|
|
last edited 16 years ago by Bill Page |
1 2 3 4 | ||
Editor: Bill Page
Time: 2008/07/27 03:05:59 GMT-7 |
||
Note: 0 and 1 obsolete |
added:
From BillPage Sun Jul 27 03:05:59 -0700 2008
From: Bill Page
Date: Sun, 27 Jul 2008 03:05:59 -0700
Subject: 0 and 1 obsolete
Message-ID: <20080727030559-0700@axiom-wiki.newsynthesis.org>
If SPAD and the Axiom interpreter created values from the
domain 'Literal' then it would be unnecessary to treat
constants like '0' and '1' in a special manner, i.e. as
unary functions. The coercions from 'Literal' would do
that job.
I think Axiom needs a Literal
domain that works in a
manner similar to the Aldor language. SPAD and the Axiom
interpreter should not automatically treat a constant like
2
is a PositiveInteger
.
(1) -> 2
(1) |
There are many situations when I might want it to mean
something else, e.g. the mathematical category 2 or the
some Boolean-like lattice domain, but I do not want to
or cannot provide an artificial means of coercing
PositiveInteger
to things of the kind I want 2 to
represent. Instead we should see:
2 Type: Literal
Then if I use 2
in a context that requires, for example
a PositiveInteger
the interpreter should use it's normal
function selection mechanism to choose coercions for 2
and 3
and and a suitable operation for +
. So the end
result for
2+3
(2) |
would be the same.
If SPAD and the Axiom interpreter where changed to deal with literals in this way, then some Axiom domains would need to be extended to provide the needed coercions. Because Aldor already does this, the code required would be similar to that used in the Aldor-Axiom interface.
Here is the code from the Aldor interface for Axiom that deals
with coercions from the domain Literal
that is created by
the Aldor compiler. (Some code is commented out to enable it
to compile from within Axiom.) The point is that it must be
possible to convert literals like 2
appearing in the Aldor
source to something that Axiom can also understand, like
Integer
or however else it might be used.
#include "axiom" ----------------------------------------------------------------------------- ---- ---- axlit.as: Function definitions needed by the Axiom library. ---- ----------------------------------------------------------------------------- ---- Copyright (c) 1990-2007 Aldor Software Organization Ltd (Aldor.org). -----------------------------------------------------------------------------
-- This file extends some Axiom types provide literal formers and other -- functions for compiling Axiom-generated .ax files.
--import from AxiomLib; --inline from AxiomLib;
macro { -- rep x == x @ % pretend Rep; -- per r == r @ Rep pretend %;
Bit == Boolean; Str == String; SI == SingleInteger; I == Integer; NNI == NonNegativeInteger; PI == PositiveInteger; BVal == BuiltinValue; BArr == BuiltinArray; SEG == Segment; UNISEG == UniversalSegment; }
import { AXL_-error: String -> Exit; } from Foreign Lisp;
--error (s: String) : Exit == AXL_-error s; integer (l: Literal) : Literal == l;
--- Builtin value type. Used to store data values which fit in a single word. --BuiltinValue : with == add;
--- Builtin array type. 0-based indexing. --BuiltinArray : with { -- new: SI -> %; -- #: % -> SI; -- apply: (%,SI) -> BVal; -- set!: (%, SI, BVal) -> (); --} --== add { -- import { -- AXL_-arrayNew: SI -> %; -- AXL_-arraySize: % -> SI; -- AXL_-arrayRef: (%, SI) -> BVal; -- AXL_-arraySet: (%, SI, BVal) -> (); -- } from Foreign Lisp; -- -- new (n: SI) : % == AXL_-arrayNew n; -- # (x: %) : SI == AXL_-arraySize x; -- -- apply (x: %, n: SI) : BVal == -- AXL_-arrayRef(x, n); -- -- set! (x: %, n: SI, v: BVal) : () == -- - AXL_-arraySet(x, n, v); --}
extend String : with { string: Literal -> %; } == add { import { AXL_-LiteralToString: Literal -> %; } from Foreign Lisp;
string (l: Literal) : % == AXL_-LiteralToString l; }
extend Symbol : with { string: Literal -> %; } == add { string (l: Literal) : % == string(l)$String::%; }
extend SingleInteger : with { integer: Literal -> %; coerce: I -> %;
zero: () -> %; one: () -> %; inc: % -> %; dec: % -> %; leq: (%,%) -> Bit; spit: % -> (); } == add { Rep ==> Integer;
import { AXL_-LiteralToSingleInteger: Literal -> %; AXL_-zerofnSingleInteger: () -> %; AXL_-onefnSingleInteger: () -> %; AXL_-incSingleInteger: % -> %; AXL_-decSingleInteger: % -> %; AXL_-leSingleInteger: (%,%) -> Bit; AXL_-spitSInt: % -> (); } from Foreign Lisp;
integer (l: Literal) : % == AXL_-LiteralToSingleInteger l; coerce (n: I) : % == per n;
zero () : % == AXL_-zerofnSingleInteger(); one () : % == AXL_-onefnSingleInteger(); inc (n: %) : % == AXL_-incSingleInteger n; dec (n: %) : % == AXL_-decSingleInteger n; leq (x: %,y: %) : Bit == AXL_-leSingleInteger(x, y); spit (x: %) : () == AXL_-spitSInt x; }
extend Integer : with { integer: Literal -> %; } == add { import { AXL_-LiteralToInteger: Literal -> %; } from Foreign Lisp;
integer (l: Literal) : % == AXL_-LiteralToInteger l; }
extend NonNegativeInteger : with { integer: Literal -> %; coerce: Integer -> %; } == add { import { AXL_-IntegerIsNonNegative: Integer -> Bit; } from Foreign Lisp; Rep ==> Integer; import from Rep,String;
integer (l: Literal) : % == integer(l)$Integer::%;
coerce (i: Integer) : % == { if AXL_-IntegerIsNonNegative i then per i else error "Need a non-negative integer" } }
extend PositiveInteger : with { integer: Literal -> %; coerce: Integer -> %; } == add { import { AXL_-IntegerIsPositive: Integer -> Bit; } from Foreign Lisp; Rep ==> Integer; import from Rep,String; integer (l: Literal) : % == integer(l)$Integer::%; coerce (i: Integer) : % == { if AXL_-IntegerIsPositive i then per i else error "Need a positive integer" }
}
extend DoubleFloat: with { float: Literal -> %; } == add { import { AXL_-LiteralToDoubleFloat: Literal -> %; } from Foreign Lisp;
float (l: Literal) : % == AXL_-LiteralToDoubleFloat l; }
extend Float: with { float: Literal -> %; } == add { import { AXL_-StringToFloat: String -> %; } from Foreign Lisp;
import from String; float (l: Literal) : % == AXL_-StringToFloat string l; }
--extend Tuple (T: Type) : with { -- length: % -> SI; -- element: (%,SI) -> T; -- -- export from T; --} --== add { -- Rep ==> Record(sz: SI, values: BArr); -- import from Rep; -- -- length (t: %) : SI == rep(t).sz; -- element(t: %, n: SI): T == (rep(t).values.(dec n)) pretend T; --}
extend List (S: Type) : with { bracket: Tuple S -> %;
nil: %; first: % -> S; rest: % -> %; cons: (S,%) -> %;
empty: () -> %; empty?: % -> Bit; test: % -> Bit;
setfirst!: (%,S) -> S; setrest!: (%, %) -> %; } == add { import { AXL_-nilfn: () -> %; AXL_-car: % -> S; AXL_-cdr: % -> %; AXL_-cons: (S, %) -> %; AXL_-rplaca: (%, S) -> S; AXL_-rplacd: (%, %) -> %; AXL_-null?: % -> Bit; } from Foreign Lisp;
[t: Tuple S]: % == { import { one: () -> %; dec: % -> %; leq: (%,%) -> Bit; } from SI;
--!! Remove the local when we can use the export. local nil: % := empty();
l := nil; i := length t; while leq(one(),i) repeat { l := cons(element(t, i), l); i := dec i; } l; }
-- Redefine a selection of List operations for efficiency.
nil : % == AXL_-nilfn(); first (x: %): S == AXL_-car x; rest (x: %): % == AXL_-cdr x; cons (x: S,y: %): % == AXL_-cons(x, y); setfirst!(x: %, y: S): S == AXL_-rplaca(x, y); setrest! (x: %, y: %): % == AXL_-rplacd(x, y);
empty (): % == AXL_-nilfn(); empty? (x: %): Bit == AXL_-null? x; test (x: %): Bit == not empty? x; }
Compiling FriCAS source code from file /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/7096130453832849089-25px003.as using Aldor compiler and options -O -Fasy -Fao -Flsp -lfricas -Mno-ALDOR_W_WillObsolete -DFriCAS -Y $FRICAS/algebra -I $FRICAS/algebra Use the system command )set compiler args to change these options. "/var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/7096130453832849089-25px003.as",line 1: #include "axiom" ^ [L1 C1] #1 (Error) Could not open file `axiom'.
The )library system command was not called after compilation.
Literal
then it would be unnecessary to treat
constants like 0
and 1
in a special manner, i.e. as
unary functions. The coercions from Literal
would do
that job.