login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxLiteral revision 3 of 4

1 2 3 4
Editor: Bill Page
Time: 2008/07/27 03:03:11 GMT-7
Note: Literals and Symbols in Axiom

changed:
-  (1) -> 2
-
-   (1)  2
      2

Literals and Symbols in Axiom

I think Axiom needs a Literal domain that works in a manner similar to the Aldor language. SPAD and the Axiom interpreter should not automatically treat a constant like 2 is a PositiveInteger.

axiom
2
LatexWiki Image(1)
Type: PositiveInteger?

There are many situations when I might want it to mean something else, e.g. the mathematical category 2 or the some Boolean-like lattice domain, but I do not want to or cannot provide an artificial means of coercing PositiveInteger to things of the kind I want 2 to represent. Instead we should see:

      2
                               Type: Literal

Then if I use 2 in a context that requires, for example a PositiveInteger the interpreter should use it's normal function selection mechanism to choose coercions for 2 and 3 and and a suitable operation for +. So the end result for

axiom
2+3
LatexWiki Image(2)
Type: PositiveInteger?

would be the same.

If SPAD and the Axiom interpreter where changed to deal with literals in this way, then some Axiom domains would need to be extended to provide the needed coercions. Because Aldor already does this, the code required would be similar to that used in the Aldor-Axiom interface.

Here is the code from the Aldor interface for Axiom that deals with coercions from the domain Literal that is created by the Aldor compiler. (Some code is commented out to enable it to compile from within Axiom.) The point is that it must be possible to convert literals like 2 appearing in the Aldor source to something that Axiom can also understand, like Integer or however else it might be used.

aldor
#include "axiom" ----------------------------------------------------------------------------- ---- ---- axlit.as: Function definitions needed by the Axiom library. ---- ----------------------------------------------------------------------------- ---- Copyright (c) 1990-2007 Aldor Software Organization Ltd (Aldor.org). -----------------------------------------------------------------------------
-- This file extends some Axiom types provide literal formers and other -- functions for compiling Axiom-generated .ax files.
--import from AxiomLib; --inline from AxiomLib;
macro { -- rep x == x @ % pretend Rep; -- per r == r @ Rep pretend %;
Bit == Boolean; Str == String; SI == SingleInteger; I == Integer; NNI == NonNegativeInteger; PI == PositiveInteger; BVal == BuiltinValue; BArr == BuiltinArray; SEG == Segment; UNISEG == UniversalSegment; }
import { AXL_-error: String -> Exit; } from Foreign Lisp;
--error (s: String) : Exit == AXL_-error s; integer (l: Literal) : Literal == l;
--- Builtin value type. Used to store data values which fit in a single word. --BuiltinValue : with == add;
--- Builtin array type. 0-based indexing. --BuiltinArray : with { -- new: SI -> %; -- #: % -> SI; -- apply: (%, SI) -> BVal; -- set!: (%, SI, BVal) -> (); --} --== add { -- import { -- AXL_-arrayNew: SI -> %; -- AXL_-arraySize: % -> SI; -- AXL_-arrayRef: (%, SI) -> BVal; -- AXL_-arraySet: (%, SI, BVal) -> (); -- } from Foreign Lisp; -- -- new (n: SI) : % == AXL_-arrayNew n; -- # (x: %) : SI == AXL_-arraySize x; -- -- apply (x: %, n: SI) : BVal == -- AXL_-arrayRef(x, n); -- -- set! (x: %, n: SI, v: BVal) : () == -- - AXL_-arraySet(x, n, v); --}
extend String : with { string: Literal -> %; } == add { import { AXL_-LiteralToString: Literal -> %; } from Foreign Lisp;
string (l: Literal) : % == AXL_-LiteralToString l; }
extend Symbol : with { string: Literal -> %; } == add { string (l: Literal) : % == string(l)$String::%; }
extend SingleInteger : with { integer: Literal -> %; coerce: I -> %;
zero: () -> %; one: () -> %; inc: % -> %; dec: % -> %; leq: (%, %) -> Bit; spit: % -> (); } == add { Rep ==> Integer;
import { AXL_-LiteralToSingleInteger: Literal -> %; AXL_-zerofnSingleInteger: () -> %; AXL_-onefnSingleInteger: () -> %; AXL_-incSingleInteger: % -> %; AXL_-decSingleInteger: % -> %; AXL_-leSingleInteger: (%, %) -> Bit; AXL_-spitSInt: % -> (); } from Foreign Lisp;
integer (l: Literal) : % == AXL_-LiteralToSingleInteger l; coerce (n: I) : % == per n;
zero () : % == AXL_-zerofnSingleInteger(); one () : % == AXL_-onefnSingleInteger(); inc (n: %) : % == AXL_-incSingleInteger n; dec (n: %) : % == AXL_-decSingleInteger n; leq (x: %, y: %) : Bit == AXL_-leSingleInteger(x, y); spit (x: %) : () == AXL_-spitSInt x; }
extend Integer : with { integer: Literal -> %; } == add { import { AXL_-LiteralToInteger: Literal -> %; } from Foreign Lisp;
integer (l: Literal) : % == AXL_-LiteralToInteger l; }
extend NonNegativeInteger : with { integer: Literal -> %; coerce: Integer -> %; } == add { import { AXL_-IntegerIsNonNegative: Integer -> Bit; } from Foreign Lisp; Rep ==> Integer; import from Rep, String;
integer (l: Literal) : % == integer(l)$Integer::%;
coerce (i: Integer) : % == { if AXL_-IntegerIsNonNegative i then per i else error "Need a non-negative integer" } }
extend PositiveInteger : with { integer: Literal -> %; coerce: Integer -> %; } == add { import { AXL_-IntegerIsPositive: Integer -> Bit; } from Foreign Lisp; Rep ==> Integer; import from Rep, String; integer (l: Literal) : % == integer(l)$Integer::%; coerce (i: Integer) : % == { if AXL_-IntegerIsPositive i then per i else error "Need a positive integer" }
}
extend DoubleFloat: with { float: Literal -> %; } == add { import { AXL_-LiteralToDoubleFloat: Literal -> %; } from Foreign Lisp;
float (l: Literal) : % == AXL_-LiteralToDoubleFloat l; }
extend Float: with { float: Literal -> %; } == add { import { AXL_-StringToFloat: String -> %; } from Foreign Lisp;
import from String; float (l: Literal) : % == AXL_-StringToFloat string l; }
--extend Tuple (T: Type) : with { -- length: % -> SI; -- element: (%, SI) -> T; -- -- export from T; --} --== add { -- Rep ==> Record(sz: SI, values: BArr); -- import from Rep; -- -- length (t: %) : SI == rep(t).sz; -- element(t: %, n: SI): T == (rep(t).values.(dec n)) pretend T; --}
extend List (S: Type) : with { bracket: Tuple S -> %;
nil: %; first: % -> S; rest: % -> %; cons: (S, %) -> %;
empty: () -> %; empty?: % -> Bit; test: % -> Bit;
setfirst!: (%, S) -> S; setrest!: (%, %) -> %; } == add { import { AXL_-nilfn: () -> %; AXL_-car: % -> S; AXL_-cdr: % -> %; AXL_-cons: (S, %) -> %; AXL_-rplaca: (%, S) -> S; AXL_-rplacd: (%, %) -> %; AXL_-null?: % -> Bit; } from Foreign Lisp;
[t: Tuple S]: % == { import { one: () -> %; dec: % -> %; leq: (%, %) -> Bit; } from SI;
--!! Remove the local when we can use the export. local nil: % := empty();
l := nil; i := length t; while leq(one(), i) repeat { l := cons(element(t, i), l); i := dec i; } l; }
-- Redefine a selection of List operations for efficiency.
nil : % == AXL_-nilfn(); first (x: %): S == AXL_-car x; rest (x: %): % == AXL_-cdr x; cons (x: S, y: %): % == AXL_-cons(x, y); setfirst!(x: %, y: S): S == AXL_-rplaca(x, y); setrest! (x: %, y: %): % == AXL_-rplacd(x, y);
empty (): % == AXL_-nilfn(); empty? (x: %): Bit == AXL_-null? x; test (x: %): Bit == not empty? x; }
aldor
   Compiling FriCAS source code from file 
      /var/zope2/var/LatexWiki/7096130453832849089-25px003.as using 
      AXIOM-XL compiler and options 
-O -Fasy -Fao -Flsp -laxiom -Mno-AXL_W_WillObsolete -DAxiom -Y $AXIOM/algebra
      Use the system command )set compiler args to change these 
      options.
#1 (Warning) Deprecated message prefix: use `ALDOR_' instead of `_AXL'
   Compiling Lisp source code from file 
      ./7096130453832849089-25px003.lsp
   Issuing )library command for 7096130453832849089-25px003
   Reading /var/zope2/var/LatexWiki/7096130453832849089-25px003.asy
   Integer is now explicitly exposed in frame initial 
   Integer will be automatically loaded when needed from 
      /var/zope2/var/LatexWiki/7096130453832849089-25px003
   List is now explicitly exposed in frame initial 
   List will be automatically loaded when needed from 
      /var/zope2/var/LatexWiki/7096130453832849089-25px003
   Float is now explicitly exposed in frame initial 
   Float will be automatically loaded when needed from 
      /var/zope2/var/LatexWiki/7096130453832849089-25px003
   PositiveInteger is now explicitly exposed in frame initial 
   PositiveInteger will be automatically loaded when needed from 
      /var/zope2/var/LatexWiki/7096130453832849089-25px003
   DoubleFloat is now explicitly exposed in frame initial 
   DoubleFloat will be automatically loaded when needed from 
      /var/zope2/var/LatexWiki/7096130453832849089-25px003
   String is now explicitly exposed in frame initial 
   String will be automatically loaded when needed from 
      /var/zope2/var/LatexWiki/7096130453832849089-25px003
   NonNegativeInteger is now explicitly exposed in frame initial 
   NonNegativeInteger will be automatically loaded when needed from 
      /var/zope2/var/LatexWiki/7096130453832849089-25px003
   SingleInteger is now explicitly exposed in frame initial 
   SingleInteger will be automatically loaded when needed from 
      /var/zope2/var/LatexWiki/7096130453832849089-25px003
   Symbol is now explicitly exposed in frame initial 
   Symbol will be automatically loaded when needed from 
      /var/zope2/var/LatexWiki/7096130453832849089-25px003
   integer is now explicitly exposed in frame initial 
   integer will be automatically loaded when needed from 
      /var/zope2/var/LatexWiki/7096130453832849089-25px003