|  |  | last edited 14 years ago by page | 
| 1 2 3 4 5 6 7 8 9 10 11 | ||
| Editor: Bill Page Time: 2011/06/29 15:43:58 GMT-7 | ||
| Note: characteristicPolynomial | ||
added: \begin{axiom} )set output tex off )set output algebra on \end{axiom} added: \end{axiom} \begin{axiom} changed: -s2:=solve(eval(imag trace ρ, s1),𝔍q2) s2:=solve(eval(imag trace ρ,s1),𝔍p1) s3:=solve(eval(eval(imag trace(ρ*ρ),s1), s2),ℜp1) added: \begin{axiom} C:=eval(eval(characteristicPolynomial ρ,s1),s2) C0:=zerosOf(C) #C0 imag(C0.1) imag(C0.2) \end{axiom} changed: -s3:=map((x,y)+->x=y,[a,b,c,e],c*N.1+e*N.2) -map(x+->eval(eval(eval(x,s1),s2),s3),H) s4:=map((x,y)+->x=y,[a,b,c,e],c*N.1+e*N.2) map(x+->eval(eval(eval(x,s1),s2),s4),H) removed: - - -\begin{axiom} -)set output tex off -)set output algebra on -\end{axiom} removed: -s1:=solve(imag determinant ρ,ℜp1) -s2:=solve(imag trace(ρ),𝔍p1) -s3:=solve(eval(imag trace(ρ*ρ),s2),ℜq2) -s4:=radicalSolve(eval(eval(imag trace(ρ*ρ*ρ),s2),s3),ℜr3) removed: -Given an operator $ρ \in End V$, one must find the tensor $H=0$ -for unknown manifold of hermitian isomorphisms $h$. changed: -h:Matrix ℂ:=matrix [[ℜa, complex(ℜb,𝔍b), complex(ℜc,𝔍c)], _ - [complex(ℜb,-𝔍b),ℜe, complex(ℜd,𝔍d)], _ - [complex(ℜc,-𝔍c),complex(ℜd,-𝔍d),ℜf ]] -test(h = htranspose h) -H:=htranspose(ρ)*h-h*ρ s1:=solve(imag determinant ρ,ℜp3) s2:=solve(eval(imag trace(ρ),s1),𝔍p1) s3:=solve(eval(eval(imag trace(ρ*ρ),s1),s2),ℜp1) eval(eval(eval(imag trace(ρ*ρ*ρ),s1),s2),s3) --s4:=radicalSolve(eval(eval(eval(imag trace(ρ*ρ*ρ),s1),s2),s3),𝔍q3) --#s4 --s4.1+s4.2 removed: -We wish to find expressions for $h$ in terms of the components of -$ρ$. To do this we will determine how the components of $H$ depend -on the components of $h$. changed: -K:=concat( map(x+->[real x, imag x], concat(H::List List ?)))::List Polynomial Integer -)set output tex off -)set output algebra on -expr(K::InputForm) ---K2:=groebner(K) ---J:=jacobian(K2, [a,ℜb,𝔍b,ℜc,𝔍c,ℜd,𝔍d,e,f]::List Symbol) C:=eval(eval(eval(characteristicPolynomial ρ,s1),s2),s3); C0:=zerosOf(C); #C0 imag(C0.1) imag(C0.2) imag(C0.3) changed: -The null space (kernel) of the Jacobian -\begin{axiom} ---N:=nullSpace(map(x+->eval(eval(x,s1),s2),J)) -\end{axiom}
A complex vector ℂ-space  possesses many different hermitian isomorphisms
 possesses many different hermitian isomorphisms
 . In quantum mechanics a given operator
. In quantum mechanics a given operator
 may be said to be
 may be said to be  -hermitian if
-hermitian if
|  | 
)set output tex off
)set output algebra on
ℂ:=Complex Fraction Polynomial Integer
(1) Complex(Fraction(Polynomial(Integer)))
-- dagger htranspose(h)==map(x+->conjugate(x),transpose h) 
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame initial
  The necessary conditions for an operator  to possess hermitean isomorphism
 to possess hermitean isomorphism
 is that
 is that  and
 and  .
.
Two-Dimensions
p1:ℂ:=complex(ℜp1,𝔍p1) 
(3) ℜp1 + 𝔍p1 %i
q1:ℂ:=complex(ℜq1,𝔍q1) 
(4) ℜq1 + 𝔍q1 %i
p2:ℂ:=complex(ℜp2,𝔍p2) 
(5) ℜp2 + 𝔍p2 %i
q2:ℂ:=complex(ℜq2,𝔍q2) 
(6) ℜq2 + 𝔍q2 %i
ρ:Matrix ℂ := matrix [[p1,q1], [p2, q2]] 
+ℜp1 + 𝔍p1 %i ℜq1 + 𝔍q1 %i+ (7) | | +ℜp2 + 𝔍p2 %i ℜq2 + 𝔍q2 %i+
s1:=solve(imag determinant ρ,ℜp2) 
ℜp1 𝔍q2 - ℜq1 𝔍p2 + ℜq2 𝔍p1 (8) [ℜp2= ---------------------------] 𝔍q1
s2:=solve(eval(imag trace ρ,s1), 𝔍p1) 
(9) [𝔍p1= - 𝔍q2]
s3:=solve(eval(eval(imag trace(ρ*ρ),s1), s2), ℜp1) 
(10) [0= 0]
eval(eval(imag trace (ρ*ρ),s1), s2) 
(11) 0
C:=eval(eval(characteristicPolynomial ρ,s1), s2) 
(12) 2 2 𝔍q1 𝔍q2 + (ℜq1 ℜq2 - ℜp1 ℜq1)𝔍q2 + 𝔍p2 𝔍q1 + 2 2 ((ℜp1 - %A)ℜq2 - %A ℜp1 + %A )𝔍q1 + ℜq1 𝔍p2 / 𝔍q1
C0:=zerosOf(C)
(13) [ ROOT 2 2 - 4𝔍q1 𝔍q2 + (- 4ℜq1 ℜq2 + 4ℜp1 ℜq1)𝔍q2 - 4𝔍p2 𝔍q1 + 2 2 2 (ℜq2 - 2ℜp1 ℜq2 + ℜp1 )𝔍q1 - 4ℜq1 𝔍p2 / 𝔍q1 + ℜq2 + ℜp1 / 2 ,
- ROOT 2 2 - 4𝔍q1 𝔍q2 + (- 4ℜq1 ℜq2 + 4ℜp1 ℜq1)𝔍q2 - 4𝔍p2 𝔍q1 + 2 2 2 (ℜq2 - 2ℜp1 ℜq2 + ℜp1 )𝔍q1 - 4ℜq1 𝔍p2 / 𝔍q1 + ℜq2 + ℜp1 / 2 ]
#C0
(14) 2
imag(C0.1)
(15) 0
imag(C0.2)
(16) 0
Given an operator  , one must find the tensor
, one must find the tensor  for unknown manifold of hermitian isomorphisms
for unknown manifold of hermitian isomorphisms  .
.
h:Matrix ℂ:=matrix [[a,complex(b, c)], [complex(b, -c), e]] 
+ a b + c %i+ (17) | | +b - c %i e +
test(h = htranspose h)
Compiling function htranspose with type Matrix(Complex(Fraction(
      Polynomial(Integer)))) -> Matrix(Complex(Fraction(Polynomial(
      Integer)))) 
   (18)  trueH:=htranspose(ρ)*h-h*ρ
(19) [ [(- 2b 𝔍p2 - 2a 𝔍p1 - 2c ℜp2)%i,
c 𝔍q2 + c 𝔍p1 - b ℜq2 - a ℜq1 + e ℜp2 + b ℜp1 + (- b 𝔍q2 - a 𝔍q1 - e 𝔍p2 - b 𝔍p1 - c ℜq2 + c ℜp1)%i ] ,
[ - c 𝔍q2 - c 𝔍p1 + b ℜq2 + a ℜq1 - e ℜp2 - b ℜp1 + (- b 𝔍q2 - a 𝔍q1 - e 𝔍p2 - b 𝔍p1 - c ℜq2 + c ℜp1)%i ,(- 2e 𝔍q2 - 2b 𝔍q1 + 2c ℜq1)%i] ] 
We wish to find expressions for  in terms of the components of
 in terms of the components of
 . To do this we will determine how the components of
. To do this we will determine how the components of  depend
on the components of
 depend
on the components of  .
.
J:=jacobian(concat( map(x+->[real x,imag x], concat(H::List List ?)) ), [a, b, c, e]::List Symbol) 
+ 0 0 0 0 + | | |- 2𝔍p1 - 2𝔍p2 - 2ℜp2 0 | | | |- ℜq1 - ℜq2 + ℜp1 𝔍q2 + 𝔍p1 ℜp2 | | | |- 𝔍q1 - 𝔍q2 - 𝔍p1 - ℜq2 + ℜp1 - 𝔍p2 | (20) | | | ℜq1 ℜq2 - ℜp1 - 𝔍q2 - 𝔍p1 - ℜp2 | | | |- 𝔍q1 - 𝔍q2 - 𝔍p1 - ℜq2 + ℜp1 - 𝔍p2 | | | | 0 0 0 0 | | | + 0 - 2𝔍q1 2ℜq1 - 2𝔍q2+
The null space (kernel) of the Jacobian
N:=nullSpace(map(x+->eval(eval(x,s1), s2), J)) 
- ℜq2 + ℜp1 ℜq1 𝔍p2 𝔍q2 (21) [[-----------,---, 1, 0], [- ---, - ---, 0, 1]] 𝔍q1 𝔍q1 𝔍q1 𝔍q1 
gives the general solution to the problem.
s4:=map((x,y)+->x=y, [a, b, c, e], c*N.1+e*N.2) 
- e 𝔍p2 - c ℜq2 + c ℜp1 - e 𝔍q2 + c ℜq1 (22) [a= -----------------------,b= ---------------, c= c, e= e] 𝔍q1 𝔍q1 
map(x+->eval(eval(eval(x,s1), s2), s4), H) 
+0 0+ (23) | | +0 0+
Three-Dimensions
p1:ℂ:=complex(ℜp1,𝔍p1) 
(24) ℜp1 + 𝔍p1 %i
q1:ℂ:=complex(ℜq1,𝔍q1) 
(25) ℜq1 + 𝔍q1 %i
r1:ℂ:=complex(ℜr1,𝔍r1) 
(26) ℜr1 + 𝔍r1 %i
p2:ℂ:=complex(ℜp2,𝔍p2) 
(27) ℜp2 + 𝔍p2 %i
q2:ℂ:=complex(ℜq2,𝔍q2) 
(28) ℜq2 + 𝔍q2 %i
r2:ℂ:=complex(ℜr2,𝔍r2) 
(29) ℜr2 + 𝔍r2 %i
p3:ℂ:=complex(ℜp3,𝔍p3) 
(30) ℜp3 + 𝔍p3 %i
q3:ℂ:=complex(ℜq3,𝔍q3) 
(31) ℜq3 + 𝔍q3 %i
r3:ℂ:=complex(ℜr3,𝔍r3) 
(32) ℜr3 + 𝔍r3 %i
ρ:Matrix ℂ := matrix [[p1,q1, r1], [p2, q2, r2], [p3, q3, r3]] 
+ℜp1 + 𝔍p1 %i ℜq1 + 𝔍q1 %i ℜr1 + 𝔍r1 %i+ | | (33) |ℜp2 + 𝔍p2 %i ℜq2 + 𝔍q2 %i ℜr2 + 𝔍r2 %i| | | +ℜp3 + 𝔍p3 %i ℜq3 + 𝔍q3 %i ℜr3 + 𝔍r3 %i+
s1:=solve(imag determinant ρ,ℜp3) 
(34) [ ℜp3 = (𝔍p1 𝔍q2 - 𝔍p2 𝔍q1 - ℜp1 ℜq2 + ℜp2 ℜq1)𝔍r3 + (- 𝔍p1 𝔍q3 + 𝔍p3 𝔍q1 + ℜp1 ℜq3)𝔍r2 + (𝔍p2 𝔍q3 - 𝔍p3 𝔍q2 - ℜp2 ℜq3)𝔍r1 + (ℜp1 ℜr2 - ℜp2 ℜr1)𝔍q3 - ℜp1 ℜr3 𝔍q2 + ℜp2 ℜr3 𝔍q1 + (- ℜq1 ℜr2 + ℜq2 ℜr1)𝔍p3 + (ℜq1 ℜr3 - ℜq3 ℜr1)𝔍p2 + (- ℜq2 ℜr3 + ℜq3 ℜr2)𝔍p1 / ℜq1 𝔍r2 - ℜq2 𝔍r1 - ℜr1 𝔍q2 + ℜr2 𝔍q1 ]
s2:=solve(eval(imag trace(ρ),s1), 𝔍p1) 
(35) [𝔍p1= - 𝔍r3 - 𝔍q2]
s3:=solve(eval(eval(imag trace(ρ*ρ),s1), s2), ℜp1) 
(36) [ ℜp1 = 2 - 𝔍q2 𝔍r1 𝔍r3 + (𝔍q3 𝔍r1 + ℜq1 ℜr3)𝔍r2 + 2 (- 𝔍q2 - 𝔍p2 𝔍q1 - ℜq3 ℜr2 + ℜp2 ℜq1)𝔍r1 - ℜr1 ℜr3 𝔍q2 + ℜr2 ℜr3 𝔍q1 * 𝔍r3 + 2 ℜq1 ℜq3 𝔍r2 + (𝔍q2 𝔍q3 + 𝔍p3 𝔍q1 - ℜq2 ℜq3)𝔍r1 + ℜq1 ℜr2 𝔍q3 + (- ℜq3 ℜr1 + ℜq1 ℜq2)𝔍q2 + (ℜq3 ℜr2 + ℜp2 ℜq1)𝔍q1 + ℜq1 ℜr1 𝔍p3 + 2 ℜq1 𝔍p2 * 𝔍r2 + 2 (𝔍p2 𝔍q3 - 𝔍p3 𝔍q2 - ℜp2 ℜq3)𝔍r1 + 2 (- ℜq2 ℜr2 - ℜp2 ℜr1)𝔍q3 + (ℜq2 ℜr3 - ℜq3 ℜr2 - ℜq2 )𝔍q2 + (ℜp2 ℜr3 - ℜp2 ℜq2)𝔍q1 - ℜq1 ℜr2 𝔍p3 + (ℜq1 ℜr3 - ℜq3 ℜr1 - ℜq1 ℜq2)𝔍p2 * 𝔍r1 + 2 2 (- ℜr1 ℜr2 𝔍q2 + ℜr2 𝔍q1)𝔍q3 - ℜq2 ℜr1 𝔍q2 + 2 2 ((ℜq2 ℜr2 - ℜp2 ℜr1)𝔍q1 - ℜr1 𝔍p3 - ℜq1 ℜr1 𝔍p2)𝔍q2 + ℜp2 ℜr2 𝔍q1 + (ℜr1 ℜr2 𝔍p3 + ℜq1 ℜr2 𝔍p2)𝔍q1 / (ℜq1 𝔍r2 - ℜr1 𝔍q2 + ℜr2 𝔍q1)𝔍r3 + (- ℜq3 𝔍r1 + ℜq1 𝔍q2)𝔍r2 + 2 (- ℜr2 𝔍q3 + (ℜr3 - ℜq2)𝔍q2)𝔍r1 - ℜr1 𝔍q2 + ℜr2 𝔍q1 𝔍q2 ]
eval(eval(eval(imag trace(ρ*ρ*ρ),s1), s2), s3) 
(37) 0
C:=eval(eval(eval(characteristicPolynomial ρ,s1), s2), s3); 
C0:=zerosOf(C);
#C0
(40) 3
imag(C0.1)
(41) 0
imag(C0.2)
(42) 0
imag(C0.3)
(43) 0