(-248))*55 ^(1/2)*15125^(1/4)*(11/(2*15125^(1/2)))^(1/2)*((13144*5^(1/2)+(-30752))/(1314 4*5^(1/2)+(-29421)))^(1/2)+((-11)*5^(1/2)+44)*55^(1/2)*62^(1/2)))+(((-823788) *5^(1/2)+(-1840160))*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^( 1/2)*atan(((231*5^(1/2)+(-440))*62^(1/2))/((106*5^(1/2)+(-248))*55^(1/2)*1512 5^(1/4)*(11/(2*15125^(1/2)))^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+( -29421)))^(1/2)+(11*5^(1/2)+(-44))*55^(1/2)*62^(1/2)))+((-37268)*5^(1/2)*62^( 1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*atan(((231*5^( 1/2)+440)*62^(1/2))/((106*5^(1/2)+248)*55^(1/2)*15125^(1/4)*(11/(2*15125^(1/2 )))^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((-11)*5^(1/2)+ (-44))*55^(1/2)*62^(1/2)))+((-37268)*5^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752 ))/(13144*5^(1/2)+(-29421)))^(1/2)*atan(((231*5^(1/2)+440)*62^(1/2))/((106*5^ (1/2)+248)*55^(1/2)*15125^(1/4)*(11/(2*15125^(1/2)))^(1/2)*((13144*5^(1/2)+30 752)/(13144*5^(1/2)+29421))^(1/2)+(11*5^(1/2)+44)*55^(1/2)*62^(1/2)))+(5830*5 ^(1/2)+13640)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+( -29421)))^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2))))))))))) ))/((89782*5^(1/2)+210056)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13 144*5^(1/2)+(-29421)))^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1 /2))"
r3:=integrate(r1,x);
unparse(simplify(r3)::InputForm)
(18) "((85184*x^8+79860*x^4+133100)*5^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13 144*5^(1/2)+(-29421)))^(1/2)*atan(((1155*5^(1/2)+2200)*62^(1/2))/((106*5^(1/2 )+248)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/ 2)*((((-1093842200)*x*5^(1/2)+(-2445921555)*x)*62^(1/2)*15125^(1/4)*((13144*5 ^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((790913912*x^2*5^(1/2)+1768578272 *x^2)*15125^(1/2)+(108750662900*5^(1/2)+243179512400)))/((790913912*5^(1/2)+1 768578272)*15125^(1/2)))^(1/2)+((106*x*5^(1/2)+248*x)*55^(1/2)*15125^(1/4)*(( 13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((-55)*5^(1/2)+(-220))*55^( 1/2)*62^(1/2))))+(((1882944*x^8+1765260*x^4+2942100)*5^(1/2)+(4206080*x^8+394 3200*x^4+6572000))*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/ 2)*atan(((1155*5^(1/2)+(-2200))*62^(1/2))/((106*5^(1/2)+(-248))*55^(1/2)*1512 5^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*((((-109384 2200)*x*5^(1/2)+2445921555*x)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/ (13144*5^(1/2)+(-29421)))^(1/2)+((790913912*x^2*5^(1/2)+(-1768578272)*x^2)*15 125^(1/2)+(108750662900*5^(1/2)+(-243179512400))))/((790913912*5^(1/2)+(-1768 578272))*15125^(1/2)))^(1/2)+((106*x*5^(1/2)+(-248)*x)*55^(1/2)*15125^(1/4)*( (13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)+((-55)*5^(1/2)+220)* 55^(1/2)*62^(1/2))))+(((1882944*x^8+1765260*x^4+2942100)*5^(1/2)+(4206080*x^8 +3943200*x^4+6572000))*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421)) ^(1/2)*atan(((1155*5^(1/2)+(-2200))*62^(1/2))/((106*5^(1/2)+(-248))*55^(1/2)* 15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*(((1093 842200*x*5^(1/2)+(-2445921555)*x)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-3075 2))/(13144*5^(1/2)+(-29421)))^(1/2)+((790913912*x^2*5^(1/2)+(-1768578272)*x^2 )*15125^(1/2)+(108750662900*5^(1/2)+(-243179512400))))/((790913912*5^(1/2)+(- 1768578272))*15125^(1/2)))^(1/2)+((106*x*5^(1/2)+(-248)*x)*55^(1/2)*15125^(1/ 4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)+(55*5^(1/2)+(-22 0))*55^(1/2)*62^(1/2))))+((85184*x^8+79860*x^4+133100)*5^(1/2)*62^(1/2)*((131 44*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*atan(((1155*5^(1/2)+2200 )*62^(1/2))/((106*5^(1/2)+248)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(1 3144*5^(1/2)+29421))^(1/2)*(((1093842200*x*5^(1/2)+2445921555*x)*62^(1/2)*151 25^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((790913912*x^2* 5^(1/2)+1768578272*x^2)*15125^(1/2)+(108750662900*5^(1/2)+243179512400)))/((7 90913912*5^(1/2)+1768578272)*15125^(1/2)))^(1/2)+((106*x*5^(1/2)+248*x)*55^(1 /2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+(55*5^(1/ 2)+220)*55^(1/2)*62^(1/2))))+((((-9328)*x^8+(-8745)*x^4+(-14575))*5^(1/2)+((- 21824)*x^8+(-20460)*x^4+(-34100)))*55^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752) )/(13144*5^(1/2)+(-29421)))^(1/2)*log((1093842200*x*5^(1/2)+2445921555*x)*62^ (1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((79091 3912*x^2*5^(1/2)+1768578272*x^2)*15125^(1/2)+(108750662900*5^(1/2)+2431795124 00)))+(((9328*x^8+8745*x^4+14575)*5^(1/2)+(21824*x^8+20460*x^4+34100))*55^(1/ 2)*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)*log((10938422 00*x*5^(1/2)+(-2445921555)*x)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/ (13144*5^(1/2)+(-29421)))^(1/2)+((790913912*x^2*5^(1/2)+(-1768578272)*x^2)*15 125^(1/2)+(108750662900*5^(1/2)+(-243179512400))))+((((-9328)*x^8+(-8745)*x^4 +(-14575))*5^(1/2)+((-21824)*x^8+(-20460)*x^4+(-34100)))*55^(1/2)*62^(1/2)*(( 13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)*log(((-1093842200)*x*5^(1/2 )+2445921555*x)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2) +(-29421)))^(1/2)+((790913912*x^2*5^(1/2)+(-1768578272)*x^2)*15125^(1/2)+(108 750662900*5^(1/2)+(-243179512400))))+(((9328*x^8+8745*x^4+14575)*5^(1/2)+(218 24*x^8+20460*x^4+34100))*55^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5 ^(1/2)+(-29421)))^(1/2)*log(((-1093842200)*x*5^(1/2)+(-2445921555)*x)*62^(1/2 )*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((790913912 *x^2*5^(1/2)+1768578272*x^2)*15125^(1/2)+(108750662900*5^(1/2)+243179512400)) )+((5830*x^7+40810*x^3)*5^(1/2)+(13640*x^7+95480*x^3))*55^(1/2)*15125^(1/4)*( (13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*((13144*5^(1/2)+3075 2)/(13144*5^(1/2)+29421))^(1/2)))))))))/(((205216*x^8+192390*x^4+320650)*5^(1 /2)+(480128*x^8+450120*x^4+750200))*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30 752))/(13144*5^(1/2)+(-29421)))^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+2 9421))^(1/2))"
r4:=D(r3,x);
--simplify(r1-r4) --normalize(r1-r4) r5:=eval(r1-r4,x=10);
numeric r5
(21) - 0.8167478186_7186562196 E -7
)set output algebra on
sin(x^b)
b (22) sin(x )
D(%,x)
b - 1 b (23) b x cos(x )
D(%,x)
2 b - 1 2 b 2 b - 2 b (24) - b (x ) sin(x ) + (b - b)x cos(x )
)set output algebra off
)set output tex on
guessRec([1,1, 0, 1, - 1, 2, - 1, 5, - 4, 29, - 13, 854, - 685])
(15) |
integral(x^2,x)
(16) |
integrate(x^2,x)
(17) |
integrate(log(m*x+b),x)
(18) |
integrate(log(m*x+b) * exp(-(log(x) - mu)^2 / (2*sigma^2)) / (X*sigma*sqrt(2*pi)),x)
(19) |
integrate(log(b) * exp(-(log(x) - mu)^2 / (2*sigma^2)) / (X*sigma*sqrt(2*pi)),x)
(20) |