login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxHermitianIsomorphisms3 revision 11 of 11

1 2 3 4 5 6 7 8 9 10 11
Editor: page
Time: 2011/07/04 16:16:04 GMT-7
Note: No unicode symobls

changed:
-SandBoxHermitianIsomorphism3x
[SandBoxHermitianIsomorphism3x]

A complex vector ℂ-space $V$ possesses many different hermitian isomorphisms
$h^\dagger=h \in iso(V,V^\dagger)$. In quantum mechanics a given operator
$\rho \in End(V)$ may be said to be $h$-hermitian if
$$
\rho^\dagger \circ h = h \circ \rho
$$

\begin{axiom} )set output tex off )set output algebra on \end{axiom}

\begin{axiom} ℂ:=Complex Fraction Polynomial Integer -- dagger htranspose(h)==map(x+->conjugate(x),transpose h) )expose MCALCFN \end{axiom}

Theorem

The necessary conditions for an operator $ρ$ to possess hermitean isomorphism $h$ is that $trace ρ \in ℝ$ and $det ρ \in ℝ$.

Two-Dimensions

\begin{axiom} p1:ℂ:=complex(ℜp1,𝔍p1) q1:ℂ:=complex(ℜq1,𝔍q1) p2:ℂ:=complex(ℜp2,𝔍p2) q2:ℂ:=complex(ℜq2,𝔍q2) ρ:Matrix ℂ := matrix [[p1,q1],[p2,q2]] \end{axiom} \begin{axiom} s1:=solve(imag determinant ρ,ℜp2) s2:=solve(eval(imag trace ρ,s1),𝔍p1) s3:=solve(eval(eval(imag trace(ρ*ρ),s1), s2),ℜp1) eval(eval(imag trace (ρ*ρ),s1),s2) \end{axiom} \begin{axiom} C:=eval(eval(characteristicPolynomial ρ,s1),s2) C0:=zerosOf(C) #C0 imag(C0.1) imag(C0.2) \end{axiom}

\begin{axiom} ρ0:=map(x+->eval(eval(x,s1),s2),ρ) E:=eigenvalues(ρ0) E0:=eigenvector(E.1,ρ0) E1:=map(x+->eval(x,%D=C0.1),E0.1) E2:=map(x+->eval(x,%D=C0.2),E0.1) test(ρ0E1=C0(1)E1) test(ρ0E2=C0(2)E2) \end{axiom}

Given an operator $ρ \in End V$, one must find the tensor $H=0$ for unknown manifold of hermitian isomorphisms $h$. \begin{axiom} h:Matrix ℂ:=matrix [[ℜa,complex(ℜb,𝔍b)],[complex(ℜb,-𝔍b),ℜe]] test(h = htranspose h) H:=htranspose(ρ)h-hρ \end{axiom}

We wish to find expressions for $h$ in terms of the components of $ρ$. To do this we will determine how the components of $H$ depend on the components of $h$. \begin{axiom} J:=jacobian(concat( map(x+->[real x, imag x], concat(H::List List ?)) ), [ℜa,ℜb,𝔍b,ℜe]::List Symbol) \end{axiom} The null space (kernel) of the Jacobian \begin{axiom} N:=nullSpace(map(x+->eval(eval(x,s1),s2),J)) \end{axiom} gives the general solution to the problem. \begin{axiom} s4:=map((x,y)+->x=y,[ℜa,ℜb,𝔍b,ℜe],𝔍b*N.1+ℜe*N.2) map(x+->eval(eval(eval(x,s1),s2),s4),H) \end{axiom}

Three-Dimensions \begin{axiom} p1:ℂ:=complex(ℜp1,𝔍p1) q1:ℂ:=complex(ℜq1,𝔍q1) r1:ℂ:=complex(ℜr1,𝔍r1) p2:ℂ:=complex(ℜp2,𝔍p2) q2:ℂ:=complex(ℜq2,𝔍q2) r2:ℂ:=complex(ℜr2,𝔍r2) p3:ℂ:=complex(ℜp3,𝔍p3) q3:ℂ:=complex(ℜq3,𝔍q3) r3:ℂ:=complex(ℜr3,𝔍r3) ρ:Matrix ℂ := matrix [[p1,q1,r1],[p2,q2,r2],[p3,q3,r3]] \end{axiom}

\begin{axiom} s1:=solve(imag determinant ρ,ℜp3) s2:=solve(eval(imag trace(ρ),s1),𝔍p1) s3:=solve(eval(eval(imag trace(ρ*ρ),s1),s2),ℜp1) eval(eval(eval(imag trace(ρ*ρ*ρ),s1),s2),s3) --s4:=radicalSolve(eval(eval(eval(imag trace(ρ*ρ*ρ),s1),s2),s3),𝔍q3) --#s4 --s4.1+s4.2 \end{axiom}

\begin{axiom} C:=eval(eval(eval(characteristicPolynomial ρ,s1),s2),s3); C0:=zerosOf(C); #C0 imag(C0.1) imag(C0.2) imag(C0.3) \end{axiom}

Given an operator $ρ \in End V$, one must find the tensor $H=0$ for unknown manifold of hermitian isomorphisms $h$. \begin{axiom} h:Matrix ℂ:=matrix [[ℜa, complex(ℜb,𝔍b), complex(ℜc,𝔍c)], _ [complex(ℜb,-𝔍b),ℜe, complex(ℜd,𝔍d)], _ [complex(ℜc,-𝔍c),complex(ℜd,-𝔍d),ℜf ]] test(h = htranspose h) H:=htranspose(ρ)h-hρ \end{axiom}

We wish to find expressions for $h$ in terms of the components of $ρ$. To do this we will determine how the components of $H$ depend on the components of $h$. \begin{axiom} K:=concat( map(x+->[real x, imag x], concat(H::List List ?)))::List Polynomial Integer --K2:=groebner(K) J:=jacobian(select(x+->x~=0,K), [ℜa,ℜb,𝔍b,ℜc,𝔍c,ℜd,𝔍d,ℜe,ℜf]::List Symbol) \end{axiom} The null space (kernel) of the Jacobian \begin{axiom} J2:=map(x+->eval(eval(eval(x,s1),s2),s3),J); nrows(J2),ncols(J2) binomial(nrows(J2),ncols(J2)) [determinant(matrix map(x+->row(J2,x+1)::List ?,subSet(nrows(J2),ncols(J2),random(binomial(nrows(J2),ncols(J2)))) )) for i in 0..1] --N:=nullSpace J2 \end{axiom}

Eigenvectors and Diagonalization --Bill Page, Sun, 03 Jul 2011 17:35:35 -0700 reply
SandBoxHermitianIsomorphisms4

No unicode symobls --page, Mon, 04 Jul 2011 16:12:29 -0700 reply
[SandBoxHermitianIsomorphism3x]

Some or all expressions may not have rendered properly, because Axiom returned the following error:
Error: export HOME=/var/zope2/var/LatexWiki; ulimit -t 600; export LD_LIBRARY_PATH=/usr/local/lib/fricas/target/x86_64-linux-gnu/lib; LANG=en_US.UTF-8 /usr/local/lib/fricas/target/x86_64-linux-gnu/bin/fricas -nosman < /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/6375190464244529648-25px.axm
Heap exhausted during garbage collection: 0 bytes available, 16 requested.
        Immobile Object Counts
 Gen layout fdefn symbol   code  Boxed   Cons    Raw   Code  SmMix  Mixed  LgRaw LgCode  LgMix Waste%       Alloc        Trig   Dirty GCs Mem-age
  4      0      0      0    330     89  17708     61      0     19     15      0      0      0    0.8   581304144     2000000   17892   0  0.8547
  5      0      0      0      0      0      0      0      0      0      0      0      0      0    0.0           0     2000000       0   0  0.0000
fatal error encountered in SBCL pid 781960 tid 781960:
GC invariant lost, file "gencgc.c", line 523

Error opening /dev/tty: No such device or address

Checking for foreign routines FRICAS="/usr/local/lib/fricas/target/x86_64-linux-gnu" spad-lib="/usr/local/lib/fricas/target/x86_64-linux-gnu/lib/libspad.so" foreign routines found openServer result -2 FriCAS Computer Algebra System Version: FriCAS 1.3.10 built with sbcl 2.2.9.debian Timestamp: Wed 10 Jan 02:19:45 CET 2024 ----------------------------------------------------------------------------- Issue )copyright to view copyright notices. Issue )summary for a summary of useful system commands. Issue )quit to leave FriCAS and return to shell. -----------------------------------------------------------------------------

(1) -> (1) -> (1) -> (1) -> (1) -> (1) -> )set output tex off

)set output algebra on

(1) -> ℂ:=Complex Fraction Polynomial Integer

(1) Complex(Fraction(Polynomial(Integer))) Type: Type -- dagger htranspose(h)==map(x+->conjugate(x),transpose h)

Type: Void )expose MCALCFN

MultiVariableCalculusFunctions is now explicitly exposed in frame initial (3) -> p1:ℂ:=complex(ℜp1,𝔍p1)

(3) ℜp1 + 𝔍p1 %i Type: Complex(Fraction(Polynomial(Integer))) q1:ℂ:=complex(ℜq1,𝔍q1)

(4) ℜq1 + 𝔍q1 %i Type: Complex(Fraction(Polynomial(Integer))) p2:ℂ:=complex(ℜp2,𝔍p2)

(5) ℜp2 + 𝔍p2 %i Type: Complex(Fraction(Polynomial(Integer))) q2:ℂ:=complex(ℜq2,𝔍q2)

(6) ℜq2 + 𝔍q2 %i Type: Complex(Fraction(Polynomial(Integer))) ρ:Matrix ℂ := matrix [[p1,q1],[p2,q2]]

+ℜp1 + 𝔍p1 %i ℜq1 + 𝔍q1 %i+ (7) | | +ℜp2 + 𝔍p2 %i ℜq2 + 𝔍q2 %i+ Type: Matrix(Complex(Fraction(Polynomial(Integer)))) (8) -> s1:=solve(imag determinant ρ,ℜp2)

ℜp1 𝔍q2 - ℜq1 𝔍p2 + ℜq2 𝔍p1 (8) [ℜp2 = ---------------------------] 𝔍q1 Type: List(Equation(Fraction(Polynomial(Integer)))) s2:=solve(eval(imag trace ρ,s1),𝔍p1)

(9) [𝔍p1 = - 𝔍q2] Type: List(Equation(Fraction(Polynomial(Integer)))) s3:=solve(eval(eval(imag trace(ρ*ρ),s1), s2),ℜp1)

(10) [0 = 0] Type: List(Equation(Fraction(Polynomial(Integer)))) eval(eval(imag trace (ρ*ρ),s1),s2)

(11) 0 Type: Fraction(Polynomial(Integer)) (12) -> C:=eval(eval(characteristicPolynomial ρ,s1),s2)

(12) 2 2 𝔍q1 𝔍q2 + (ℜq1 ℜq2 - ℜp1 ℜq1)𝔍q2 + 𝔍p2 𝔍q1 + 2 2 ((ℜp1 - %B)ℜq2 - %B ℜp1 + %B )𝔍q1 + ℜq1 𝔍p2 / 𝔍q1 Type: Fraction(Polynomial(Complex(Integer))) C0:=zerosOf(C)

(13) [ ROOT 2 2 - 4 𝔍q1 𝔍q2 + (- 4 ℜq1 ℜq2 + 4 ℜp1 ℜq1)𝔍q2 - 4 𝔍p2 𝔍q1 + 2 2 2 (ℜq2 - 2 ℜp1 ℜq2 + ℜp1 )𝔍q1 - 4 ℜq1 𝔍p2 / 𝔍q1 + ℜq2 + ℜp1 / 2 ,

  • ROOT 2 2 - 4 𝔍q1 𝔍q2 + (- 4 ℜq1 ℜq2 + 4 ℜp1 ℜq1)𝔍q2 - 4 𝔍p2 𝔍q1 + 2 2 2 (ℜq2 - 2 ℜp1 ℜq2 + ℜp1 )𝔍q1 - 4 ℜq1 𝔍p2 / 𝔍q1 + ℜq2 + ℜp1 / 2 ] Type: List(Expression(Complex(Integer))) #C0

(14) 2 Type: PositiveInteger imag(C0.1)

(15) 0 Type: Expression(Integer) imag(C0.2)

(16) 0 Type: Expression(Integer) (17) -> ρ0:=map(x+->eval(eval(x,s1),s2),ρ)

+ - %i 𝔍q2 + ℜp1 %i 𝔍q1 + ℜq1+ | | (17) |(- ℜq2 + ℜp1)𝔍q2 + %i 𝔍p2 𝔍q1 - ℜq1 𝔍p2 | |--------------------------------------- %i 𝔍q2 + ℜq2| + 𝔍q1 + Type: Matrix(Fraction(Polynomial(Complex(Integer)))) E:=eigenvalues(ρ0)

(18) [ %D | 2 2 𝔍q1 𝔍q2 + (ℜq1 ℜq2 - ℜp1 ℜq1)𝔍q2 + 𝔍p2 𝔍q1 + 2 2 ((ℜp1 - %D)ℜq2 - %D ℜp1 + %D )𝔍q1 + ℜq1 𝔍p2 ] Type: List(Union(Fraction(Polynomial(Complex(Integer))),SuchThat(Symbol,Polynomial(Complex(Integer))))) E0:=eigenvector(E.1,ρ0)

+ %i 𝔍q1 𝔍q2 + (ℜq2 - %D)𝔍q1 + |-------------------------------------| (19) [|(ℜq2 - ℜp1)𝔍q2 - %i 𝔍p2 𝔍q1 + ℜq1 𝔍p2|] | | + 1 + Type: List(Matrix(Fraction(Polynomial(Complex(Integer))))) E1:=map(x+->eval(x,%D=C0.1),E0.1)

(20) [ [ - 𝔍q1 * ROOT 2 2 - 4 𝔍q1 𝔍q2 + (- 4 ℜq1 ℜq2 + 4 ℜp1 ℜq1)𝔍q2 - 4 𝔍p2 𝔍q1 + 2 2 2 (ℜq2 - 2 ℜp1 ℜq2 + ℜp1 )𝔍q1 - 4 ℜq1 𝔍p2 / 𝔍q1 + 2 %i 𝔍q1 𝔍q2 + (ℜq2 - ℜp1)𝔍q1 / (2 ℜq2 - 2 ℜp1)𝔍q2 - 2 %i 𝔍p2 𝔍q1 + 2 ℜq1 𝔍p2 ] , [1]] Type: Matrix(Expression(Complex(Integer))) E2:=map(x+->eval(x,%D=C0.2),E0.1)

(21) [ [ 𝔍q1 * ROOT 2 2 - 4 𝔍q1 𝔍q2 + (- 4 ℜq1 ℜq2 + 4 ℜp1 ℜq1)𝔍q2 - 4 𝔍p2 𝔍q1 + 2 2 2 (ℜq2 - 2 ℜp1 ℜq2 + ℜp1 )𝔍q1 - 4 ℜq1 𝔍p2 / 𝔍q1 + 2 %i 𝔍q1 𝔍q2 + (ℜq2 - ℜp1)𝔍q1 / (2 ℜq2 - 2 ℜp1)𝔍q2 - 2 %i 𝔍p2 𝔍q1 + 2 ℜq1 𝔍p2 ] , [1]] Type: Matrix(Expression(Complex(Integer))) test(ρ0E1=C0(1)E1)

(22) true Type: Boolean test(ρ0E2=C0(2)E2)

(23) true Type: Boolean (24) -> h:Matrix ℂ:=matrix [[ℜa,complex(ℜb,𝔍b)],[complex(ℜb,-𝔍b),ℜe]]

+ ℜa ℜb + 𝔍b %i+ (24) | | +ℜb - 𝔍b %i ℜe + Type: Matrix(Complex(Fraction(Polynomial(Integer)))) test(h = htranspose h)

Compiling function htranspose with type Matrix(Complex(Fraction( Polynomial(Integer)))) -> Matrix(Complex(Fraction(Polynomial( Integer))))

(25) true Type: Boolean H:=htranspose(ρ)h-hρ

(26) [ [(- 2 ℜb 𝔍p2 - 2 ℜa 𝔍p1 - 2 ℜp2 𝔍b)%i,

𝔍b 𝔍q2 + 𝔍b 𝔍p1 - ℜb ℜq2 - ℜa ℜq1 + ℜe ℜp2 + ℜb ℜp1 + (- ℜb 𝔍q2 - ℜa 𝔍q1 - ℜe 𝔍p2 - ℜb 𝔍p1 + (- ℜq2 + ℜp1)𝔍b)%i ] ,

[ - 𝔍b 𝔍q2 - 𝔍b 𝔍p1 + ℜb ℜq2 + ℜa ℜq1 - ℜe ℜp2 - ℜb ℜp1 + (- ℜb 𝔍q2 - ℜa 𝔍q1 - ℜe 𝔍p2 - ℜb 𝔍p1 + (- ℜq2 + ℜp1)𝔍b)%i , (- 2 ℜe 𝔍q2 - 2 ℜb 𝔍q1 + 2 ℜq1 𝔍b)%i] ] Type: Matrix(Complex(Fraction(Polynomial(Integer)))) (27) -> J:=jacobian(concat( map(x+->[real x, imag x], concat(H::List List ?)) ), [ℜa,ℜb,𝔍b,ℜe]::List Symbol)

+ 0 0 0 0 + | | |- 2 𝔍p1 - 2 𝔍p2 - 2 ℜp2 0 | | | | - ℜq1 - ℜq2 + ℜp1 𝔍q2 + 𝔍p1 ℜp2 | | | | - 𝔍q1 - 𝔍q2 - 𝔍p1 - ℜq2 + ℜp1 - 𝔍p2 | (27) | | | ℜq1 ℜq2 - ℜp1 - 𝔍q2 - 𝔍p1 - ℜp2 | | | | - 𝔍q1 - 𝔍q2 - 𝔍p1 - ℜq2 + ℜp1 - 𝔍p2 | | | | 0 0 0 0 | | | + 0 - 2 𝔍q1 2 ℜq1 - 2 𝔍q2+ Type: Matrix(Fraction(Polynomial(Integer))) (28) -> N:=nullSpace(map(x+->eval(eval(x,s1),s2),J))

  • ℜq2 + ℜp1 ℜq1 𝔍p2 𝔍q2 (28) [[-----------, ---, 1, 0], [- ---, - ---, 0, 1]] 𝔍q1 𝔍q1 𝔍q1 𝔍q1 Type: List(Vector(Fraction(Polynomial(Integer)))) (29) -> s4:=map((x,y)+->x=y,[ℜa,ℜb,𝔍b,ℜe],𝔍b*N.1+ℜe*N.2)

(29) - ℜe 𝔍p2 + (- ℜq2 + ℜp1)𝔍b - ℜe 𝔍q2 + ℜq1 𝔍b [ℜa = --------------------------, ℜb = -----------------, 𝔍b = 𝔍b, ℜe = ℜe] 𝔍q1 𝔍q1 Type: List(Equation(Fraction(Polynomial(Integer)))) map(x+->eval(eval(eval(x,s1),s2),s4),H)

+0 0+ (30) | | +0 0+ Type: Matrix(Fraction(Polynomial(Complex(Integer)))) (31) -> p1:ℂ:=complex(ℜp1,𝔍p1)

(31) ℜp1 + 𝔍p1 %i Type: Complex(Fraction(Polynomial(Integer))) q1:ℂ:=complex(ℜq1,𝔍q1)

(32) ℜq1 + 𝔍q1 %i Type: Complex(Fraction(Polynomial(Integer))) r1:ℂ:=complex(ℜr1,𝔍r1)

(33) ℜr1 + 𝔍r1 %i Type: Complex(Fraction(Polynomial(Integer))) p2:ℂ:=complex(ℜp2,𝔍p2)

(34) ℜp2 + 𝔍p2 %i Type: Complex(Fraction(Polynomial(Integer))) q2:ℂ:=complex(ℜq2,𝔍q2)

(35) ℜq2 + 𝔍q2 %i Type: Complex(Fraction(Polynomial(Integer))) r2:ℂ:=complex(ℜr2,𝔍r2)

(36) ℜr2 + 𝔍r2 %i Type: Complex(Fraction(Polynomial(Integer))) p3:ℂ:=complex(ℜp3,𝔍p3)

(37) ℜp3 + 𝔍p3 %i Type: Complex(Fraction(Polynomial(Integer))) q3:ℂ:=complex(ℜq3,𝔍q3)

(38) ℜq3 + 𝔍q3 %i Type: Complex(Fraction(Polynomial(Integer))) r3:ℂ:=complex(ℜr3,𝔍r3)

(39) ℜr3 + 𝔍r3 %i Type: Complex(Fraction(Polynomial(Integer))) ρ:Matrix ℂ := matrix [[p1,q1,r1],[p2,q2,r2],[p3,q3,r3]]

+ℜp1 + 𝔍p1 %i ℜq1 + 𝔍q1 %i ℜr1 + 𝔍r1 %i+ | | (40) |ℜp2 + 𝔍p2 %i ℜq2 + 𝔍q2 %i ℜr2 + 𝔍r2 %i| | | +ℜp3 + 𝔍p3 %i ℜq3 + 𝔍q3 %i ℜr3 + 𝔍r3 %i+ Type: Matrix(Complex(Fraction(Polynomial(Integer)))) (41) -> s1:=solve(imag determinant ρ,ℜp3)

(41) [ ℜp3 = (𝔍p1 𝔍q2 - 𝔍p2 𝔍q1 - ℜp1 ℜq2 + ℜp2 ℜq1)𝔍r3 + (- 𝔍p1 𝔍q3 + 𝔍p3 𝔍q1 + ℜp1 ℜq3)𝔍r2 + (𝔍p2 𝔍q3 - 𝔍p3 𝔍q2 - ℜp2 ℜq3)𝔍r1 + (ℜp1 ℜr2 - ℜp2 ℜr1)𝔍q3 - ℜp1 ℜr3 𝔍q2 + ℜp2 ℜr3 𝔍q1 + (- ℜq1 ℜr2 + ℜq2 ℜr1)𝔍p3 + (ℜq1 ℜr3 - ℜq3 ℜr1)𝔍p2 + (- ℜq2 ℜr3 + ℜq3 ℜr2)𝔍p1 / ℜq1 𝔍r2 - ℜq2 𝔍r1 - ℜr1 𝔍q2 + ℜr2 𝔍q1 ] Type: List(Equation(Fraction(Polynomial(Integer)))) s2:=solve(eval(imag trace(ρ),s1),𝔍p1)

(42) [𝔍p1 = - 𝔍r3 - 𝔍q2] Type: List(Equation(Fraction(Polynomial(Integer)))) s3:=solve(eval(eval(imag trace(ρ*ρ),s1),s2),ℜp1)

(43) [ ℜp1 = 2 - 𝔍q2 𝔍r1 𝔍r3 + (𝔍q3 𝔍r1 + ℜq1 ℜr3)𝔍r2 + 2 (- 𝔍q2 - 𝔍p2 𝔍q1 - ℜq3 ℜr2 + ℜp2 ℜq1)𝔍r1 - ℜr1 ℜr3 𝔍q2 + ℜr2 ℜr3 𝔍q1 * 𝔍r3 + 2 ℜq1 ℜq3 𝔍r2 + (𝔍q2 𝔍q3 + 𝔍p3 𝔍q1 - ℜq2 ℜq3)𝔍r1 + ℜq1 ℜr2 𝔍q3 + (- ℜq3 ℜr1 + ℜq1 ℜq2)𝔍q2 + (ℜq3 ℜr2 + ℜp2 ℜq1)𝔍q1 + ℜq1 ℜr1 𝔍p3 + 2 ℜq1 𝔍p2 * 𝔍r2 + 2 (𝔍p2 𝔍q3 - 𝔍p3 𝔍q2 - ℜp2 ℜq3)𝔍r1 + 2 (- ℜq2 ℜr2 - ℜp2 ℜr1)𝔍q3 + (ℜq2 ℜr3 - ℜq3 ℜr2 - ℜq2 )𝔍q2 + (ℜp2 ℜr3 - ℜp2 ℜq2)𝔍q1 - ℜq1 ℜr2 𝔍p3 + (ℜq1 ℜr3 - ℜq3 ℜr1 - ℜq1 ℜq2)𝔍p2 * 𝔍r1 + 2 2 (- ℜr1 ℜr2 𝔍q2 + ℜr2 𝔍q1)𝔍q3 - ℜq2 ℜr1 𝔍q2 + 2 2 ((ℜq2 ℜr2 - ℜp2 ℜr1)𝔍q1 - ℜr1 𝔍p3 - ℜq1 ℜr1 𝔍p2)𝔍q2 + ℜp2 ℜr2 𝔍q1 + (ℜr1 ℜr2 𝔍p3 + ℜq1 ℜr2 𝔍p2)𝔍q1 / (ℜq1 𝔍r2 - ℜr1 𝔍q2 + ℜr2 𝔍q1)𝔍r3 + (- ℜq3 𝔍r1 + ℜq1 𝔍q2)𝔍r2 + 2 (- ℜr2 𝔍q3 + (ℜr3 - ℜq2)𝔍q2)𝔍r1 - ℜr1 𝔍q2 + ℜr2 𝔍q1 𝔍q2 ] Type: List(Equation(Fraction(Polynomial(Integer)))) eval(eval(eval(imag trace(ρ*ρ*ρ),s1),s2),s3)

(44) 0 Type: Fraction(Polynomial(Integer)) (45) -> C:=eval(eval(eval(characteristicPolynomial ρ,s1),s2),s3);

Type: Fraction(Polynomial(Complex(Integer))) C0:=zerosOf(C);

Type: List(Expression(Complex(Integer))) #C0

(47) 3 Type: PositiveInteger imag(C0.1)

(48) 0 Type: Expression(Integer) imag(C0.2)

(49) 0 Type: Expression(Integer) imag(C0.3)

(50) 0 Type: Expression(Integer) (51) -> h:Matrix ℂ:=matrix [[ℜa, complex(ℜb,𝔍b), complex(ℜc,𝔍c)], _ [complex(ℜb,-𝔍b),ℜe, complex(ℜd,𝔍d)], _ [complex(ℜc,-𝔍c),complex(ℜd,-𝔍d),ℜf ]]

+ ℜa ℜb + 𝔍b %i ℜc + 𝔍c %i+ | | (51) |ℜb - 𝔍b %i ℜe ℜd + 𝔍d %i| | | +ℜc - 𝔍c %i ℜd - 𝔍d %i ℜf + Type: Matrix(Complex(Fraction(Polynomial(Integer)))) test(h = htranspose h)

(52) true Type: Boolean H:=htranspose(ρ)h-hρ

(53) [ [(- 2 ℜc 𝔍p3 - 2 ℜb 𝔍p2 - 2 ℜa 𝔍p1 - 2 ℜp3 𝔍c - 2 ℜp2 𝔍b)%i,

𝔍c 𝔍q3 + 𝔍b 𝔍q2 - 𝔍d 𝔍p3 + 𝔍b 𝔍p1 - ℜc ℜq3 - ℜb ℜq2 - ℜa ℜq1 + ℜd ℜp3 + ℜe ℜp2 + ℜb ℜp1 + - ℜc 𝔍q3 - ℜb 𝔍q2 - ℜa 𝔍q1 - ℜd 𝔍p3 - ℜe 𝔍p2 - ℜb 𝔍p1 - ℜp3 𝔍d + - ℜq3 𝔍c + (- ℜq2 + ℜp1)𝔍b * %i ,

𝔍c 𝔍r3 + 𝔍b 𝔍r2 + 𝔍d 𝔍p2 + 𝔍c 𝔍p1 - ℜc ℜr3 - ℜb ℜr2 - ℜa ℜr1 + ℜf ℜp3 + ℜd ℜp2 + ℜc ℜp1 + - ℜc 𝔍r3 - ℜb 𝔍r2 - ℜa 𝔍r1 - ℜf 𝔍p3 - ℜd 𝔍p2 - ℜc 𝔍p1 + ℜp2 𝔍d + (- ℜr3 + ℜp1)𝔍c - ℜr2 𝔍b * %i ] ,

[ - 𝔍c 𝔍q3 - 𝔍b 𝔍q2 + 𝔍d 𝔍p3 - 𝔍b 𝔍p1 + ℜc ℜq3 + ℜb ℜq2 + ℜa ℜq1 - ℜd ℜp3 + - ℜe ℜp2 - ℜb ℜp1 + - ℜc 𝔍q3 - ℜb 𝔍q2 - ℜa 𝔍q1 - ℜd 𝔍p3 - ℜe 𝔍p2 - ℜb 𝔍p1 - ℜp3 𝔍d + - ℜq3 𝔍c + (- ℜq2 + ℜp1)𝔍b * %i , (- 2 ℜd 𝔍q3 - 2 ℜe 𝔍q2 - 2 ℜb 𝔍q1 - 2 ℜq3 𝔍d + 2 ℜq1 𝔍b)%i,

𝔍d 𝔍r3 - 𝔍b 𝔍r1 + 𝔍d 𝔍q2 + 𝔍c 𝔍q1 - ℜd ℜr3 - ℜe ℜr2 - ℜb ℜr1 + ℜf ℜq3 + ℜd ℜq2 + ℜc ℜq1 + - ℜd 𝔍r3 - ℜe 𝔍r2 - ℜb 𝔍r1 - ℜf 𝔍q3 - ℜd 𝔍q2 - ℜc 𝔍q1 + (- ℜr3 + ℜq2)𝔍d + ℜq1 𝔍c + ℜr1 𝔍b * %i ] ,

[ - 𝔍c 𝔍r3 - 𝔍b 𝔍r2 - 𝔍d 𝔍p2 - 𝔍c 𝔍p1 + ℜc ℜr3 + ℜb ℜr2 + ℜa ℜr1 - ℜf ℜp3 + - ℜd ℜp2 - ℜc ℜp1 + - ℜc 𝔍r3 - ℜb 𝔍r2 - ℜa 𝔍r1 - ℜf 𝔍p3 - ℜd 𝔍p2 - ℜc 𝔍p1 + ℜp2 𝔍d + (- ℜr3 + ℜp1)𝔍c - ℜr2 𝔍b * %i ,

  • 𝔍d 𝔍r3 + 𝔍b 𝔍r1 - 𝔍d 𝔍q2 - 𝔍c 𝔍q1 + ℜd ℜr3 + ℜe ℜr2 + ℜb ℜr1 - ℜf ℜq3 + - ℜd ℜq2 - ℜc ℜq1 + - ℜd 𝔍r3 - ℜe 𝔍r2 - ℜb 𝔍r1 - ℜf 𝔍q3 - ℜd 𝔍q2 - ℜc 𝔍q1 + (- ℜr3 + ℜq2)𝔍d + ℜq1 𝔍c + ℜr1 𝔍b * %i , (- 2 ℜf 𝔍r3 - 2 ℜd 𝔍r2 - 2 ℜc 𝔍r1 + 2 ℜr2 𝔍d + 2 ℜr1 𝔍c)%i] ] Type: Matrix(Complex(Fraction(Polynomial(Integer)))) (54) -> K:=concat( map(x+->[real x, imag x], concat(H::List List ?)))::List Polynomial Integer

(54) [0, - 2 ℜc 𝔍p3 - 2 ℜb 𝔍p2 - 2 ℜa 𝔍p1 - 2 ℜp3 𝔍c - 2 ℜp2 𝔍b,

𝔍c 𝔍q3 + 𝔍b 𝔍q2 - 𝔍d 𝔍p3 + 𝔍b 𝔍p1 - ℜc ℜq3 - ℜb ℜq2 - ℜa ℜq1 + ℜd ℜp3 + ℜe ℜp2 + ℜb ℜp1 ,

  • ℜc 𝔍q3 - ℜb 𝔍q2 - ℜa 𝔍q1 - ℜd 𝔍p3 - ℜe 𝔍p2 - ℜb 𝔍p1 - ℜp3 𝔍d - ℜq3 𝔍c + (- ℜq2 + ℜp1)𝔍b ,

𝔍c 𝔍r3 + 𝔍b 𝔍r2 + 𝔍d 𝔍p2 + 𝔍c 𝔍p1 - ℜc ℜr3 - ℜb ℜr2 - ℜa ℜr1 + ℜf ℜp3 + ℜd ℜp2 + ℜc ℜp1 ,

  • ℜc 𝔍r3 - ℜb 𝔍r2 - ℜa 𝔍r1 - ℜf 𝔍p3 - ℜd 𝔍p2 - ℜc 𝔍p1 + ℜp2 𝔍d + (- ℜr3 + ℜp1)𝔍c - ℜr2 𝔍b ,
  • 𝔍c 𝔍q3 - 𝔍b 𝔍q2 + 𝔍d 𝔍p3 - 𝔍b 𝔍p1 + ℜc ℜq3 + ℜb ℜq2 + ℜa ℜq1 - ℜd ℜp3 + - ℜe ℜp2 - ℜb ℜp1 ,
  • ℜc 𝔍q3 - ℜb 𝔍q2 - ℜa 𝔍q1 - ℜd 𝔍p3 - ℜe 𝔍p2 - ℜb 𝔍p1 - ℜp3 𝔍d - ℜq3 𝔍c + (- ℜq2 + ℜp1)𝔍b , 0, - 2 ℜd 𝔍q3 - 2 ℜe 𝔍q2 - 2 ℜb 𝔍q1 - 2 ℜq3 𝔍d + 2 ℜq1 𝔍b,

𝔍d 𝔍r3 - 𝔍b 𝔍r1 + 𝔍d 𝔍q2 + 𝔍c 𝔍q1 - ℜd ℜr3 - ℜe ℜr2 - ℜb ℜr1 + ℜf ℜq3 + ℜd ℜq2 + ℜc ℜq1 ,

  • ℜd 𝔍r3 - ℜe 𝔍r2 - ℜb 𝔍r1 - ℜf 𝔍q3 - ℜd 𝔍q2 - ℜc 𝔍q1 + (- ℜr3 + ℜq2)𝔍d + ℜq1 𝔍c + ℜr1 𝔍b ,
  • 𝔍c 𝔍r3 - 𝔍b 𝔍r2 - 𝔍d 𝔍p2 - 𝔍c 𝔍p1 + ℜc ℜr3 + ℜb ℜr2 + ℜa ℜr1 - ℜf ℜp3 + - ℜd ℜp2 - ℜc ℜp1 ,
  • ℜc 𝔍r3 - ℜb 𝔍r2 - ℜa 𝔍r1 - ℜf 𝔍p3 - ℜd 𝔍p2 - ℜc 𝔍p1 + ℜp2 𝔍d + (- ℜr3 + ℜp1)𝔍c - ℜr2 𝔍b ,
  • 𝔍d 𝔍r3 + 𝔍b 𝔍r1 - 𝔍d 𝔍q2 - 𝔍c 𝔍q1 + ℜd ℜr3 + ℜe ℜr2 + ℜb ℜr1 - ℜf ℜq3 + - ℜd ℜq2 - ℜc ℜq1 ,
  • ℜd 𝔍r3 - ℜe 𝔍r2 - ℜb 𝔍r1 - ℜf 𝔍q3 - ℜd 𝔍q2 - ℜc 𝔍q1 + (- ℜr3 + ℜq2)𝔍d + ℜq1 𝔍c + ℜr1 𝔍b , 0, - 2 ℜf 𝔍r3 - 2 ℜd 𝔍r2 - 2 ℜc 𝔍r1 + 2 ℜr2 𝔍d + 2 ℜr1 𝔍c] Type: List(Polynomial(Integer)) --K2:=groebner(K) J:=jacobian(select(x+->x~=0,K), [ℜa,ℜb,𝔍b,ℜc,𝔍c,ℜd,𝔍d,ℜe,ℜf]::List Symbol)

(55) [[- 2 𝔍p1, - 2 𝔍p2, - 2 ℜp2, - 2 𝔍p3, - 2 ℜp3, 0, 0, 0, 0], [- ℜq1, - ℜq2 + ℜp1, 𝔍q2 + 𝔍p1, - ℜq3, 𝔍q3, ℜp3, - 𝔍p3, ℜp2, 0], [- 𝔍q1, - 𝔍q2 - 𝔍p1, - ℜq2 + ℜp1, - 𝔍q3, - ℜq3, - 𝔍p3, - ℜp3, - 𝔍p2, 0], [- ℜr1, - ℜr2, 𝔍r2, - ℜr3 + ℜp1, 𝔍r3 + 𝔍p1, ℜp2, 𝔍p2, 0, ℜp3], [- 𝔍r1, - 𝔍r2, - ℜr2, - 𝔍r3 - 𝔍p1, - ℜr3 + ℜp1, - 𝔍p2, ℜp2, 0, - 𝔍p3], [ℜq1, ℜq2 - ℜp1, - 𝔍q2 - 𝔍p1, ℜq3, - 𝔍q3, - ℜp3, 𝔍p3, - ℜp2, 0], [- 𝔍q1, - 𝔍q2 - 𝔍p1, - ℜq2 + ℜp1, - 𝔍q3, - ℜq3, - 𝔍p3, - ℜp3, - 𝔍p2, 0], [0, - 2 𝔍q1, 2 ℜq1, 0, 0, - 2 𝔍q3, - 2 ℜq3, - 2 𝔍q2, 0], [0, - ℜr1, - 𝔍r1, ℜq1, 𝔍q1, - ℜr3 + ℜq2, 𝔍r3 + 𝔍q2, - ℜr2, ℜq3], [0, - 𝔍r1, ℜr1, - 𝔍q1, ℜq1, - 𝔍r3 - 𝔍q2, - ℜr3 + ℜq2, - 𝔍r2, - 𝔍q3], [ℜr1, ℜr2, - 𝔍r2, ℜr3 - ℜp1, - 𝔍r3 - 𝔍p1, - ℜp2, - 𝔍p2, 0, - ℜp3], [- 𝔍r1, - 𝔍r2, - ℜr2, - 𝔍r3 - 𝔍p1, - ℜr3 + ℜp1, - 𝔍p2, ℜp2, 0, - 𝔍p3], [0, ℜr1, 𝔍r1, - ℜq1, - 𝔍q1, ℜr3 - ℜq2, - 𝔍r3 - 𝔍q2, ℜr2, - ℜq3], [0, - 𝔍r1, ℜr1, - 𝔍q1, ℜq1, - 𝔍r3 - 𝔍q2, - ℜr3 + ℜq2, - 𝔍r2, - 𝔍q3], [0, 0, 0, - 2 𝔍r1, 2 ℜr1, - 2 𝔍r2, 2 ℜr2, 0, - 2 𝔍r3]] Type: Matrix(Polynomial(Integer)) (56) -> J2:=map(x+->eval(eval(eval(x,s1),s2),s3),J);

Type: Matrix(Fraction(Polynomial(Integer))) nrows(J2),ncols(J2)

(57) [15, 9] Type: Tuple(PositiveInteger) binomial(nrows(J2),ncols(J2))

(58) 5005 Type: PositiveInteger [determinant(matrix map(x+->row(J2,x+1)::List ?,subSet(nrows(J2),ncols(J2),random(binomial(nrows(J2),ncols(J2)))) )) for i in 0..1]

Welcome to LDB, a low-level debugger for the Lisp runtime environment. (GC in progress, oldspace=4, newspace=7) ldb>


Some or all expressions may not have rendered properly, because Latex returned the following error:
! Missing $ inserted.
<inserted text> 
                $
l.148 ρ:Matrix ℂ := matrix [[p1,q1],[p2,q2]]

Missing $ inserted. <inserted text> $ l.148 ρ:Matrix ℂ := matrix [[p1,q1],[p2,q2]]

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 149.

Missing $ inserted. <inserted text> $ l.151 s1:=solve(imag determinant ρ,ℜp2)

Missing $ inserted. <inserted text> $ l.152 s2:=solve(eval(imag trace ρ,s1),𝔍p1)

Missing $ inserted. <inserted text> $ l.153 ...al(eval(imag trace(ρ*ρ),s1), s2),ℜp1)

Missing $ inserted. <inserted text> $ l.154 eval(eval(imag trace (ρ*ρ),s1),s2)

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 155.

Missing $ inserted. <inserted text> $ l.157 ...(eval(characteristicPolynomial ρ,s1),s2)

Missing $ inserted. <inserted text> $ l.158 C0:=zerosOf(C)

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 162.

Missing $ inserted. <inserted text> $ l.164 ρ0:=map(x+->eval(eval(x,s1),s2),ρ)

Missing $ inserted. <inserted text> $ l.165 E:=eigenvalues(ρ0)

Missing $ inserted. <inserted text> $ l.166 E0:=eigenvector(E.1,ρ0)

Missing $ inserted. <inserted text> $ l.167 E1:=map(x+->eval(x,%D=C0.1),E0.1)

Missing $ inserted. <inserted text> $ l.169 test(ρ0E1=C0(1)E1)

Missing $ inserted. <inserted text> $ l.169 test(ρ0E1=C0(1)E1)

Missing $ inserted. <inserted text> $ l.170 test(ρ0E2=C0(2)E2)

Missing $ inserted. <inserted text> $ l.170 test(ρ0E2=C0(2)E2)

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 171.

[10] [11] [12] Missing $ inserted. <inserted text> $ l.178 H:=htranspose(ρ)h-hρ

Missing $ inserted. <inserted text> $ l.178 H:=htranspose(ρ)h-hρ

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 179.

[13] [14] [15] [16]

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 187.

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 190.

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 194.

Missing $ inserted. <inserted text> $ l.205 ...matrix [[p1,q1,r1],[p2,q2,r2],[p3,q3,r3]]

Missing $ inserted. <inserted text> $ l.205 ...matrix [[p1,q1,r1],[p2,q2,r2],[p3,q3,r3]]

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 206.

Missing $ inserted. <inserted text> $ l.208 s1:=solve(imag determinant ρ,ℜp3)

Missing $ inserted. <inserted text> $ l.209 s2:=solve(eval(imag trace(ρ),s1),𝔍p1)

Missing $ inserted. <inserted text> $ l.210 ...val(eval(imag trace(ρ*ρ),s1),s2),ℜp1)

Missing $ inserted. <inserted text> $ l.211 ...val(eval(imag trace(ρ*ρ*ρ),s1),s2),s3)

Missing $ inserted. <inserted text> $ l.212 ...(imag trace(ρ*ρ*ρ),s1),s2),s3),𝔍q3)

Missing $ inserted. <inserted text> $ l.213 --#s4

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 215.

Missing $ inserted. <inserted text> $ l.217 ...(characteristicPolynomial ρ,s1),s2),s3);

Missing $ inserted. <inserted text> $ l.218 C0:=zerosOf(C);

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 223.

[17] [18] [19] Missing $ inserted. <inserted text> $ l.232 H:=htranspose(ρ)h-hρ

Missing $ inserted. <inserted text> $ l.232 H:=htranspose(ρ)h-hρ

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 233.

[20] [21] [22] [23]

LaTeX Warning: Characters dropped after `\end{axiom}' on input line 242.

Overfull \hbox (86.02751pt too wide) in paragraph at lines 247--247 []\T1/cmtt/m/n/12 [determinant(matrix map(x+->row(J2,x+1)::List ?