login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for #132 Series expansion with complex doesn't print expansion point in type expression revision 3 of 3

1 2 3
Editor: test1
Time: 2014/05/09 18:57:32 GMT+0
Note:

added:

From test1 Fri May 9 18:57:32 +0000 2014
From: test1
Date: Fri, 09 May 2014 18:57:32 +0000
Subject: 
Message-ID: <20140509185732+0000@axiom-wiki.newsynthesis.org>

Status: open => closed 


Submitted by : (unknown) at: 2007-11-17T21:56:08-08:00 (17 years ago)
Name :
Axiom Version :
Category : Severity : Status :
Optional subject :  
Optional comment :

Original Date: Sun, 13 Mar 2005 08:44:43 -0600

fricas
(1) -> series(sin(x),x=%i)

\label{eq1}\begin{array}{@{}l}
\displaystyle
{\sin \left({i}\right)}+{{\cos \left({i}\right)}\ {\left(x - i \right)}}-{{\frac{\sin \left({i}\right)}{2}}\ {{\left(x - i \right)}^{2}}}- 
\
\
\displaystyle
{{\frac{\cos \left({i}\right)}{6}}\ {{\left(x - i \right)}^{3}}}+{{\frac{\sin \left({i}\right)}{24}}\ {{\left(x - i \right)}^{4}}}+ 
\
\
\displaystyle
{{\frac{\cos \left({i}\right)}{120}}\ {{\left(x - i \right)}^{5}}}-{{\frac{\sin \left({i}\right)}{720}}\ {{\left(x - i \right)}^{6}}}- 
\
\
\displaystyle
{{\frac{\cos \left({i}\right)}{5040}}\ {{\left(x - i \right)}^{7}}}+{{\frac{\sin \left({i}\right)}{40320}}\ {{\left(x - i \right)}^{8}}}+ 
\
\
\displaystyle
{{\frac{\cos \left({i}\right)}{362880}}\ {{\left(x - i \right)}^{9}}}-{{\frac{\sin \left({i}\right)}{3628800}}\ {{\left(x - i \right)}^{10}}}+ 
\
\
\displaystyle
{O \left({{\left(x - i \right)}^{11}}\right)}
(1)
Type: UnivariatePuiseuxSeries?(Expression(Complex(Integer)),x,%i)

Type: UnivariatePuiseuxSeries?(Expression Complex Integer,x,)
                                                           ^^
but for Integer for example
Type: UnivariatePuiseuxSeries?(Expression Integer,x,0)

With complex doesn't print expansion point (type)
Sun, 20 Mar 2005 14:30:14 -0600 reply
file:     msgdb.boot.pamphlet
function: brightPrint0

x = '"%i" => MARG := MARG + 3 ------------------------ Each message may contain formatting codes and and parameter codes. The formatting codes are: %b turn on bright printing %ceoff turn off centering %ceon turn on centering %d turn off bright printing %f user defined printing %i start indentation of 3 more spaces %l start a new line %m math-print an expression %rjoff turn off right justification (actually ragged left) %rjon turn on right justification (actually ragged left) %s pretty-print as an S-expression %u unindent 3 spaces %x# insert # spaces

With binary infix operator in expansion point, transform it to fortran (displayed type) -- Sun, 20 Mar 2005 14:33:53 -0600 reply
fricas
series(sin(x),x=%pi/2)

\label{eq2}\begin{array}{@{}l}
\displaystyle
1 -{{\frac{1}{2}}\ {{\left(x -{\frac{\pi}{2}}\right)}^{2}}}+{{\frac{1}{2
4}}\ {{\left(x -{\frac{\pi}{2}}\right)}^{4}}}- 
\
\
\displaystyle
{{\frac{1}{720}}\ {{\left(x -{\frac{\pi}{2}}\right)}^{6}}}+{{\frac{1}{4
0320}}\ {{\left(x -{\frac{\pi}{2}}\right)}^{8}}}- 
\
\
\displaystyle
{{\frac{1}{3628800}}\ {{\left(x -{\frac{\pi}{2}}\right)}^{10}}}+{O \left({{\left(x -{\frac{\pi}{2}}\right)}^{11}}\right)}
(2)
Type: UnivariatePuiseuxSeries?(Expression(Integer),x,%pi/2)
fricas
series(sin(x),x=%e)

\label{eq3}\begin{array}{@{}l}
\displaystyle
{\sin \left({e}\right)}+{{\cos \left({e}\right)}\ {\left(x - e \right)}}-{{\frac{\sin \left({e}\right)}{2}}\ {{\left(x - e \right)}^{2}}}- 
\
\
\displaystyle
{{\frac{\cos \left({e}\right)}{6}}\ {{\left(x - e \right)}^{3}}}+{{\frac{\sin \left({e}\right)}{24}}\ {{\left(x - e \right)}^{4}}}+ 
\
\
\displaystyle
{{\frac{\cos \left({e}\right)}{120}}\ {{\left(x - e \right)}^{5}}}-{{\frac{\sin \left({e}\right)}{720}}\ {{\left(x - e \right)}^{6}}}- 
\
\
\displaystyle
{{\frac{\cos \left({e}\right)}{5040}}\ {{\left(x - e \right)}^{7}}}+{{\frac{\sin \left({e}\right)}{40320}}\ {{\left(x - e \right)}^{8}}}+ 
\
\
\displaystyle
{{\frac{\cos \left({e}\right)}{362880}}\ {{\left(x - e \right)}^{9}}}-{{\frac{\sin \left({e}\right)}{3628800}}\ {{\left(x - e \right)}^{10}}}+ 
\
\
\displaystyle
{O \left({{\left(x - e \right)}^{11}}\right)}
(3)
Type: UnivariatePuiseuxSeries?(Expression(Integer),x,%e)
fricas
series(sin(x),x=%e+3)

\label{eq4}\begin{array}{@{}l}
\displaystyle
{\sin \left({e + 3}\right)}+{{\cos \left({e + 3}\right)}\ {\left(x -{\left(e + 3 \right)}\right)}}- 
\
\
\displaystyle
{{\frac{\sin \left({e + 3}\right)}{2}}\ {{\left(x -{\left(e + 3 \right)}\right)}^{2}}}- 
\
\
\displaystyle
{{\frac{\cos \left({e + 3}\right)}{6}}\ {{\left(x -{\left(e + 3 \right)}\right)}^{3}}}+ 
\
\
\displaystyle
{{\frac{\sin \left({e + 3}\right)}{24}}\ {{\left(x -{\left(e + 3 \right)}\right)}^{4}}}+ 
\
\
\displaystyle
{{\frac{\cos \left({e + 3}\right)}{120}}\ {{\left(x -{\left(e + 3 \right)}\right)}^{5}}}- 
\
\
\displaystyle
{{\frac{\sin \left({e + 3}\right)}{720}}\ {{\left(x -{\left(e + 3 \right)}\right)}^{6}}}- 
\
\
\displaystyle
{{\frac{\cos \left({e + 3}\right)}{5040}}\ {{\left(x -{\left(e + 3 \right)}\right)}^{7}}}+ 
\
\
\displaystyle
{{\frac{\sin \left({e + 3}\right)}{40320}}\ {{\left(x -{\left(e + 3 \right)}\right)}^{8}}}+ 
\
\
\displaystyle
{{\frac{\cos \left({e + 3}\right)}{362880}}\ {{\left(x -{\left(e + 3 \right)}\right)}^{9}}}- 
\
\
\displaystyle
{{\frac{\sin \left({e + 3}\right)}{3628800}}\ {{\left(x -{\left(e + 3 \right)}\right)}^{10}}}+{O \left({{\left(x -{\left(e + 3 \right)}\right)}^{11}}\right)}
(4)
Type: UnivariatePuiseuxSeries?(Expression(Integer),x,%e+3)
fricas
series(sin(x),x=%i+7)

\label{eq5}\begin{array}{@{}l}
\displaystyle
{\sin \left({7 + i}\right)}+{{\cos \left({7 + i}\right)}\ {\left(x -{\left(7 + i \right)}\right)}}- 
\
\
\displaystyle
{{\frac{\sin \left({7 + i}\right)}{2}}\ {{\left(x -{\left(7 + i \right)}\right)}^{2}}}- 
\
\
\displaystyle
{{\frac{\cos \left({7 + i}\right)}{6}}\ {{\left(x -{\left(7 + i \right)}\right)}^{3}}}+ 
\
\
\displaystyle
{{\frac{\sin \left({7 + i}\right)}{24}}\ {{\left(x -{\left(7 + i \right)}\right)}^{4}}}+ 
\
\
\displaystyle
{{\frac{\cos \left({7 + i}\right)}{120}}\ {{\left(x -{\left(7 + i \right)}\right)}^{5}}}- 
\
\
\displaystyle
{{\frac{\sin \left({7 + i}\right)}{720}}\ {{\left(x -{\left(7 + i \right)}\right)}^{6}}}- 
\
\
\displaystyle
{{\frac{\cos \left({7 + i}\right)}{5040}}\ {{\left(x -{\left(7 + i \right)}\right)}^{7}}}+ 
\
\
\displaystyle
{{\frac{\sin \left({7 + i}\right)}{40320}}\ {{\left(x -{\left(7 + i \right)}\right)}^{8}}}+ 
\
\
\displaystyle
{{\frac{\cos \left({7 + i}\right)}{362880}}\ {{\left(x -{\left(7 + i \right)}\right)}^{9}}}- 
\
\
\displaystyle
{{\frac{\sin \left({7 + i}\right)}{3628800}}\ {{\left(x -{\left(7 + i \right)}\right)}^{10}}}+{O \left({{\left(x -{\left(7 + i \right)}\right)}^{11}}\right)}
(5)
Type: UnivariatePuiseuxSeries?(Expression(Complex(Integer)),x,7+%i)

file:                  format.boot.pamphlet
Infix Binary Operator: "=" "+" "-" "" "/" "*" "^" (i-output.boot.pamphlet => function isBinaryInfix)
function:              form2String1 call fortexp0

isBinaryInfix op => fortexp0 [op,:argl]

---------------------------------------- In fortPre1 (file:newfort.boot.pamphlet)

fortPre1 e ==
replace spad function names by Fortran equivalents -- where appropriate, replace integers by floats -- extract complex numbers -- replace powers of %e by calls to EXP -- replace x*2 by xx etc. -- replace ROOT by either SQRT or **(1./ ... ) -- replace N-ary by binary functions -- strip the % character off objects like %pi etc..

PATCH: Replace %i (indent) by %I --test, Thu, 24 Mar 2005 12:03:22 -0600 reply
This patch replace all %i (format) by %I. Go to src/interp directory and type grep -r %i\> . It's not heavily tested but relatively simple (check it). See above for details.

powerSeries.patch

Severity: normal => critical

Name of this issue --unknown, Fri, 25 Mar 2005 12:39:26 -0600 reply
Bill, I think you can change the name of this issue. The problem concerns expansion point that involve binary operator too (for example 1+3*i).

Category: Axiom Compiler => Axiom Interpreter

Status: open => closed