|
|
last edited 10 years ago by test1 |
1 2 | ||
Editor:
Time: 2007/11/17 22:26:52 GMT-8 |
||
Note: clarifications |
changed: - \begin{axiom} )set output tex off )set output algebra on \end{axiom} \begin{axiom} integrate(1/(x^7+x^6+x^5+x^4+x^3+x^2+x+1),x) \end{axiom} Apparently these are "rootOf" expressions: \begin{axiom} %%F0::InputForm %%F1::InputForm \end{axiom} We can in fact solve for some of these. \begin{axiom} )set output tex on )set output algebra off \end{axiom} \begin{axiom} definingPolynomial %%F0 F0:=radicalSolve(%::UP('%%F0,COMPLEX FRAC INT)) \end{axiom} \begin{axiom} definingPolynomial %%F1 F11:=subst(%,`%%F0=rhs(F0.1))::UP('%%F1,?) \end{axiom} Why doesn't Axiom automatically provide this sort of information? Perhaps related to #262
)set output tex off
)set output algebra on
integrate(1/(x^7+x^6+x^5+x^4+x^3+x^2+x+1),x)
(1) +-------------------------------------+ | 2 2 +-+ +-+ (- 2\|- 24%%F1 - 16%%F0 %%F1 - 24%%F0 - 1 - 4\|2 %%F1 - 4\|2 %%F0) * log +-+ +-+ +-+ +-+ ((128\|2 %%F0 + 8\|2 )%%F1 + 8\|2 %%F0 - \|2 ) * +-------------------------------------+ | 2 2 \|- 24%%F1 - 16%%F0 %%F1 - 24%%F0 - 1 + 2 2 2 (- 512%%F0 - 32)%%F1 + (- 512%%F0 - 4)%%F1 - 32%%F0 - 4%%F0 + 3x + 1 + +-------------------------------------+ | 2 2 +-+ +-+ (2\|- 24%%F1 - 16%%F0 %%F1 - 24%%F0 - 1 - 4\|2 %%F1 - 4\|2 %%F0) * log +-+ +-+ +-+ +-+ ((- 128\|2 %%F0 - 8\|2 )%%F1 - 8\|2 %%F0 + \|2 ) * +-------------------------------------+ | 2 2 \|- 24%%F1 - 16%%F0 %%F1 - 24%%F0 - 1 + 2 2 2 (- 512%%F0 - 32)%%F1 + (- 512%%F0 - 4)%%F1 - 32%%F0 - 4%%F0 + 3x + 1 + +-+ 8\|2 %%F1 * log 2 2 3 (1024%%F0 + 64)%%F1 + (1024%%F0 + 8)%%F1 + 1024%%F0 + 32%%F0 + 3x + 3 + +-+ 3 2 +-+ 2 8\|2 %%F0 log(- 1024%%F0 + 64%%F0 - 24%%F0 + 3x - 5) - \|2 log(x + 1) + +-+ +-+ 2\|2 log(x + 1) + 2\|2 atan(x) / +-+ 8\|2
Apparently these are "rootOf" expressions:
%%F0::InputForm
(2) (rootOf (/ (+ (+ (+ (* 2048 (^ %%F0 4)) (* 64 (^ %%F0 2))) (* 16 %%F0)) 1) 2048) %%F0)
%%F1::InputForm
(3) (rootOf
(/
(+
(+
(+
(* 128
(^
(rootOf
(/
(+ (+ (+ (* 2048 (^ %%F0 4)) (* 64 (^ %%F0 2))) (* 16 %%F0)) 1)
2048)
%%F0)
3) )
(* (* 128 %%F1)
(^
(rootOf
(/
(+ (+ (+ (* 2048 (^ %%F0 4)) (* 64 (^ %%F0 2))) (* 16 %%F0)) 1)
2048)
%%F0)
2) ) )
(* (+ (* 128 (^ %%F1 2)) 4)
(rootOf
(/ (+ (+ (+ (* 2048 (^ %%F0 4)) (* 64 (^ %%F0 2))) (* 16 %%F0)) 1) 2048)
%%F0) ) )
(+ (+ (* 128 (^ %%F1 3)) (* 4 %%F1)) 1))
128)
%%F1)
We can in fact solve for some of these.
)set output tex on
)set output algebra off
definingPolynomial %%F0
(1) |
F0:=radicalSolve(%::UP('%%F0,COMPLEX FRAC INT))
(2) |
definingPolynomial %%F1
(3) |
F11:=subst(%,`%%F0=rhs(F0.1))::UP('%%F1, ?)
(4) |
Why doesn't Axiom automatically provide this sort of information?
Perhaps related to #262