login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxGrassmannIsometry revision 3 of 7

1 2 3 4 5 6 7
Editor: page
Time: 2009/09/11 05:38:31 GMT-7
Note: first rules

changed:
-idot:=display(operator('dot,2), (x:List OutputForm):OutputForm+->hconcat([x.1,_{_\cdot_} ,x.2]))
idot:=display(operator('dot,2), (x:List OutputForm):OutputForm +-> hconcat([x.1,_{_\cdot_} ,x.2]));

changed:
-ihat:=display(operator('hat,2), (x:List OutputForm):OutputForm+->hconcat([x.1,_{_\wedge_} ,x.2]))
ihat:=display(operator('hat,2), (x:List OutputForm):OutputForm +-> hconcat([x.1,_{_\wedge_} ,x.2]));

changed:
-
6 Proof of the main theorem 15 (isometry from bivector)
\begin{axiom}
eq33 := matrix [[-dot(P,P), -dot(P,Q)+c],[dot(Q,P)+c, dot(Q,Q)]]
eq35 := inverse(eq33)
simplifyHatSquare:=ruleset([rule dot(P, Q)^2-dot(P, P)*dot(Q, Q) == hat(P, Q)^2,rule -dot(P, Q)^2+dot(P, P)*dot(Q, Q) == -hat(P, Q)^2])
map(x+->simplifyHatSquare(x),eq35)
\end{axiom}

Grassmann Algebra Operators

Symmetric inner product

axiom
idot:=display(operator('dot,2), (x:List OutputForm):OutputForm +->
hconcat([x.1,_{_\cdot_} ,x.2]));
Type: BasicOperator?
axiom
dot(A:EXPR INT,B:EXPR INT):EXPR INT == (smaller?(A,B)=>idot(A,B);idot(B,A))
Function declaration dot : (Expression(Integer),Expression(Integer)) -> Expression(Integer) has been added to workspace.
Type: Void
axiom
dot(P, Q)=dot(Q,P)
axiom
Compiling function dot with type (Expression(Integer),Expression(
      Integer)) -> Expression(Integer)
LatexWiki Image(1)
Type: Equation(Expression(Integer))

Exterior product

axiom
ihat:=display(operator('hat,2), (x:List OutputForm):OutputForm +->
hconcat([x.1,_{_\wedge_} ,x.2]));
Type: BasicOperator?
axiom
hat(A:EXPR INT,B:EXPR INT):EXPR INT == (smaller?(A,B)=>ihat(A,B);-ihat(B,A))
Function declaration hat : (Expression(Integer),Expression(Integer)) -> Expression(Integer) has been added to workspace.
Type: Void
axiom
hat(P, Q)=-hat(Q,P)
axiom
Compiling function hat with type (Expression(Integer),Expression(
      Integer)) -> Expression(Integer)
LatexWiki Image(2)
Type: Equation(Expression(Integer))
axiom
1+1
LatexWiki Image(3)
Type: PositiveInteger?

  1. Proof of the main theorem 15 (isometry from bivector)
    axiom
    eq33 := matrix [[-dot(P,P), -dot(P,Q)+c],[dot(Q,P)+c, dot(Q,Q)]]
    LatexWiki Image(4)
    Type: Matrix(Expression(Integer))
    axiom
    eq35 := inverse(eq33)
    LatexWiki Image(5)
    Type: Union(Matrix(Expression(Integer)),...)
    axiom
    simplifyHatSquare:=ruleset([rule dot(P, Q)^2-dot(P, P)*dot(Q, Q) == hat(P, Q)^2,rule
    -dot(P, Q)^2+dot(P, P)*dot(Q, Q) == -hat(P, Q)^2])
    LatexWiki Image(6)
    Type: Ruleset(Integer,Integer,Expression(Integer))
    axiom
    map(x+->simplifyHatSquare(x),eq35)
    LatexWiki Image(7)
    Type: Matrix(Expression(Integer))