login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for #326 Meaning of F0 and F1 ? revision 2 of 2

1 2
Editor: test1
Time: 2014/05/06 17:37:13 GMT+0
Note:

added:

From test1 Tue May 6 17:37:13 +0000 2014
From: test1
Date: Tue, 06 May 2014 17:37:13 +0000
Subject: 
Message-ID: <20140506173713+0000@axiom-wiki.newsynthesis.org>

Severity: normal => wishlist 


Submitted by : (unknown) at: 2007-11-17T22:26:52-08:00 (17 years ago)
Name :
Axiom Version :
Category : Severity : Status :
Optional subject :  
Optional comment :

fricas
(1) -> )set output tex off
 
fricas
)set output algebra on

fricas
integrate(1/(x^7+x^6+x^5+x^4+x^3+x^2+x+1),x)
(1) +-+ 2 +-+ 2 +-+ log(x\|2 + x + 1) - \|2 log(x + 1) + 2 \|2 log(x + 1) + +-+ 2 +-+ +-+ - log(- x\|2 + x + 1) + (2 \|2 + 2)atan(x\|2 + 1) + +-+ +-+ +-+ (- 2 \|2 + 2)atan(x\|2 - 1) + 2 \|2 atan(x) / +-+ 8 \|2
Type: Union(Expression(Integer),...)

Apparently these are "rootOf" expressions:

fricas
%%F0::InputForm
(2) %%F0
Type: InputForm
fricas
%%F1::InputForm
(3) %%F1
Type: InputForm

We can in fact solve for some of these.

fricas
)set output tex on
 
fricas
)set output algebra off

fricas
definingPolynomial %%F0

\label{eq1}\%\%var - \%\%F 0(1)
Type: Expression(Integer)
fricas
F0:=radicalSolve(%::UP('%%F0,COMPLEX FRAC INT))
Cannot convert the value from type Expression(Integer) to UnivariatePolynomial(%%F0,Complex(Fraction(Integer))) .

fricas
definingPolynomial %%F1

\label{eq2}\%\%var - \%\%F 1(2)
Type: Expression(Integer)
fricas
F11:=subst(%,`%%F0=rhs(F0.1))::UP('%%F1,?)
There are no library operations named F0 Use HyperDoc Browse or issue )what op F0 to learn if there is any operation containing " F0 " in its name.
Cannot find a definition or applicable library operation named F0 with argument type(s) PositiveInteger
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

Why doesn't Axiom automatically provide this sort of information?

Perhaps related to #262

Severity: normal => wishlist