login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxGrassmannIsometry revision 4 of 7

1 2 3 4 5 6 7
Editor: page
Time: 2009/09/11 07:30:15 GMT-7
Note: simplifications

changed:
-1+1
simplifyHat:=rule
  dot(P, Q)^2-dot(P,P)*dot(Q,Q) == hat(P,Q)^2
  -dot(P,Q)^2+dot(P,P)*dot(Q,Q) == -hat(P,Q)^2
  dot(Q,R)*dot(P,R)-dot(R,R)*dot(P,Q) == dot(hat(R,Q),hat(R,P))

changed:
-eq33 := matrix [[-dot(P,P), -dot(P,Q)+c],[dot(Q,P)+c, dot(Q,Q)]]
eq33 := matrix [[-dot(P,P), -dot(P,Q)+c], _
                [dot(Q,P)+c, dot(Q,Q)]]

changed:
-simplifyHatSquare:=ruleset([rule dot(P, Q)^2-dot(P, P)*dot(Q, Q) == hat(P, Q)^2,rule -dot(P, Q)^2+dot(P, P)*dot(Q, Q) == -hat(P, Q)^2])
-map(x+->simplifyHatSquare(x),eq35)
map(x+->simplifyHat(x),eq35)

added:

7 Isometry from Trivector
\begin{axiom}
eq44 := matrix [[dot(P, P), dot(P, Q)+a, dot(P, R)+b], _
                [dot(P, Q)-a, dot(Q, Q), dot(Q, R)+c], _
                [dot(P, R)-b, dot(Q, R)-c, dot(R, R)]]
eq47a := adjoint(eq44);
\end{axiom}

\begin{axiom}
)set output tex off
)set output algebra on
eq47a.adjMat
)set output algebra off
)set output tex on
eq47a.detMat
\end{axiom}

Simplifications
\begin{axiom}
eq45 := a*R-b*Q+c*P = v
eq45a := rule
  a*dot(R, R)-b*dot(R, Q)+c*dot(R, P) == dot(R, v)
  a*dot(Q, R)-b*dot(Q, Q)+c*dot(Q, P) == dot(Q, v)
  a*dot(P, R)-b*dot(P, Q)+c*dot(P, P) == dot(P, v)
eq47b := map(x+->eq45a simplifyHat x,eq47a.adjMat)
map(x+->x^2,eq45)
eq47d := rule
  dot(R,R)*a^2 + dot(Q,Q)*b^2 + dot(P,P)*c^2 - _
  2*c*b*dot(P,Q) + 2*a*c*dot(R,P) - 2*a*b*dot(R,Q) == v^2
eq47d(eq47a.detMat)
\end{axiom}


Grassmann Algebra Operators

Symmetric inner product

axiom
idot:=display(operator('dot,2), (x:List OutputForm):OutputForm +->
hconcat([x.1,_{_\cdot_} ,x.2]));
Type: BasicOperator?
axiom
dot(A:EXPR INT,B:EXPR INT):EXPR INT == (smaller?(A,B)=>idot(A,B);idot(B,A))
Function declaration dot : (Expression(Integer),Expression(Integer)) -> Expression(Integer) has been added to workspace.
Type: Void
axiom
dot(P, Q)=dot(Q,P)
axiom
Compiling function dot with type (Expression(Integer),Expression(
      Integer)) -> Expression(Integer)
LatexWiki Image(1)
Type: Equation(Expression(Integer))

Exterior product

axiom
ihat:=display(operator('hat,2), (x:List OutputForm):OutputForm +->
hconcat([x.1,_{_\wedge_} ,x.2]));
Type: BasicOperator?
axiom
hat(A:EXPR INT,B:EXPR INT):EXPR INT == (smaller?(A,B)=>ihat(A,B);-ihat(B,A))
Function declaration hat : (Expression(Integer),Expression(Integer)) -> Expression(Integer) has been added to workspace.
Type: Void
axiom
hat(P, Q)=-hat(Q,P)
axiom
Compiling function hat with type (Expression(Integer),Expression(
      Integer)) -> Expression(Integer)
LatexWiki Image(2)
Type: Equation(Expression(Integer))
axiom
simplifyHat:=rule
  dot(P, Q)^2-dot(P,P)*dot(Q,Q) == hat(P,Q)^2
  -dot(P,Q)^2+dot(P,P)*dot(Q,Q) == -hat(P,Q)^2
  dot(Q,R)*dot(P,R)-dot(R,R)*dot(P,Q) == dot(hat(R,Q),hat(R,P))
LatexWiki Image(3)
Type: Ruleset(Integer,Integer,Expression(Integer))

  1. Proof of the main theorem 15 (isometry from bivector)
    axiom
    eq33 := matrix [[-dot(P,P), -dot(P,Q)+c], _
                    [dot(Q,P)+c, dot(Q,Q)]]
    LatexWiki Image(4)
    Type: Matrix(Expression(Integer))
    axiom
    eq35 := inverse(eq33)
    LatexWiki Image(5)
    Type: Union(Matrix(Expression(Integer)),...)
    axiom
    map(x+->simplifyHat(x),eq35)
    LatexWiki Image(6)
    Type: Matrix(Expression(Integer))
  2. Isometry from Trivector
    axiom
    eq44 := matrix [[dot(P, P), dot(P, Q)+a, dot(P, R)+b], _
                    [dot(P, Q)-a, dot(Q, Q), dot(Q, R)+c], _
                    [dot(P, R)-b, dot(Q, R)-c, dot(R, R)]]
    LatexWiki Image(7)
    Type: Matrix(Expression(Integer))
    axiom
    eq47a := adjoint(eq44);
    Type: Record(adjMat: Matrix(Expression(Integer)),detMat: Expression(Integer))

axiom
)set output tex off
axiom
)set output algebra on
eq47a.adjMat
(13) [ 2 2 [Q{\cdot}QR{\cdot}R - Q{\cdot}R + c , (- P{\cdot}Q - a)R{\cdot}R + (P{\cdot}R + b)Q{\cdot}R - cP{\cdot}R - b c, (P{\cdot}Q + a)Q{\cdot}R + (- P{\cdot}R - b)Q{\cdot}Q + cP{\cdot}Q + a c] ,
[(- P{\cdot}Q + a)R{\cdot}R + (P{\cdot}R - b)Q{\cdot}R + cP{\cdot}R - b c, 2 2 P{\cdot}PR{\cdot}R - P{\cdot}R + b ,
- P{\cdot}PQ{\cdot}R + (P{\cdot}Q - a)P{\cdot}R + bP{\cdot}Q + - cP{\cdot}P - a b ] ,
[(P{\cdot}Q - a)Q{\cdot}R + (- P{\cdot}R + b)Q{\cdot}Q - cP{\cdot}Q + a c,
- P{\cdot}PQ{\cdot}R + (P{\cdot}Q + a)P{\cdot}R - bP{\cdot}Q + cP{\cdot}P - a b , 2 2 P{\cdot}PQ{\cdot}Q - P{\cdot}Q + a ] ]
Type: Matrix(Expression(Integer))
axiom
)set output algebra off
axiom
)set output tex on
eq47a.detMat
LatexWiki Image(8)
Type: Expression(Integer)

Simplifications

axiom
eq45 := a*R-b*Q+c*P = v
LatexWiki Image(9)
Type: Equation(Polynomial(Integer))
axiom
eq45a := rule
  a*dot(R, R)-b*dot(R, Q)+c*dot(R, P) == dot(R, v)
  a*dot(Q, R)-b*dot(Q, Q)+c*dot(Q, P) == dot(Q, v)
  a*dot(P, R)-b*dot(P, Q)+c*dot(P, P) == dot(P, v)
LatexWiki Image(10)
Type: Ruleset(Integer,Integer,Expression(Integer))
axiom
eq47b := map(x+->eq45a simplifyHat x,eq47a.adjMat)
LatexWiki Image(11)
Type: Matrix(Expression(Integer))
axiom
map(x+->x^2,eq45)
LatexWiki Image(12)
Type: Equation(Polynomial(Integer))
axiom
eq47d := rule
  dot(R,R)*a^2 + dot(Q,Q)*b^2 + dot(P,P)*c^2 - _
  2*c*b*dot(P,Q) + 2*a*c*dot(R,P) - 2*a*b*dot(R,Q) == v^2
LatexWiki Image(13)
Type: RewriteRule?(Integer,Integer,Expression(Integer))
axiom
eq47d(eq47a.detMat)
LatexWiki Image(14)
Type: Expression(Integer)