axiom
)set output tex off
axiom
)set output algebra on
axiom
integrate(1/(x^7+x^6+x^5+x^4+x^3+x^2+x+1),x)
(1)
+-------------------------------------+
| 2 2 +-+ +-+
(- 2\|- 24%%F1 - 16%%F0 %%F1 - 24%%F0 - 1 - 4\|2 %%F1 - 4\|2 %%F0)
*
log
+-+ +-+ +-+ +-+
((128\|2 %%F0 + 8\|2 )%%F1 + 8\|2 %%F0 - \|2 )
*
+-------------------------------------+
| 2 2
\|- 24%%F1 - 16%%F0 %%F1 - 24%%F0 - 1
+
2 2 2
(- 512%%F0 - 32)%%F1 + (- 512%%F0 - 4)%%F1 - 32%%F0 - 4%%F0
+
3x + 1
+
+-------------------------------------+
| 2 2 +-+ +-+
(2\|- 24%%F1 - 16%%F0 %%F1 - 24%%F0 - 1 - 4\|2 %%F1 - 4\|2 %%F0)
*
log
+-+ +-+ +-+ +-+
((- 128\|2 %%F0 - 8\|2 )%%F1 - 8\|2 %%F0 + \|2 )
*
+-------------------------------------+
| 2 2
\|- 24%%F1 - 16%%F0 %%F1 - 24%%F0 - 1
+
2 2 2
(- 512%%F0 - 32)%%F1 + (- 512%%F0 - 4)%%F1 - 32%%F0 - 4%%F0
+
3x + 1
+
+-+
8\|2 %%F1
*
log
2 2 3
(1024%%F0 + 64)%%F1 + (1024%%F0 + 8)%%F1 + 1024%%F0 + 32%%F0
+
3x + 3
+
+-+ 3 2 +-+ 2
8\|2 %%F0 log(- 1024%%F0 + 64%%F0 - 24%%F0 + 3x - 5) - \|2 log(x + 1)
+
+-+ +-+
2\|2 log(x + 1) + 2\|2 atan(x)
/
+-+
8\|2
Type: Union(Expression(Integer),...)
Apparently these are "rootOf" expressions:
axiom
%%F0::InputForm
(2)
(rootOf
(/ (+ (+ (+ (* 2048 (^ %%F0 4)) (* 64 (^ %%F0 2))) (* 16 %%F0)) 1) 2048)
%%F0)
axiom
%%F1::InputForm
(3)
(rootOf
(/
(+
(+
(+
(* 128
(^
(rootOf
(/
(+
(+ (+ (* 2048 (^ %%F0 4)) (* 64 (^ %%F0 2))) (* 16 %%F0))
1)
2048)
%%F0)
3)
)
(* (* 128 %%F1)
(^
(rootOf
(/
(+
(+ (+ (* 2048 (^ %%F0 4)) (* 64 (^ %%F0 2))) (* 16 %%F0))
1)
2048)
%%F0)
2)
)
)
(* (+ (* 128 (^ %%F1 2)) 4)
(rootOf
(/
(+ (+ (+ (* 2048 (^ %%F0 4)) (* 64 (^ %%F0 2))) (* 16 %%F0)) 1)
2048)
%%F0)
)
)
(+ (+ (* 128 (^ %%F1 3)) (* 4 %%F1)) 1))
128)
%%F1)
We can in fact solve for some of these.
axiom
)set output tex on
axiom
)set output algebra off
axiom
definingPolynomial %%F0
Type: Expression(Integer)
axiom
F0:=radicalSolve(%::UP('%%F0,COMPLEX FRAC INT))
Type: List(Equation(Expression(Complex(Fraction(Integer)))))
axiom
definingPolynomial %%F1
Type: Expression(Integer)
axiom
F11:=subst(%,`%%F0=rhs(F0.1))::UP('%%F1,?)
Why doesn't Axiom automatically provide this sort of information?
Perhaps related to #262