This is the front page of the SandBox?. You can try anything you like
here but keep in mind that other people are also using these pages to
learn and experiment with Axiom and Reduce. Please be courteous to
others if you correct mistakes and try to explain what you are doing.
No Email Notices
Normally, if you edit
any page on MathAction? and click
Save
or if you add a comment to a page, a notice of the
change is sent out to all subscribers on the axiom-developer
email list, see the [Axiom Community]?. Separate notices are
also sent to those users who subscribe
directly to
MathAction?.
Use Preview
If you click Preview
instead of Save
, you will get a chance
to see the result of your calculations and LaTeX? commands but
no email notice is sent out and the result is not saved until
you decide to click Save
or not.
Use the SandBox
On this page or on any other page with a name beginning with
SandBox? such as SandBoxJohn2?, SandBoxSimple?, SandBoxEtc?, clicking
Save
only sends email notices to users who subscribe
directly to that specific SandBox? page. Saving and adding
comments does not create an email to the email list. You
can safely use these pages for testing without disturbing
anyone who might not care to know about your experiments.
New SandBox Pages
You can also create new SandBox? pages as needed just by
editing this page and adding a link to the list of new page
below. The link must include at least two uppercase letters
and no spaces or alternatively it can be any phrase written
inside [ ] brackets as long as it begins with SandBox?. When
you Save this page, the link to the new page will appear with
a blue question mark ? beside it.
Clicking on the blue question mark ?
will ask you if you wish to create a new page.
- [SandBox Aldor Category Theory]?
- based on
"Prospects for Category Theory in Aldor" by Saul Youssef, 2004
http://atlas.bu.edu/~youssef/papers/math/aldor/aldor.pdf
- [SandBox Aldor Foreign]?
- Using Aldor to call external C routines
- [SandBox Aldor Generator]?
- Aldor defines a
generator
for type Vector
- [SandBox Aldor Join and Meet]?
- Aldor has category constructor named
Meet which appears to be analogous to (but opposite of) Join.
- [SandBox Aldor Semantics]?
- exports and constants
- [SandBox Aldor Sieve]?
- A prime number sieve in Aldor to count primes <= n.
- [SandBox Aldor Testing]?
- Using Aldor to write Axiom library routines
- [SandBox Arrays]?
- How fast is array access in Axiom?
- [SandBox Axiom Syntax]?
- Syntax of if then else
- [SandBox Boolean]?
- evaluating Boolean expressions and conditions
- [SandBox Cast]?
- Meaning and use of
pretend
vs. strong typing
- [SandBox Categorical Relativity]?
- Special relativity without the Lorentz group
- [SandBox Category of Graphs]?
- Graph theory in Axiom
- [SandBoxCL-WEB]?
- Tangle operation for literate programming implemented in Common Lisp
- [SandBox Combinat]?
- A{ld,xi}o{r,m}Combinat
- [SandBox Content MathML]?
- Content vs. presentation MathML?
SandBoxCS224?
- [SandBox Direct Product]?
- A x B
- [SandBox DistributedExpression]?
- expression in sum-of-products form
- [SandBox Domains and Types]?
- What is the difference?
- [SandboxTypeDefinitions]?
- What does the type means for you?
- [AxiomEmacsMode]?
- Beginnings of an Emacs mode for Axiom based off of Jay's work and others
- [SandBox Embeded PDF]?
- pdf format documents can be displayed inline
- [SandBox EndPaper]?
- Algebra and Data Structure Hierarchy (lattice) diagrams
- [SandBox Folding]?
- experiments with DHTML, javascript, etc.
- [SandBox Functional Addition]?
- "adding" two functions
- [SandBox Functions]?
- How do they work?
- [SandBox Functors]?
- What are they? In Axiom functors are also called domain constructors.
- [SandBox Gamma]?
- Numerical evaluation of the incomplete Gamma function
- [SandBox GuessingSequence]?
- Guessing integer sequences
- [SandBox Integration]?
- Examples of integration in Axiom and Reduce
- [SandBox Kernel]?
- What is a "kernel"?
[SandBox kaveh]?
- [SandBox LaTeX]?
- LaTeX? commands allowed in MathAction?
- [SandBox Lisp]?
- Using Lisp in Axiom
- [SandBox Manip]?
- expression manipulations
- [SandBox Manipulating Domains]?
- testing the domain of an expression
- [SandBox Mapping]?
- A->B is a type in Axiom
[MathMLFormat]?
- [SandBox Matrix]?
- Examples of working with matrices in Axiom
- [SandBox Maxima]?
- Testing the Maxima interface
- [SandBox Monoid]?
- Rings and things
- [SandBox Monoid Extend]?
- Martin Rubey's beautiful idea about using
extend
to add a category to a previously defined domain.
- [SandBox Noncommutative Polynomials]?
- XPOLY and friends
- [SandBox Numerical Integration]?
- Simpson method
- [SandBox NNI]?
- NonNegative? Integer without using SubDomain?
- [SandBox Pamphlet]?
- [Literate Programming]? support on MathAction?
- [SandBoxPartialFraction]?
- Trigonometric expansion example
- SandBoxPfaffian?
- Computing the Pfaffian of a square matrix
- [SandBox Polymake]?
- an interface between Axiom and PolyMake?
- [SandBox Polynomials]?
- Axiom's polynomial domains are certainly
rich and complex!
- [SandBox ProblemSolving]?
- Test page for educational purposes
- [SandBox Qubic]?
- Solving cubic polynomials
- [SandBox Reduce And MathML]?
- Reduce can use MathML? for both input and output
- [SandBox Reflection in Aldor]?
- a reflection framework
- [SandBoxRelativeVelocity]?
- Slides for IARD 2006: Addition of
Relative Velocites is Associative
- [SandBox Sage]?
- This is a test of Sage in MathAction?
- [SandBox Shortcoming]?
- Implementation of solve
- [SandBox Solve]?
- Solving equations
- [SandBox Statistics]?
- calculating statistics in Axiom
- [SandBox SubDomain]?
- What is a SubDomain??
- [SandBox Tail Recursion]?
- When does Axiom replace recursion with iteration?
- [SandBox Text Files]?
- How to access text files in Axiom
- [SandBox Trace Analysed]?
- Tracing can affect output of
1::EXPR INT
or 1::FRAC INT
- [SandBox Units and Dimensions]?
- Scientific units and dimensions
- [SandBox Spad]?
- Domain construction
- [SandBox Speed]?
- Compilation speed
[SandBox Zero]?
[SandBox Axiom Strengths]?
- SandBoxJohn2?
- Experiments with matrices and various other stuff
- SandBox2?
- Experiments
- SandBox3?
- Experiments
- SandBoxSymbolicInverseTrig?
- Experiments
- SandBoxGraphviz?
- Experiments with GraphViz? and StructuredTables?
- SandBoxDifferentialEquations?
- Differential Equations etc.
- [SandBoxMatrixExample]?
- [SandBoxRotationMatrix]?
- Here you can create your own SandBox?.
- [SandBox9]?
- Experiments with JET Bundles
- [SandBoxGnuDraw]?
- Miscellaneous
- [SandBox11]?
- Miscellaneous
[[SandBox12TestIndetAndComplex]]?
- [SolvingDifferentialEquations]?
- Solving some nonlinear differential equations
- [SandBox42]?
- Miscellaneous
- [SandBox DoOps]?
- used to run Axiom without actually have to have it installed!
[SandBoxKMG]?
[SandBoxDGE]?
- [SandBoxMLE]?
- Maximum likelihood estimation (statistics)
- [SandBoxFisher]?
- Fisher's exact test for 2x2 tables (statistics)
- [SandBoxNewtonsMethod]?
- Newton's method for numerically solving f(x)=0
(with examples of calling Axiom expressions and Spad functions from Lisp).
- [SandBoxVeryLongLaTeX]?
- Test long lines
- [SandBox Complementsdalgebrelineaire]?
- Francois Maltey
- [SandBoxFriCAS]?
- page for testing friCAS
- [SandBoxEcfact]?
- Aldor compiler problem?
- [SandBoxMyReduce]?
- calling reduce with empty list
- [SandBoxCategoryTerms]?
- Category theory terminology used in SPAD
- [SandBoxRealSpace]?
- Some tests to mimic R^n
- [SandBoxProp]?
- First order language over comparable types (tests for qel)
- [SandBoxGeom1]?
- Cells and k-surfaces (preps for manifold<-charts)
- [SandBoxPQTY]?
- Some tests for pqty buckingham pi (physical quantities)
- [SandBoxTensorProduct3]?
- Tensor product of three different spaces: U#V#W
- [SandBoxSurfaceComplex]?
- Some tests for k-cells and k-surfaces (Rudin/PMMA)
- [SandBoxUnify]?
- Some unification tests
[SandBox]?
Click on the ? to create a new page.
You should also edit this page to include a description and a new empty
link for the next person.
Examples
Here is a simple Axiom command:
\begin{axiom}
integrate(1/(a+z^3), z=0..1,"noPole")
\end{axiom}
fricas
integrate(1/(a+z^3), z=0..1,"noPole")
Type: Union(f1: OrderedCompletion
?(Expression(Integer)),
...)
And here is a REDUCE command:
\begin{reduce}
load_package sfgamma;
load_package defint;
int(1/(a+z^3), z,0,1);
\end{reduce}
load_package sfgamma;
load_package defint;
*** gamma declared operator
int(1/(a+z^3), z,0,1); | reduce |
Common Mistakes
Please review the list of [Common Mistakes]? and the list
of [MathAction Problems]? if you are have never used
MathAction? before. If you are learning to use Axiom and think
that someone must have solved some particular problem before
you, check this list of Common [Axiom Problems]?.
fricas
solve(a*x+b,x)
Type: List(Equation(Fraction(Polynomial(Integer))))
SandBoxNonAssociativeAlgebra
?
Testing lexical scoping rules in SandBoxLexicalScope
?.
SandBoxOverloading
?
SandBoxSum
? (like Product)
SandBoxSymbolic
?
For example: SandBoxLeftFreeModule
?
This is a test of the
Preview
and
Cancel
buttons:
fricas
integrate(sin x, x)
Type: Union(Expression(Integer),...)
SandBoxSubsetCategory
?
SandBoxCombinat
?
SandBoxEquation
? SandBoxInequation
? SandBoxInequality
?
SandBoxAdjacencyMatrix
?
SandBoxGnuPlotTex
?
SandBoxDefineInteger
?
SandBoxCommutativeCategory
?
SandBoxLiteral
?
SandBoxPartiallyOrderedSet
?
in response to an exchange of emails with Gabriel Dos Reis
concerning the validity of automatic translations of x >= y
into not x < y, etc.
[SandBox/interp/i-funsel.boot]
?
SandBoxTensorProductPolynomial
?
spad
)abbrev package REFL Reflect
Reflect(T:Type): with
constructor? : Symbol -> Boolean
== add
constructor?(p:Symbol):Boolean == car(devaluate(T)$Lisp)$SExpression = convert(p)$SExpression
spad
Compiling FriCAS source code from file
/var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/2684009892188271010-25px004.spad
using old system compiler.
REFL abbreviates package Reflect
------------------------------------------------------------------------
initializing NRLIB REFL for Reflect
compiling into NRLIB REFL
compiling exported constructor? : Symbol -> Boolean
Time: 0 SEC.
(time taken in buildFunctor: 0)
;;; *** |Reflect| REDEFINED
;;; *** |Reflect| REDEFINED
Time: 0.01 SEC.
Cumulative Statistics for Constructor Reflect
Time: 0.01 seconds
finalizing NRLIB REFL
Processing Reflect for Browser database:
--->-->Reflect(constructor): Not documented!!!!
--->-->Reflect((constructor? ((Boolean) (Symbol)))): Not documented!!!!
--->-->Reflect(): Missing Description
; compiling file "/var/aw/var/LatexWiki/REFL.NRLIB/REFL.lsp" (written 23 DEC 2016 03:43:32 AM):
; /var/aw/var/LatexWiki/REFL.NRLIB/REFL.fasl written
; compilation finished in 0:00:00.011
------------------------------------------------------------------------
Reflect is now explicitly exposed in frame initial
Reflect will be automatically loaded when needed from
/var/aw/var/LatexWiki/REFL.NRLIB/REFL
fricas
T1:=Integer
Type: Type
fricas
T2:=Polynomial Fraction T1
Type: Type
fricas
T3:=Complex T2
Type: Type
fricas
constructor?('Polynomial)$Reflect(T1)
Type: Boolean
fricas
constructor?('Polynomial)$Reflect(T2)
Type: Boolean
fricas
constructor?('Polynomial)$Reflect(T3)
Type: Boolean
fricas
constructor?('Complex)$Reflect(T3)
Type: Boolean
SandBoxConditionalFunctions
?
SandBoxNonZeroInteger
? is an attempt to define the domain of Integers without 0.
SandboxDelay
?
SandBoxHiddenOverloading
?
SandBoxTensorProduct
? by Franz Lehner
SandBoxComplexManifold
?
SandBoxDifferentialPolynomial
?
SandBoxGrassmannIsometry
? - All mappings that preserve a given metric are given in terms of the decomposition of a general multivector.
SandBoxFreeProduct
?
This domain implements the free product of monoids (or groups)
It is the coproduct in the category of monoids (groups).
FreeProduct(A,B)
is the monoid (group) whose elements are
the reduced words in A and B, under the operation of concatenation
followed by reduction:
- Remove identity elements (of either A or B)
- Replace a1a2 by its product in A and b1b2 by its product in B
Ref: http://en.wikipedia.org/wiki/Free_product
Franz Lehner provided the following example of caching the output of a function: SandBoxRemember
?
MortonCode
? (also called z-order) is a method of combining multidimensional "coordinates" into a one-dimensional coordinate or "code" that attempts to preserve locality, i.e. minimize the average Euclidean distance between coordinate locations associated with adjacent codes. Morton codes are computationally less expensive to convert to and from coordinate values than Hilbert codes.
SandBoxGroebnerBasis
? examples from
Ideals, Varieties, and Algorithms Third Edition, 2007
FrobeniusAlgebraVectorSpacesAndPolynomialIdeals
? Classifying low dimensional Frobenius algebras
[SandBoxSTRING2SPAD]
? demonstrates how to call the [SPAD]
? compiler from the interpreter.
Sandbox with some simple Algebra
[SimplifyingAlgebraicExpressions]?
SandBoxObserverAsIdempotent
?
FriCAS
?
fricas
g:=1/(x*(1-a*(1-x)))
Type: Fraction(Polynomial(Integer))
fricas
integrate(g,x)
Type: Union(Expression(Integer),...)
Sympy
Mathematica
fricas
)set output algebra on
fricas
)set output tex off
r1:=(16*x^14-125*x^10+150*x^6+375*x^2)/(256*x^16+480*x^12+1025*x^8+750*x^4 +625)
14 10 6 2
16x - 125x + 150x + 375x
(13) --------------------------------------
16 12 8 4
256x + 480x + 1025x + 750x + 625
Type: Fraction(Polynomial(Integer))
fricas
r2:=integrate(r1,x=0..1);
Type: Union(f1: OrderedCompletion
?(Expression(Integer)),
...)
fricas
numeric r2
(15) 0.1239829519_8500639758
Type: Float
fricas
unparse(simplify(r2)::InputForm)
(16)
"(37268*5^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^
(1/2)*atan(((1155*5^(1/2)+2200)*62^(1/2))/((106*5^(1/2)+248)*55^(1/2)*15125^(
1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)*((((-1093842200)*5^(
1/2)+(-2445921555))*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2
)+29421))^(1/2)+((790913912*5^(1/2)+1768578272)*(15125^(1/4))^2+(108750662900
*5^(1/2)+243179512400)))/((790913912*5^(1/2)+1768578272)*(15125^(1/4))^2))^(1
/2)+((106*5^(1/2)+248)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(
1/2)+29421))^(1/2)+((-55)*5^(1/2)+(-220))*55^(1/2)*62^(1/2))))+((823788*5^(1/
2)+1840160)*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)*atan
(((1155*5^(1/2)+(-2200))*62^(1/2))/((106*5^(1/2)+(-248))*55^(1/2)*15125^(1/4)
*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*((((-1093842200)*5
^(1/2)+2445921555)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1
/2)+(-29421)))^(1/2)+((790913912*5^(1/2)+(-1768578272))*(15125^(1/4))^2+(1087
50662900*5^(1/2)+(-243179512400))))/((790913912*5^(1/2)+(-1768578272))*(15125
^(1/4))^2))^(1/2)+((106*5^(1/2)+(-248))*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+
(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)+((-55)*5^(1/2)+220)*55^(1/2)*62^(1/
2))))+((823788*5^(1/2)+1840160)*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2
)+29421))^(1/2)*atan(((1155*5^(1/2)+(-2200))*62^(1/2))/((106*5^(1/2)+(-248))*
55^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2
)*(((1093842200*5^(1/2)+(-2445921555))*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(
-30752))/(13144*5^(1/2)+(-29421)))^(1/2)+((790913912*5^(1/2)+(-1768578272))*(
15125^(1/4))^2+(108750662900*5^(1/2)+(-243179512400))))/((790913912*5^(1/2)+(
-1768578272))*(15125^(1/4))^2))^(1/2)+((106*5^(1/2)+(-248))*55^(1/2)*15125^(1
/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)+(55*5^(1/2)+(-2
20))*55^(1/2)*62^(1/2))))+(37268*5^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(
13144*5^(1/2)+(-29421)))^(1/2)*atan(((1155*5^(1/2)+2200)*62^(1/2))/((106*5^(1
/2)+248)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(
1/2)*(((1093842200*5^(1/2)+2445921555)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+3
0752)/(13144*5^(1/2)+29421))^(1/2)+((790913912*5^(1/2)+1768578272)*(15125^(1/
4))^2+(108750662900*5^(1/2)+243179512400)))/((790913912*5^(1/2)+1768578272)*(
15125^(1/4))^2))^(1/2)+((106*5^(1/2)+248)*55^(1/2)*15125^(1/4)*((13144*5^(1/2
)+30752)/(13144*5^(1/2)+29421))^(1/2)+(55*5^(1/2)+220)*55^(1/2)*62^(1/2))))+(
((-4081)*5^(1/2)+(-9548))*55^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13144*
5^(1/2)+(-29421)))^(1/2)*log((1093842200*5^(1/2)+2445921555)*62^(1/2)*15125^(
1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((790913912*5^(1/2)+
1768578272)*(15125^(1/4))^2+(108750662900*5^(1/2)+243179512400)))+(((-4081)*5
^(1/2)+(-9548))*55^(1/2)*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421
))^(1/2)*log((1093842200*5^(1/2)+(-2445921555))*62^(1/2)*15125^(1/4)*((13144*
5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)+(((-790913912)*5^(1/2)+1768
578272)*(15125^(1/4))^2+((-108750662900)*5^(1/2)+243179512400)))+((4081*5^(1/
2)+9548)*55^(1/2)*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2
)*log(((-1093842200)*5^(1/2)+2445921555)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)
+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)+(((-790913912)*5^(1/2)+1768578272)
*(15125^(1/4))^2+((-108750662900)*5^(1/2)+243179512400)))+((4081*5^(1/2)+9548
)*55^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)
*log(((-1093842200)*5^(1/2)+(-2445921555))*62^(1/2)*15125^(1/4)*((13144*5^(1/
2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((790913912*5^(1/2)+1768578272)*(15125
^(1/4))^2+(108750662900*5^(1/2)+243179512400)))+(((-823788)*5^(1/2)+(-1840160
))*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)*atan(((231*5^
(1/2)+(-440))*62^(1/2))/((106*5^(1/2)+(-248))*55^(1/2)*15125^(1/4)*(11/(2*(15
125^(1/4))^2))^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2
)+((-11)*5^(1/2)+44)*55^(1/2)*62^(1/2)))+(((-823788)*5^(1/2)+(-1840160))*62^(
1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)*atan(((231*5^(1/2)+(
-440))*62^(1/2))/((106*5^(1/2)+(-248))*55^(1/2)*15125^(1/4)*(11/(2*(15125^(1/
4))^2))^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)+(11*5
^(1/2)+(-44))*55^(1/2)*62^(1/2)))+((-37268)*5^(1/2)*62^(1/2)*((13144*5^(1/2)+
(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*atan(((231*5^(1/2)+440)*62^(1/2))/(
(106*5^(1/2)+248)*55^(1/2)*15125^(1/4)*(11/(2*(15125^(1/4))^2))^(1/2)*((13144
*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((-11)*5^(1/2)+(-44))*55^(1/2)*6
2^(1/2)))+((-37268)*5^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)
+(-29421)))^(1/2)*atan(((231*5^(1/2)+440)*62^(1/2))/((106*5^(1/2)+248)*55^(1/
2)*15125^(1/4)*(11/(2*(15125^(1/4))^2))^(1/2)*((13144*5^(1/2)+30752)/(13144*5
^(1/2)+29421))^(1/2)+(11*5^(1/2)+44)*55^(1/2)*62^(1/2)))+(5830*5^(1/2)+13640)
*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/
2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)))))))))))))/((89782*5^
(1/2)+210056)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(
-29421)))^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2))"
Type: String
fricas
r3:=integrate(r1,x);
Type: Union(Expression(Integer),...)
fricas
unparse(simplify(r3)::InputForm)
(18)
"((85184*x^8+79860*x^4+133100)*5^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13
144*5^(1/2)+(-29421)))^(1/2)*atan(((1155*5^(1/2)+2200)*62^(1/2))/((106*5^(1/2
)+248)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/
2)*((((-1093842200)*x*5^(1/2)+(-2445921555)*x)*62^(1/2)*15125^(1/4)*((13144*5
^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((790913912*x^2*5^(1/2)+1768578272
*x^2)*(15125^(1/4))^2+(108750662900*5^(1/2)+243179512400)))/((790913912*5^(1/
2)+1768578272)*(15125^(1/4))^2))^(1/2)+((106*x*5^(1/2)+248*x)*55^(1/2)*15125^
(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)+((-55)*5^(1/2)+(-22
0))*55^(1/2)*62^(1/2))))+(((1882944*x^8+1765260*x^4+2942100)*5^(1/2)+(4206080
*x^8+3943200*x^4+6572000))*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+294
21))^(1/2)*atan(((1155*5^(1/2)+(-2200))*62^(1/2))/((106*5^(1/2)+(-248))*55^(1
/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*(((
(-1093842200)*x*5^(1/2)+2445921555*x)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-
30752))/(13144*5^(1/2)+(-29421)))^(1/2)+((790913912*x^2*5^(1/2)+(-1768578272)
*x^2)*(15125^(1/4))^2+(108750662900*5^(1/2)+(-243179512400))))/((790913912*5^
(1/2)+(-1768578272))*(15125^(1/4))^2))^(1/2)+((106*x*5^(1/2)+(-248)*x)*55^(1/
2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)+((-5
5)*5^(1/2)+220)*55^(1/2)*62^(1/2))))+(((1882944*x^8+1765260*x^4+2942100)*5^(1
/2)+(4206080*x^8+3943200*x^4+6572000))*62^(1/2)*((13144*5^(1/2)+30752)/(13144
*5^(1/2)+29421))^(1/2)*atan(((1155*5^(1/2)+(-2200))*62^(1/2))/((106*5^(1/2)+(
-248))*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)
))^(1/2)*(((1093842200*x*5^(1/2)+(-2445921555)*x)*62^(1/2)*15125^(1/4)*((1314
4*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)+((790913912*x^2*5^(1/2)+(
-1768578272)*x^2)*(15125^(1/4))^2+(108750662900*5^(1/2)+(-243179512400))))/((
790913912*5^(1/2)+(-1768578272))*(15125^(1/4))^2))^(1/2)+((106*x*5^(1/2)+(-24
8)*x)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421))
)^(1/2)+(55*5^(1/2)+(-220))*55^(1/2)*62^(1/2))))+((85184*x^8+79860*x^4+133100
)*5^(1/2)*62^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*
atan(((1155*5^(1/2)+2200)*62^(1/2))/((106*5^(1/2)+248)*55^(1/2)*15125^(1/4)*(
(13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2)*(((1093842200*x*5^(1/2)+24
45921555*x)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421)
)^(1/2)+((790913912*x^2*5^(1/2)+1768578272*x^2)*(15125^(1/4))^2+(108750662900
*5^(1/2)+243179512400)))/((790913912*5^(1/2)+1768578272)*(15125^(1/4))^2))^(1
/2)+((106*x*5^(1/2)+248*x)*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(13144
*5^(1/2)+29421))^(1/2)+(55*5^(1/2)+220)*55^(1/2)*62^(1/2))))+((((-9328)*x^8+(
-8745)*x^4+(-14575))*5^(1/2)+((-21824)*x^8+(-20460)*x^4+(-34100)))*55^(1/2)*6
2^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*log((109384
2200*x*5^(1/2)+2445921555*x)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+30752)/(131
44*5^(1/2)+29421))^(1/2)+((790913912*x^2*5^(1/2)+1768578272*x^2)*(15125^(1/4)
)^2+(108750662900*5^(1/2)+243179512400)))+(((9328*x^8+8745*x^4+14575)*5^(1/2)
+(21824*x^8+20460*x^4+34100))*55^(1/2)*62^(1/2)*((13144*5^(1/2)+30752)/(13144
*5^(1/2)+29421))^(1/2)*log((1093842200*x*5^(1/2)+(-2445921555)*x)*62^(1/2)*15
125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)+((7909139
12*x^2*5^(1/2)+(-1768578272)*x^2)*(15125^(1/4))^2+(108750662900*5^(1/2)+(-243
179512400))))+((((-9328)*x^8+(-8745)*x^4+(-14575))*5^(1/2)+((-21824)*x^8+(-20
460)*x^4+(-34100)))*55^(1/2)*62^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+2
9421))^(1/2)*log(((-1093842200)*x*5^(1/2)+2445921555*x)*62^(1/2)*15125^(1/4)*
((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)+((790913912*x^2*5^(
1/2)+(-1768578272)*x^2)*(15125^(1/4))^2+(108750662900*5^(1/2)+(-243179512400)
)))+(((9328*x^8+8745*x^4+14575)*5^(1/2)+(21824*x^8+20460*x^4+34100))*55^(1/2)
*62^(1/2)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)))^(1/2)*log(((-10
93842200)*x*5^(1/2)+(-2445921555)*x)*62^(1/2)*15125^(1/4)*((13144*5^(1/2)+307
52)/(13144*5^(1/2)+29421))^(1/2)+((790913912*x^2*5^(1/2)+1768578272*x^2)*(151
25^(1/4))^2+(108750662900*5^(1/2)+243179512400)))+((5830*x^7+40810*x^3)*5^(1/
2)+(13640*x^7+95480*x^3))*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(131
44*5^(1/2)+(-29421)))^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/
2)))))))))/(((205216*x^8+192390*x^4+320650)*5^(1/2)+(480128*x^8+450120*x^4+75
0200))*55^(1/2)*15125^(1/4)*((13144*5^(1/2)+(-30752))/(13144*5^(1/2)+(-29421)
))^(1/2)*((13144*5^(1/2)+30752)/(13144*5^(1/2)+29421))^(1/2))"
Type: String
fricas
r4:=D(r3,x);
Type: Expression(Integer)
fricas
--simplify(r1-r4)
--normalize(r1-r4)
r5:=eval(r1-r4,x=10);
Type: Expression(Integer)
fricas
numeric r5
(21) - 0.8167478186_7186562196 E -7
Type: Float
fricas
)set output algebra on
sin(x^b)
b
(22) sin(x )
Type: Expression(Integer)
fricas
D(%,x)
b - 1 b
(23) b x cos(x )
Type: Expression(Integer)
fricas
D(%,x)
2 b - 1 2 b 2 b - 2 b
(24) - b (x ) sin(x ) + (b - b)x cos(x )
Type: Expression(Integer)
fricas
)set output algebra off
fricas
)set output tex on
fricas
guessRec([1,1,0,1,- 1,2,- 1,5,- 4,29,- 13,854,- 685])
Type: List(Expression(Integer))