login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxGrassmannIsometry revision 5 of 7

1 2 3 4 5 6 7
Editor: page
Time: 2009/09/11 17:19:15 GMT-7
Note: new representation

added:
Isometry from Grassmann Multivectors

  Representation

'K' is a unital associative and commutative ring represented by polynomials
with rational coefficients of a set of symbols.
\begin{axiom}
K:=SparseMultivariatePolynomial(Fraction Integer,Symbol)
\end{axiom}
The Grassmann Hopf K-algebra is represented by the Axiom domain **Expression**
consisting of rational functions with coefficients from K over an additional
set of symbols and common mathematical operators.
\begin{axiom}
E:=Expression K
a:=a::Symbol::K; b:=b::Symbol::K; c:=c::Symbol::K;
P:=P::Symbol::E; Q:=Q::Symbol::E; R:=R::Symbol::E;
\end{axiom}


changed:
-dot(A:EXPR INT,B:EXPR INT):EXPR INT == (smaller?(A,B)=>idot(A,B);idot(B,A))
-dot(P, Q)=dot(Q,P)
dot(A:E,B:E):E == (smaller?(A,B)=>idot(A,B);idot(B,A))
test(dot(P, Q)=dot(Q,P))

changed:
-hat(A:EXPR INT,B:EXPR INT):EXPR INT == (smaller?(A,B)=>ihat(A,B);-ihat(B,A))
-hat(P, Q)=-hat(Q,P)
hat(A:E,B:E):E == (smaller?(A,B)=>ihat(A,B);-ihat(B,A))
test(hat(P, Q)=-hat(Q,P))

changed:
-6 Proof of the main theorem 15 (isometry from bivector)
5 Isometry from Bivector

  In 1937 Elie Cartan observed that the Lie algebra of the isometry group
$ O_g = Aut(E,g) $, is given by bivectors $E^{\wedge 2} \subset \mathcal{Cl}(E,g)$.


changed:
-eq33 := matrix [[-dot(P,P), -dot(P,Q)+c], _
-                [dot(Q,P)+c, dot(Q,Q)]]
eq33 := matrix [[-dot(P,P),   dot(Q,P)+c], _
                [-dot(P,Q)+c, dot(Q,Q)  ]]

added:

  Consider the following endomorphism,

\begin{equation}
L \equiv id_E - P \otimes \alpha - Q \otimes \beta - R \otimes \gamma  \ \ \in End_K E
\end{equation}
\begin{equation}
t \equiv P \wedge Q \wedge R \ne 0, \mbox{and} \alpha \wedge \beta \wedge \gamma \ne 0
\end{equation}
 

changed:
-eq44 := matrix [[dot(P, P), dot(P, Q)+a, dot(P, R)+b], _
-                [dot(P, Q)-a, dot(Q, Q), dot(Q, R)+c], _
-                [dot(P, R)-b, dot(Q, R)-c, dot(R, R)]]
eq44 := matrix [[dot(P,P),   dot(Q,P)-a, dot(R,P)-b], _
                [dot(P,Q)+a, dot(Q,Q),   dot(R,Q)-c], _
                [dot(P,R)+b, dot(Q,R)+c, dot(R,R)  ]]

changed:
-eq47a.adjMat
eq47a.adjMat::List List E
)set output tex on

removed:
-)set output tex on

added:


changed:
-  a*dot(R, R)-b*dot(R, Q)+c*dot(R, P) == dot(R, v)
-  a*dot(Q, R)-b*dot(Q, Q)+c*dot(Q, P) == dot(Q, v)
-  a*dot(P, R)-b*dot(P, Q)+c*dot(P, P) == dot(P, v)
  a*dot(R,R)-b*dot(R,Q)+c*dot(R,P) == dot(R,v)
  a*dot(Q,R)-b*dot(Q,Q)+c*dot(Q,P) == dot(Q,v)
  a*dot(P,R)-b*dot(P,Q)+c*dot(P,P) == dot(P,v)

Isometry from Grassmann Multivectors

Representation

K is a unital associative and commutative ring represented by polynomials with rational coefficients of a set of symbols.

axiom
K:=SparseMultivariatePolynomial(Fraction Integer,Symbol)
LatexWiki Image(1)
Type: Domain

The Grassmann Hopf K-algebra is represented by the Axiom domain Expression consisting of rational functions with coefficients from K over an additional set of symbols and common mathematical operators.

axiom
E:=Expression K
LatexWiki Image(2)
Type: Domain
axiom
a:=a::Symbol::K; b:=b::Symbol::K;
c:=c::Symbol::K;
Type: SparseMultivariatePolynomial?(Fraction(Integer),Symbol)
axiom
P:=P::Symbol::E; Q:=Q::Symbol::E;
R:=R::Symbol::E;
Type: Expression(SparseMultivariatePolynomial?(Fraction(Integer),Symbol))

Grassmann Algebra Operators

Symmetric inner product

axiom
idot:=display(operator('dot,2), (x:List OutputForm):OutputForm +->
hconcat([x.1,_{_\cdot_} ,x.2]));
Type: BasicOperator?
axiom
dot(A:E,B:E):E == (smaller?(A,B)=>idot(A,B);idot(B,A))
Function declaration dot : (Expression(SparseMultivariatePolynomial( Fraction(Integer),Symbol)),Expression( SparseMultivariatePolynomial(Fraction(Integer),Symbol))) -> Expression(SparseMultivariatePolynomial(Fraction(Integer),Symbol) ) has been added to workspace.
Type: Void
axiom
test(dot(P, Q)=dot(Q,P))
axiom
Compiling function dot with type (Expression(
      SparseMultivariatePolynomial(Fraction(Integer),Symbol)),
      Expression(SparseMultivariatePolynomial(Fraction(Integer),Symbol)
      )) -> Expression(SparseMultivariatePolynomial(Fraction(Integer),
      Symbol))
LatexWiki Image(3)
Type: Boolean

Exterior product

axiom
ihat:=display(operator('hat,2), (x:List OutputForm):OutputForm +->
hconcat([x.1,_{_\wedge_} ,x.2]));
Type: BasicOperator?
axiom
hat(A:E,B:E):E == (smaller?(A,B)=>ihat(A,B);-ihat(B,A))
Function declaration hat : (Expression(SparseMultivariatePolynomial( Fraction(Integer),Symbol)),Expression( SparseMultivariatePolynomial(Fraction(Integer),Symbol))) -> Expression(SparseMultivariatePolynomial(Fraction(Integer),Symbol) ) has been added to workspace.
Type: Void
axiom
test(hat(P, Q)=-hat(Q,P))
axiom
Compiling function hat with type (Expression(
      SparseMultivariatePolynomial(Fraction(Integer),Symbol)),
      Expression(SparseMultivariatePolynomial(Fraction(Integer),Symbol)
      )) -> Expression(SparseMultivariatePolynomial(Fraction(Integer),
      Symbol))
LatexWiki Image(4)
Type: Boolean
axiom
simplifyHat:=rule
  dot(P, Q)^2-dot(P,P)*dot(Q,Q) == hat(P,Q)^2
  -dot(P,Q)^2+dot(P,P)*dot(Q,Q) == -hat(P,Q)^2
  dot(Q,R)*dot(P,R)-dot(R,R)*dot(P,Q) == dot(hat(R,Q),hat(R,P))
LatexWiki Image(5)
Type: Ruleset(Integer,SparseMultivariatePolynomial?(Fraction(Integer),Symbol),Expression(SparseMultivariatePolynomial?(Fraction(Integer),Symbol)))

  1. Isometry from Bivector

    In 1937 Elie Cartan observed that the Lie algebra of the isometry group LatexWiki Image, is given by bivectors LatexWiki Image.

axiom
eq33 := matrix [[-dot(P,P),   dot(Q,P)+c], _
                [-dot(P,Q)+c, dot(Q,Q)  ]]
LatexWiki Image(6)
Type: Matrix(Expression(SparseMultivariatePolynomial?(Fraction(Integer),Symbol)))
axiom
eq35 := inverse(eq33)
LatexWiki Image(7)
Type: Union(Matrix(Expression(SparseMultivariatePolynomial?(Fraction(Integer),Symbol))),...)
axiom
map(x+->simplifyHat(x),eq35)
LatexWiki Image(8)
Type: Matrix(Expression(SparseMultivariatePolynomial?(Fraction(Integer),Symbol)))

  1. Isometry from Trivector

    Consider the following endomorphism,

LatexWiki Image(9)
LatexWiki Image(10)

axiom
eq44 := matrix [[dot(P,P),   dot(Q,P)-a, dot(R,P)-b], _
                [dot(P,Q)+a, dot(Q,Q),   dot(R,Q)-c], _
                [dot(P,R)+b, dot(Q,R)+c, dot(R,R)  ]]
LatexWiki Image(11)
Type: Matrix(Expression(SparseMultivariatePolynomial?(Fraction(Integer),Symbol)))
axiom
eq47a := adjoint(eq44);
Type: Record(adjMat: Matrix(Expression(SparseMultivariatePolynomial?(Fraction(Integer),Symbol))),detMat: Expression(SparseMultivariatePolynomial?(Fraction(Integer),Symbol)))

axiom
)set output tex off
axiom
)set output algebra on
eq47a.adjMat::List List E
(17) [ 2 2 [Q{\cdot}QR{\cdot}R - Q{\cdot}R + c , (- P{\cdot}Q + a)R{\cdot}R + (P{\cdot}R - b)Q{\cdot}R + cP{\cdot}R - b c, (P{\cdot}Q - a)Q{\cdot}R + (- P{\cdot}R + b)Q{\cdot}Q - cP{\cdot}Q + a c] ,
[(- P{\cdot}Q - a)R{\cdot}R + (P{\cdot}R + b)Q{\cdot}R - cP{\cdot}R - b c, 2 2 P{\cdot}PR{\cdot}R - P{\cdot}R + b ,
- P{\cdot}PQ{\cdot}R + (P{\cdot}Q + a)P{\cdot}R - bP{\cdot}Q + cP{\cdot}P - a b ] ,
[(P{\cdot}Q + a)Q{\cdot}R + (- P{\cdot}R - b)Q{\cdot}Q + cP{\cdot}Q + a c,
- P{\cdot}PQ{\cdot}R + (P{\cdot}Q - a)P{\cdot}R + bP{\cdot}Q + - cP{\cdot}P - a b , 2 2 P{\cdot}PQ{\cdot}Q - P{\cdot}Q + a ] ]
Type: List(List(Expression(SparseMultivariatePolynomial?(Fraction(Integer),Symbol))))
axiom
)set output tex on
axiom
)set output algebra off
eq47a.detMat
LatexWiki Image(12)
Type: Expression(SparseMultivariatePolynomial?(Fraction(Integer),Symbol))

Simplifications

axiom
eq45 := a*R-b*Q+c*P = v
LatexWiki Image(13)
Type: Equation(Expression(SparseMultivariatePolynomial?(Fraction(Integer),Symbol)))
axiom
eq45a := rule
  a*dot(R,R)-b*dot(R,Q)+c*dot(R,P) == dot(R,v)
  a*dot(Q,R)-b*dot(Q,Q)+c*dot(Q,P) == dot(Q,v)
  a*dot(P,R)-b*dot(P,Q)+c*dot(P,P) == dot(P,v)
LatexWiki Image(14)
Type: Ruleset(Integer,SparseMultivariatePolynomial?(Fraction(Integer),Symbol),Expression(SparseMultivariatePolynomial?(Fraction(Integer),Symbol)))
axiom
eq47b := map(x+->eq45a simplifyHat x,eq47a.adjMat)
LatexWiki Image(15)
Type: Matrix(Expression(SparseMultivariatePolynomial?(Fraction(Integer),Symbol)))
axiom
map(x+->x^2,eq45)
LatexWiki Image(16)
Type: Equation(Expression(SparseMultivariatePolynomial?(Fraction(Integer),Symbol)))
axiom
eq47d := rule
  dot(R,R)*a^2 + dot(Q,Q)*b^2 + dot(P,P)*c^2 - _
  2*c*b*dot(P,Q) + 2*a*c*dot(R,P) - 2*a*b*dot(R,Q) == v^2
LatexWiki Image(17)
Type: RewriteRule?(Integer,SparseMultivariatePolynomial?(Fraction(Integer),Symbol),Expression(SparseMultivariatePolynomial?(Fraction(Integer),Symbol)))
axiom
eq47d(eq47a.detMat)
LatexWiki Image(18)
Type: Expression(SparseMultivariatePolynomial?(Fraction(Integer),Symbol))