login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox Grassmann Algebra Is Frobenius In Many Ways revision 7 of 8

1 2 3 4 5 6 7 8
Editor: Bill Page
Time: 2011/06/08 18:52:13 GMT-7
Note: Cartan-Killing form

changed:
-$2^n$-dimensional vector space representing Grassmann algebra with $n$ generators
-
-An algebra is represented by a (2,1)-tensor
-$Y=\{ {y^k}_{ij} \ i,j,k =1,2, ... dim \}$
-viewed as a linear operator with two inputs $i,j$ and one
-output $k$. For example:
-\begin{axiom}
-n:=2
-dim:=2^n
-T := CartesianTensor(1,dim,EXPR INT)
---T:=CartesianTensor(1,dim,FRAC POLY INT)
-X:List T := [unravel [(i=j => 1;0) for j in 1..dim] for i in 1..dim]
-X(1),X(2)
-Y:T := unravel(concat concat
-  [[[script(y,[[i,j],[k]])
-    for i in 1..dim]
-      for j in 1..dim]
-        for k in 1..dim]
-          )
-\end{axiom}
Grassmann Algebra Is Frobenius In Many Ways

A $2^n$-dimensional vector space represents Grassmann algebra with $n$ generators

Linear operators over a 4-dimensional vector space representing Grassmann
algebra with two generators.

Ref:

- http://arxiv.org/abs/1103.5113

  $S_3$-permuted Frobenius Algebras

  *Zbigniew Oziewicz (UNAM), Gregory Peter Wene (UTSA)*

- http://mat.uab.es/~kock/TQFT.html

  Frobenius algebras and 2D topological quantum field theories

  *Joachim Kock*

- http://en.wikipedia.org/wiki/Frobenius_algebra

- http://en.wikipedia.org/wiki/Grassmann_algebra

We need the Axiom LinearOperator library.
\begin{axiom}
)library CARTEN ARITY CMONAL CPROP CLOP CALEY
\end{axiom}

Use the following macros for convenient notation
\begin{axiom}
-- summation
macro Σ(x,i,n)==reduce(+,[x for i in n])
-- list
macro Ξ(f,i,n)==[f for i in n]
-- subscript and superscripts
macro sb == subscript
macro sp == superscript
\end{axiom}

𝐋 is the domain of 4-dimensional linear operators over the
rational functions ℚ (Expression Integer), i.e. ratio of
polynomials with integer coefficients.
\begin{axiom}
dim:=4
macro ℒ == List
macro ℂ == CaleyDickson
macro ℚ == Expression Integer
𝐋 := ClosedLinearOperator(OVAR ['1,'i,'j,'k], ℚ)
𝐞:ℒ 𝐋      := basisOut()
𝐝:ℒ 𝐋      := basisIn()
I:𝐋:=[1]   -- identity for composition
X:𝐋:=[2,1] -- twist
V:𝐋:=ev(1) -- evaluation
Λ:𝐋:=co(1) -- co-evaluation
equate(eq)==map((x,y)+->(x=y),ravel lhs eq, ravel rhs eq);
\end{axiom}

changed:
-\begin{axiom}
--- Construct a basis for the Grassmann algebra
-GA:=AntiSymm(INT,[subscript(g,[i]) for i in 1..n])
-B:=[exp(reverse concat([0 for i in 1..n-length(x)],wholeRagits(x::RADIX(2))))$GA for x in 0..dim-1]
--- Compute the multiplication table
-M:=matrix [[B.i * B.j for j in 1..dim] for i in 1..dim]
--- The structure constants of the algebra are given by the coefficients
--- of the polynomials in the multiplication table with respect to the basis
-S(y)==map(x+->coefficient(x,y),M)
-Yg:T:=unravel concat concat(map(S,B)::List List List FRAC POLY INT)
-\end{axiom}

The structure constants can be obtained by dividing each matrix entry by the list of basis vectors.

Grassmann algebra will be specified by setting the Caley-Dickson parameters (i2, j2) to zero.

\begin{axiom}
i2:=sp('i,[2])
j2:=sp('j,[2])
QQ:=CliffordAlgebra(2,ℚ,matrix [[i2,0],[0,j2]])
B:ℒ QQ := [monomial(1,[]),monomial(1,[1]),monomial(1,[2]),monomial(1,[1,2])]
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)
S(y) == map(x +-> coefficient(recip(y)*x,[]),M)
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ
-- structure constants form a tensor operator
--Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim)
Y := eval(Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim),[i2=0,j2=0])
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)
\end{axiom}

Units
\begin{axiom}
e:=𝐞.1; i:=𝐞.2; j:=𝐞.3; k:=𝐞.4;
\end{axiom}

Multiplication of arbitrary Grassmann numbers $a$ and $b$
\begin{axiom}
a:=Σ(sb('a,[i])*𝐞.i, i,1..dim)
b:=Σ(sb('b,[i])*𝐞.i, i,1..dim)
(a*b)/Y
\end{axiom}

Multiplication is Associative
\begin{axiom}
test(
  ( I Y ) / _
  (  Y  ) = _
  ( Y I ) / _
  (  Y  ) )
\end{axiom}

changed:
-U:T := unravel(concat
-  [[script(u,[[],[j,i]])
-    for i in 1..dim]
-      for j in 1..dim]
-        )
-\end{axiom}
U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim)
\end{axiom}


changed:
-  In other words, if the (3,0)-tensor::
-
-    i  j  k   i  j  k   i  j  k
-     \ | /     \/  /     \  \/
-      \|/   =   \ /   -   \ /
-       0         0         0
  In other words, if the (3,0)-tensor:
$$
\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-0.92)(4.82,0.92)
\psbezier[linewidth=0.04](2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9)
\psline[linewidth=0.04cm](2.4,0.3)(2.4,-0.1)
\psbezier[linewidth=0.04](2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1)
\psline[linewidth=0.04cm](3.0,-0.1)(3.0,0.9)
\psbezier[linewidth=0.04](4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9)
\psline[linewidth=0.04cm](4.6,0.3)(4.6,-0.1)
\psbezier[linewidth=0.04](4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1)
\psline[linewidth=0.04cm](4.0,-0.1)(4.0,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(3.4948437,0.205){-}
\psline[linewidth=0.04cm](0.6,-0.7)(0.6,0.9)
\psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1)
\psline[linewidth=0.04cm](0.0,-0.1)(0.0,0.9)
\psline[linewidth=0.04cm](1.2,-0.1)(1.2,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(1.6948438,0.205){=}
\end{pspicture} 
}
$$

changed:
-\begin{axiom}
-ω := reindex(reindex(U,[2,1])*reindex(Yg,[1,3,2]),[3,2,1])-U*Yg
-\end{axiom}
Using the LinearOperator domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.

\begin{axiom}

ω:𝐋 :=
     (    Y I    )  /
           U        -
     (    I Y    )  /
           U

\end{axiom}


changed:
-  is called *pre-Frobenius*.
  is called a [Frobenius Algebra].

The Cartan-Killing Trace
\begin{axiom}

Ú:=
   (  Y Λ  ) / _
   (   Y I ) / _
        V
Ù:=
   (  Λ Y  ) / _
   ( I Y   ) / _
      V

test(Ù=Ú)

\end{axiom}
forms is degenerate
\begin{axiom}
Ũ := Ù
test
     (    Y I    )  /
           Ũ        =
     (    I Y    )  /
           Ũ
determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ũ), j,1..dim), i,1..dim)
\end{axiom}

General Solution

added:


changed:
-J := jacobian(ravel ω,concat(map(variables,ravel U))::List Symbol);
-uu := transpose matrix [concat(map(variables,ravel(U)))::List Symbol];
-J::OutputForm * uu::OutputForm = 0
-nrows(J)
-ncols(J)
-\end{axiom}
J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);
nrows(J),ncols(J)
\end{axiom}


changed:
-\begin{axiom}
-NJ:=nullSpace(J)
-SS:=map((x,y)+->x=y,concat map(variables,ravel U),
-  entries reduce(+,[p[i]*NJ.i for i in 1..#NJ]))
-Ug:T := unravel(map(x+->subst(x,SS),ravel U))
-\end{axiom}

\begin{axiom}
Ñ:=nullSpace(J)
ℰ:=map((x,y)+->x=y, concat
       map(variables,ravel U), entries Σ(sb('p,[i])*Ñ.i, i,1..#Ñ) )
\end{axiom}

changed:
-test(unravel(map(x+->subst(x,SS),ravel ω))$T=0*ω)
-\end{axiom}
zero? eval(ω,ℰ)
Ų:𝐋 := eval(U,ℰ)
\end{axiom}

Frobenius Form (co-unit)
\begin{axiom}
d:=ε1*𝐝.1+εi*𝐝.2+εj*𝐝.3+εk*𝐝.4
𝔇:=equate(d=
    (    e I   ) / _
          Ų    )
\end{axiom}

Express scalar product in terms of Frobenius form
\begin{axiom}
𝔓:=solve(𝔇,Ξ(sb('p,[i]), i,1..#Ñ)).1
Ų:=eval(Ų,𝔓)
test
        Y     /
        d     =  Ų

\end{axiom}

In general the pairing is not symmetric!
\begin{axiom}
u1:=matrix Ξ(Ξ(retract((𝐞.i 𝐞.j)/Ų), i,1..dim), j,1..dim)
--eigenvectors(u1::Matrix FRAC POLY INT)
\end{axiom}

changed:
-Ud := determinant [[Ug[i,j] for j in 1..dim] for i in 1..dim]
-\end{axiom}
Ů:=determinant u1
factor(numer Ů)/factor(denom Ů)
\end{axiom}

Frobenius scalar product of "vectors" $a$ and $b$
\begin{axiom}
a:=sb('a,[1])*i+sb('a,[2])*j
b:=sb('b,[1])*i+sb('b,[2])*j
(a,a)/Ų
(a,b)/Ų
\end{axiom}

changed:
-  Co-pairing
-\begin{axiom}
-Ωg:T:=unravel concat(transpose(1/Ud*adjoint([[Ug[i,j] for j in 1..dim] for i in 1..dim]).adjMat)::List List FRAC POLY INT)
-\end{axiom}
-<center><pre>
-dimension
-Ω
-U
-</pre></center>
-\begin{axiom}
-contract(contract(Ωg,1,Ug,1),1,2)
-\end{axiom}
  Co-scalar product

Solve the [Snake Relation] as a system of linear equations.
\begin{axiom}
Ω:𝐋:=Σ(Σ(script('u,[[i,j]])*𝐞.i*𝐞.j, i,1..dim), j,1..dim)
ΩX:=Ω/X;
UXΩ:=(I*ΩX)/(Ų*I);
ΩXU:=(ΩX*I)/(I*Ų);
eq1:=equate(UXΩ=I);
eq2:=equate(ΩXU=I);
snake:=solve(concat(eq1,eq2),concat Ξ(Ξ(script('u,[[i,j]]), i,1..dim), j,1..dim));
if #snake ~= 1 then error "no solution"
Ω:=eval(Ω,snake(1))
ΩX:=Ω/X;
\end{axiom}

\begin{axiom}
matrix Ξ(Ξ(retract(Ω/(𝐝.i*𝐝.j)), i,1..dim), j,1..dim)
\end{axiom}

Check "dimension" and the snake relations.
\begin{axiom}

O:𝐋:=
       Ω    /
       Ų

test
    (    I ΩX     )  /
    (     Ų I     )  =  I

test
    (     ΩX I    )  /
    (    I Ų      )  =  I

\end{axiom}

changed:
-  Co-multiplication
-\begin{axiom}
-λg:=reindex(contract(contract(Ug*Yg,1,Ωg,1),1,Ωg,1),[2,3,1]);
--- just for display
-reindex(λg,[3,1,2])
-\end{axiom}
-<center><pre>
-i  
-λ=Ω
-</pre></center>
-\begin{axiom}
-test(λg*X(1)=Ωg)
-\end{axiom}
-
-Definition 5
-
-  <center>Co-unit<pre>
-  i 
-  U
-  </pre></center>
-
-\begin{axiom}
-ιg:=X(1)*Ug
-\end{axiom}
-<center><pre>
-Y=U
-ι  
-</pre></center>
-\begin{axiom}
-test(ιg * Yg = Ug)
-\end{axiom}
-
-For example:
-\begin{axiom}
-Ug0:T:=unravel eval(ravel Ug,[p[1]=1,p[2]=0,p[3]=0,p[4]=1])
-Ωg0:T:=unravel eval(ravel Ωg,[p[1]=1,p[2]=0,p[3]=0,p[4]=1])
-λg0:T:=unravel eval(ravel λg,[p[1]=1,p[2]=0,p[3]=0,p[4]=1]);
-reindex(λg0,[3,1,2])
-\end{axiom}
  Co-algebra

Compute the "three-point" function and use it to define co-multiplication.
\begin{axiom}

W:=
  (Y I) /
    Ų

λ:=
  (  ΩX I ΩX  ) /
  (  I  W  I  )

\end{axiom}

\begin{axiom}

test
     (    I ΩX     )  /
     (     Y I     )  =  λ

test
     (     ΩX I    )  /
     (    I  Y     )  =  λ

\end{axiom}

Co-associativity
\begin{axiom}
test(
  (  λ  ) / _
  ( I λ ) = _
  (  λ  ) / _
  ( λ I ) )
\end{axiom}

\begin{axiom}

test
         e     /
         λ     =    ΩX

\end{axiom}

Frobenius Condition (fork)
\begin{axiom}

H :=
         Y    /
         λ

test
     (   λ I   )  /
     (  I Y    )  =  H

test
     (   I λ   )  /
     (    Y I  )  =  H

\end{axiom}

Handle
\begin{axiom}

Φ :=
         λ     /
         Y

\end{axiom}

Figure 12
\begin{axiom}

φφ:=          _
  ( Ω  Ω  ) / _
  ( X I I ) / _
  ( I X I ) / _
  ( I I X ) / _
  (  Y  Y )

\end{axiom}

Bi-algebra conditions
\begin{axiom}
ΦΦ:=          _
  (  λ λ  ) / _
  ( I I X ) / _
  ( I X I ) / _
  ( I I X ) / _
  (  Y  Y )
test((e,e)/ΦΦ=φφ)
\end{axiom}


Grassmann Algebra Is Frobenius In Many Ways

A 2^n-dimensional vector space represents Grassmann algebra with n generators

Linear operators over a 4-dimensional vector space representing Grassmann algebra with two generators.

Ref:

We need the Axiom LinearOperator? library.

axiom
)library CARTEN ARITY CMONAL CPROP CLOP CALEY
CartesianTensor is now explicitly exposed in frame initial CartesianTensor will be automatically loaded when needed from /var/zope2/var/LatexWiki/CARTEN.NRLIB/CARTEN Arity is now explicitly exposed in frame initial Arity will be automatically loaded when needed from /var/zope2/var/LatexWiki/ARITY.NRLIB/ARITY ClosedMonoidal is now explicitly exposed in frame initial ClosedMonoidal will be automatically loaded when needed from /var/zope2/var/LatexWiki/CMONAL.NRLIB/CMONAL ClosedProp is now explicitly exposed in frame initial ClosedProp will be automatically loaded when needed from /var/zope2/var/LatexWiki/CPROP.NRLIB/CPROP ClosedLinearOperator is now explicitly exposed in frame initial ClosedLinearOperator will be automatically loaded when needed from /var/zope2/var/LatexWiki/CLOP.NRLIB/CLOP CaleyDickson is now explicitly exposed in frame initial CaleyDickson will be automatically loaded when needed from /var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY

Use the following macros for convenient notation

axiom
-- summation
macro Σ(x,i,n)==reduce(+,[x for i in n])
Type: Void
axiom
-- list
macro Ξ(f,i,n)==[f for i in n]
Type: Void
axiom
-- subscript and superscripts
macro sb == subscript
Type: Void
axiom
macro sp == superscript
Type: Void

𝐋 is the domain of 4-dimensional linear operators over the rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.

axiom
dim:=4

\label{eq1}4(1)
Type: PositiveInteger?
axiom
macro ℒ == List
Type: Void
axiom
macro ℂ == CaleyDickson
Type: Void
axiom
macro ℚ == Expression Integer
Type: Void
axiom
𝐋 := ClosedLinearOperator(OVAR ['1,'i,'j,'k], ℚ)

\label{eq2}\hbox{\axiomType{ClosedLinearOperator}\ } (\hbox{\axiomType{OrderedVariableList}\ } ([ 1, i , j , k ]) , \hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }))(2)
Type: Type
axiom
𝐞:ℒ 𝐋      := basisOut()

\label{eq3}\left[{|_{\  1}}, \:{|_{\  i}}, \:{|_{\  j}}, \:{|_{\  k}}\right](3)
Type: List(ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer)))
axiom
𝐝:ℒ 𝐋      := basisIn()

\label{eq4}\left[{|^{\  1}}, \:{|^{\  i}}, \:{|^{\  j}}, \:{|^{\  k}}\right](4)
Type: List(ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer)))
axiom
I:𝐋:=[1]   -- identity for composition

\label{eq5}{|_{\  1}^{\  1}}+{|_{\  i}^{\  i}}+{|_{\  j}^{\  j}}+{|_{\  k}^{\  k}}(5)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
X:𝐋:=[2,1] -- twist

\label{eq6}\begin{array}{@{}l}
\displaystyle
{|_{\  1 \  1}^{\  1 \  1}}+{|_{\  i \  1}^{\  1 \  i}}+{|_{\  j \  1}^{\  1 \  j}}+{|_{\  k \  1}^{\  1 \  k}}+{|_{\  1 \  i}^{\  i \  1}}+ 
\
\
\displaystyle
{|_{\  i \  i}^{\  i \  i}}+{|_{\  j \  i}^{\  i \  j}}+{|_{\  k \  i}^{\  i \  k}}+{|_{\  1 \  j}^{\  j \  1}}+{|_{\  i \  j}^{\  j \  i}}+{|_{\  j \  j}^{\  j \  j}}+ 
\
\
\displaystyle
{|_{\  k \  j}^{\  j \  k}}+{|_{\  1 \  k}^{\  k \  1}}+{|_{\  i \  k}^{\  k \  i}}+{|_{\  j \  k}^{\  k \  j}}+{|_{\  k \  k}^{\  k \  k}}
(6)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
V:𝐋:=ev(1) -- evaluation

\label{eq7}{|^{\  1 \  1}}+{|^{\  i \  i}}+{|^{\  j \  j}}+{|^{\  k \  k}}(7)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
Λ:𝐋:=co(1) -- co-evaluation

\label{eq8}{|_{\  1 \  1}}+{|_{\  i \  i}}+{|_{\  j \  j}}+{|_{\  k \  k}}(8)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
equate(eq)==map((x,y)+->(x=y),ravel lhs eq, ravel rhs eq);
Type: Void

Generate structure constants for Grassmann Algebra

The structure constants can be obtained by dividing each matrix entry by the list of basis vectors.

Grassmann algebra will be specified by setting the Caley-Dickson parameters (i2, j2) to zero.

axiom
i2:=sp('i,[2])

\label{eq9}i^{2}(9)
Type: Symbol
axiom
j2:=sp('j,[2])

\label{eq10}j^{2}(10)
Type: Symbol
axiom
QQ:=CliffordAlgebra(2,ℚ,matrix [[i2,0],[0,j2]])

\label{eq11}\hbox{\axiomType{CliffordAlgebra}\ } (2, \hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }) , [ [ * 001 i (2) , 0 ] , [ 0, * 001 j (2) ] ])(11)
Type: Type
axiom
B:ℒ QQ := [monomial(1,[]),monomial(1,[1]),monomial(1,[2]),monomial(1,[1,2])]

\label{eq12}\left[ 1, \:{e_{1}}, \:{e_{2}}, \:{{e_{1}}\ {e_{2}}}\right](12)
Type: List(CliffordAlgebra?(2,Expression(Integer),[[*001i(2),0],[0,*001j(2)]]))
axiom
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)

\label{eq13}\left[ 
\begin{array}{cccc}
1 &{e_{1}}&{e_{2}}&{{e_{1}}\ {e_{2}}}
\
{e_{1}}&{i^{2}}& -{{e_{1}}\ {e_{2}}}& -{{i^{2}}\ {e_{2}}}
\
{e_{2}}&{{e_{1}}\ {e_{2}}}&{j^{2}}&{{j^{2}}\ {e_{1}}}
\
{{e_{1}}\ {e_{2}}}&{{i^{2}}\ {e_{2}}}& -{{j^{2}}\ {e_{1}}}& -{{i^{2}}\ {j^{2}}}
(13)
Type: Matrix(CliffordAlgebra?(2,Expression(Integer),[[*001i(2),0],[0,*001j(2)]]))
axiom
S(y) == map(x +-> coefficient(recip(y)*x,[]),M)
Type: Void
axiom
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ
axiom
Compiling function S with type CliffordAlgebra(2,Expression(Integer)
      ,[[*001i(2),0],[0,*001j(2)]]) -> Matrix(Expression(Integer))

\label{eq14}\begin{array}{@{}l}
\displaystyle
\left[{\left[{\left[ 1, \: 0, \: 0, \: 0 \right]}, \:{\left[ 0, \:{i^{2}}, \: 0, \: 0 \right]}, \:{\left[ 0, \: 0, \:{j^{2}}, \: 0 \right]}, \:{\left[ 0, \: 0, \: 0, \: -{{i^{2}}\ {j^{2}}}\right]}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\left[ 0, \: 1, \: 0, \: 0 \right]}, \:{\left[ 1, \: 0, \: 0, \: 0 \right]}, \:{\left[ 0, \: 0, \: 0, \:{j^{2}}\right]}, \:{\left[ 0, \: 0, \: -{j^{2}}, \: 0 \right]}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\left[ 0, \: 0, \: 1, \: 0 \right]}, \:{\left[ 0, \: 0, \: 0, \: -{i^{2}}\right]}, \:{\left[ 1, \: 0, \: 0, \: 0 \right]}, \:{\left[ 0, \:{i^{2}}, \: 0, \: 0 \right]}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\left[ 0, \: 0, \: 0, \: 1 \right]}, \:{\left[ 0, \: 0, \: - 1, \: 0 \right]}, \:{\left[ 0, \: 1, \: 0, \: 0 \right]}, \:{\left[ 1, \: 0, \: 0, \: 0 \right]}\right]}\right] (14)
Type: List(List(List(Expression(Integer))))
axiom
-- structure constants form a tensor operator
--Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim)
Y := eval(Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim),[i2=0,j2=0])

\label{eq15}\begin{array}{@{}l}
\displaystyle
{|_{\  1}^{\  1 \  1}}+{|_{\  i}^{\  1 \  i}}+{|_{\  j}^{\  1 \  j}}+{|_{\  k}^{\  1 \  k}}+{|_{\  i}^{\  i \  1}}+{|_{\  k}^{\  i \  j}}+{|_{\  j}^{\  j \  1}}- 
\
\
\displaystyle
{|_{\  k}^{\  j \  i}}+{|_{\  k}^{\  k \  1}}
(15)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)

\label{eq16}\left[ 
\begin{array}{cccc}
{|_{\  1}}&{|_{\  i}}&{|_{\  j}}&{|_{\  k}}
\
{|_{\  i}}& 0 & -{|_{\  k}}& 0 
\
{|_{\  j}}&{|_{\  k}}& 0 & 0 
\
{|_{\  k}}& 0 & 0 & 0 
(16)
Type: Matrix(ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer)))

Units

axiom
e:=𝐞.1; i:=𝐞.2; j:=𝐞.3; k:=𝐞.4;
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

Multiplication of arbitrary Grassmann numbers a and b

axiom
a:=Σ(sb('a,[i])*𝐞.i, i,1..dim)

\label{eq17}{{a_{1}}\ {|_{\  1}}}+{{a_{2}}\ {|_{\  i}}}+{{a_{3}}\ {|_{\  j}}}+{{a_{4}}\ {|_{\  k}}}(17)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
b:=Σ(sb('b,[i])*𝐞.i, i,1..dim)

\label{eq18}{{b_{1}}\ {|_{\  1}}}+{{b_{2}}\ {|_{\  i}}}+{{b_{3}}\ {|_{\  j}}}+{{b_{4}}\ {|_{\  k}}}(18)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
(a*b)/Y

\label{eq19}\begin{array}{@{}l}
\displaystyle
{{a_{1}}\ {b_{1}}\ {|_{\  1}}}+{{\left({{a_{1}}\ {b_{2}}}+{{a_{2}}\ {b_{1}}}\right)}\ {|_{\  i}}}+{{\left({{a_{1}}\ {b_{3}}}+{{a_{3}}\ {b_{1}}}\right)}\ {|_{\  j}}}+ 
\
\
\displaystyle
{{\left({{a_{1}}\ {b_{4}}}+{{a_{2}}\ {b_{3}}}-{{a_{3}}\ {b_{2}}}+{{a_{4}}\ {b_{1}}}\right)}\ {|_{\  k}}}
(19)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

Multiplication is Associative

axiom
test(
  ( I Y ) / _
  (  Y  ) = _
  ( Y I ) / _
  (  Y  ) )

\label{eq20} \mbox{\rm true} (20)
Type: Boolean

A scalar product is denoted by the (2,0)-tensor U = \{ u_{ij} \}

axiom
U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim)

\label{eq21}\begin{array}{@{}l}
\displaystyle
{{u^{1, \: 1}}\ {|^{\  1 \  1}}}+{{u^{1, \: 2}}\ {|^{\  1 \  i}}}+{{u^{1, \: 3}}\ {|^{\  1 \  j}}}+{{u^{1, \: 4}}\ {|^{\  1 \  k}}}+ 
\
\
\displaystyle
{{u^{2, \: 1}}\ {|^{\  i \  1}}}+{{u^{2, \: 2}}\ {|^{\  i \  i}}}+{{u^{2, \: 3}}\ {|^{\  i \  j}}}+{{u^{2, \: 4}}\ {|^{\  i \  k}}}+{{u^{3, \: 1}}\ {|^{\  j \  1}}}+ 
\
\
\displaystyle
{{u^{3, \: 2}}\ {|^{\  j \  i}}}+{{u^{3, \: 3}}\ {|^{\  j \  j}}}+{{u^{3, \: 4}}\ {|^{\  j \  k}}}+{{u^{4, \: 1}}\ {|^{\  k \  1}}}+ 
\
\
\displaystyle
{{u^{4, \: 2}}\ {|^{\  k \  i}}}+{{u^{4, \: 3}}\ {|^{\  k \  j}}}+{{u^{4, \: 4}}\ {|^{\  k \  k}}}
(21)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

Definition 1

We say that the scalar product is associative if the tensor equation holds:

    Y   =   Y
     U     U

In other words, if the (3,0)-tensor:


\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-0.92)(4.82,0.92)
\psbezier[linewidth=0.04](2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9)
\psline[linewidth=0.04cm](2.4,0.3)(2.4,-0.1)
\psbezier[linewidth=0.04](2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1)
\psline[linewidth=0.04cm](3.0,-0.1)(3.0,0.9)
\psbezier[linewidth=0.04](4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9)
\psline[linewidth=0.04cm](4.6,0.3)(4.6,-0.1)
\psbezier[linewidth=0.04](4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1)
\psline[linewidth=0.04cm](4.0,-0.1)(4.0,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(3.4948437,0.205){-}
\psline[linewidth=0.04cm](0.6,-0.7)(0.6,0.9)
\psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1)
\psline[linewidth=0.04cm](0.0,-0.1)(0.0,0.9)
\psline[linewidth=0.04cm](1.2,-0.1)(1.2,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(1.6948438,0.205){=}
\end{pspicture} 
}
 


\label{eq22}
  \Phi = \{ \phi^{ijk} = {y^e}_{ij} u_{ek} - u_{ie} {y_e}^{jk} \}
  (22)
(three-point function) is zero.

Using the LinearOperator? domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.

axiom
ω:𝐋 :=
     (    Y I    )  /
           U        -
     (    I Y    )  /
           U

\label{eq23}\begin{array}{@{}l}
\displaystyle
{{\left({u^{2, \: 1}}-{u^{1, \: 2}}\right)}\ {|^{\  1 \  i \  1}}}+{{u^{2, \: 2}}\ {|^{\  1 \  i \  i}}}+{{\left({u^{2, \: 3}}-{u^{1, \: 4}}\right)}\ {|^{\  1 \  i \  j}}}+ 
\
\
\displaystyle
{{u^{2, \: 4}}\ {|^{\  1 \  i \  k}}}+{{\left({u^{3, \: 1}}-{u^{1, \: 3}}\right)}\ {|^{\  1 \  j \  1}}}+{{\left({u^{3, \: 2}}+{u^{1, \: 4}}\right)}\ {|^{\  1 \  j \  i}}}+ 
\
\
\displaystyle
{{u^{3, \: 3}}\ {|^{\  1 \  j \  j}}}+{{u^{3, \: 4}}\ {|^{\  1 \  j \  k}}}+{{\left({u^{4, \: 1}}-{u^{1, \: 4}}\right)}\ {|^{\  1 \  k \  1}}}+ 
\
\
\displaystyle
{{u^{4, \: 2}}\ {|^{\  1 \  k \  i}}}+{{u^{4, \: 3}}\ {|^{\  1 \  k \  j}}}+{{u^{4, \: 4}}\ {|^{\  1 \  k \  k}}}-{{u^{2, \: 2}}\ {|^{\  i \  i \  1}}}- 
\
\
\displaystyle
{{u^{2, \: 4}}\ {|^{\  i \  i \  j}}}+{{\left({u^{4, \: 1}}-{u^{2, \: 3}}\right)}\ {|^{\  i \  j \  1}}}+{{\left({u^{4, \: 2}}+{u^{2, \: 4}}\right)}\ {|^{\  i \  j \  i}}}+ 
\
\
\displaystyle
{{u^{4, \: 3}}\ {|^{\  i \  j \  j}}}+{{u^{4, \: 4}}\ {|^{\  i \  j \  k}}}-{{u^{2, \: 4}}\ {|^{\  i \  k \  1}}}+ 
\
\
\displaystyle
{{\left(-{u^{4, \: 1}}-{u^{3, \: 2}}\right)}\ {|^{\  j \  i \  1}}}-{{u^{4, \: 2}}\ {|^{\  j \  i \  i}}}+ 
\
\
\displaystyle
{{\left(-{u^{4, \: 3}}-{u^{3, \: 4}}\right)}\ {|^{\  j \  i \  j}}}-{{u^{4, \: 4}}\ {|^{\  j \  i \  k}}}-{{u^{3, \: 3}}\ {|^{\  j \  j \  1}}}+ 
\
\
\displaystyle
{{u^{3, \: 4}}\ {|^{\  j \  j \  i}}}-{{u^{3, \: 4}}\ {|^{\  j \  k \  1}}}-{{u^{4, \: 2}}\ {|^{\  k \  i \  1}}}-{{u^{4, \: 4}}\ {|^{\  k \  i \  j}}}- 
\
\
\displaystyle
{{u^{4, \: 3}}\ {|^{\  k \  j \  1}}}+{{u^{4, \: 4}}\ {|^{\  k \  j \  i}}}-{{u^{4, \: 4}}\ {|^{\  k \  k \  1}}}
(23)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

Definition 2

An algebra with a non-degenerate associative scalar product is called a [Frobenius Algebra]?.

The Cartan-Killing Trace

axiom
Ú:=
   (  Y Λ  ) / _
   (   Y I ) / _
        V

\label{eq24}4 \ {|^{\  1 \  1}}(24)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
Ù:=
   (  Λ Y  ) / _
   ( I Y   ) / _
      V

\label{eq25}4 \ {|^{\  1 \  1}}(25)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
test(Ù=Ú)

\label{eq26} \mbox{\rm true} (26)
Type: Boolean

forms is degenerate

axiom
Ũ := Ù

\label{eq27}4 \ {|^{\  1 \  1}}(27)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
test
     (    Y I    )  /
           Ũ        =
     (    I Y    )  /
           Ũ

\label{eq28} \mbox{\rm true} (28)
Type: Boolean
axiom
determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ũ), j,1..dim), i,1..dim)

\label{eq29}0(29)
Type: Expression(Integer)

General Solution

We may consider the problem where multiplication Y is given, and look for all associative scalar products U = U(Y)

This problem can be solved using linear algebra.

axiom
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame initial J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);
Type: Matrix(Expression(Integer))
axiom
nrows(J),ncols(J)

\label{eq30}\left[{64}, \:{16}\right](30)
Type: Tuple(PositiveInteger?)

The matrix J transforms the coefficients of the tensor U into coefficients of the tensor \Phi. We are looking for the general linear family of tensors U=U(Y,p_i) such that J transforms U into \Phi=0 for any such U.

If the null space of the J matrix is not empty we can use the basis to find all non-trivial solutions for U:

axiom
Ñ:=nullSpace(J)

\label{eq31}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \: 1, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \: 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: 1, \: 0, \: 0, \: - 1, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0 \right]}\right] (31)
Type: List(Vector(Expression(Integer)))
axiom
ℰ:=map((x,y)+->x=y, concat
       map(variables,ravel U), entries Σ(sb('p,[i])*Ñ.i, i,1..#Ñ) )

\label{eq32}\begin{array}{@{}l}
\displaystyle
\left[{{u^{1, \: 1}}={p_{1}}}, \:{{u^{1, \: 2}}={p_{2}}}, \:{{u^{1, \: 3}}={p_{3}}}, \:{{u^{1, \: 4}}={p_{4}}}, \:{{u^{2, \: 1}}={p_{2}}}, \: \right.
\
\
\displaystyle
\left.{{u^{2, \: 2}}= 0}, \:{{u^{2, \: 3}}={p_{4}}}, \:{{u^{2, \: 4}}= 0}, \:{{u^{3, \: 1}}={p_{3}}}, \:{{u^{3, \: 2}}= -{p_{4}}}, \: \right.
\
\
\displaystyle
\left.{{u^{3, \: 3}}= 0}, \:{{u^{3, \: 4}}= 0}, \:{{u^{4, \: 1}}={p_{4}}}, \:{{u^{4, \: 2}}= 0}, \:{{u^{4, \: 3}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{4, \: 4}}= 0}\right] 
(32)
Type: List(Equation(Expression(Integer)))

This defines a family of pre-Frobenius algebras:

axiom
zero? eval(ω,ℰ)

\label{eq33} \mbox{\rm true} (33)
Type: Boolean
axiom
Ų:𝐋 := eval(U,ℰ)

\label{eq34}\begin{array}{@{}l}
\displaystyle
{{p_{1}}\ {|^{\  1 \  1}}}+{{p_{2}}\ {|^{\  1 \  i}}}+{{p_{3}}\ {|^{\  1 \  j}}}+{{p_{4}}\ {|^{\  1 \  k}}}+{{p_{2}}\ {|^{\  i \  1}}}+{{p_{4}}\ {|^{\  i \  j}}}+ 
\
\
\displaystyle
{{p_{3}}\ {|^{\  j \  1}}}-{{p_{4}}\ {|^{\  j \  i}}}+{{p_{4}}\ {|^{\  k \  1}}}
(34)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

Frobenius Form (co-unit)

axiom
d:=ε1*𝐝.1+εi*𝐝.2+εj*𝐝.3+εk*𝐝.4

\label{eq35}{�� 1 \ {|^{\  1}}}+{�� i \ {|^{\  i}}}+{�� j \ {|^{\  j}}}+{�� k \ {|^{\  k}}}(35)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
𝔇:=equate(d=
    (    e I   ) / _
          Ų    )
axiom
Compiling function equate with type Equation(ClosedLinearOperator(
      OrderedVariableList([1,i,j,k]),Expression(Integer))) -> List(
      Equation(Expression(Integer)))

\label{eq36}\left[{�� 1 ={p_{1}}}, \:{�� i ={p_{2}}}, \:{�� j ={p_{3}}}, \:{�� k ={p_{4}}}\right](36)
Type: List(Equation(Expression(Integer)))

Express scalar product in terms of Frobenius form

axiom
𝔓:=solve(𝔇,Ξ(sb('p,[i]), i,1..#Ñ)).1

\label{eq37}\left[{{p_{1}}= �� 1}, \:{{p_{2}}= �� i}, \:{{p_{3}}= �� j}, \:{{p_{4}}= �� k}\right](37)
Type: List(Equation(Expression(Integer)))
axiom
Ų:=eval(Ų,𝔓)

\label{eq38}\begin{array}{@{}l}
\displaystyle
{�� 1 \ {|^{\  1 \  1}}}+{�� i \ {|^{\  1 \  i}}}+{�� j \ {|^{\  1 \  j}}}+{�� k \ {|^{\  1 \  k}}}+{�� i \ {|^{\  i \  1}}}+{�� k \ {|^{\  i \  j}}}+{�� j \ {|^{\  j \  1}}}- 
\
\
\displaystyle
{�� k \ {|^{\  j \  i}}}+{�� k \ {|^{\  k \  1}}}
(38)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
test
        Y     /
        d     =  Ų

\label{eq39} \mbox{\rm true} (39)
Type: Boolean

In general the pairing is not symmetric!

axiom
u1:=matrix Ξ(Ξ(retract((𝐞.i 𝐞.j)/Ų), i,1..dim), j,1..dim)

\label{eq40}\left[ 
\begin{array}{cccc}
�� 1 & �� i & �� j & �� k 
\
�� i & 0 & - �� k & 0 
\
�� j & �� k & 0 & 0 
\
�� k & 0 & 0 & 0 
(40)
Type: Matrix(Expression(Integer))

The scalar product must be non-degenerate:

axiom
Ů:=determinant u1

\label{eq41}-{�� k^4}(41)
Type: Expression(Integer)
axiom
factor(numer Ů)/factor(denom Ů)

\label{eq42}-{�� k^4}(42)
Type: Fraction(Factored(SparseMultivariatePolynomial?(Integer,Kernel(Expression(Integer)))))

Frobenius scalar product of "vectors" a and b

axiom
a:=sb('a,[1])*i+sb('a,[2])*j

\label{eq43}{{a_{1}}\ {|_{\  i}}}+{{a_{2}}\ {|_{\  j}}}(43)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
b:=sb('b,[1])*i+sb('b,[2])*j

\label{eq44}{{b_{1}}\ {|_{\  i}}}+{{b_{2}}\ {|_{\  j}}}(44)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
(a,a)/Ų

\label{eq45}0(45)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
(a,b)/Ų

\label{eq46}{\left({{a_{1}}\ {b_{2}}}-{{a_{2}}\ {b_{1}}}\right)}\  �� k(46)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

Definition 3

Co-scalar product

Solve the [Snake Relation]? as a system of linear equations.

axiom
Ω:𝐋:=Σ(Σ(script('u,[[i,j]])*𝐞.i*𝐞.j, i,1..dim), j,1..dim)

\label{eq47}\begin{array}{@{}l}
\displaystyle
{{u_{1, \: 1}}\ {|_{\  1 \  1}}}+{{u_{1, \: 2}}\ {|_{\  1 \  i}}}+{{u_{1, \: 3}}\ {|_{\  1 \  j}}}+{{u_{1, \: 4}}\ {|_{\  1 \  k}}}+ 
\
\
\displaystyle
{{u_{2, \: 1}}\ {|_{\  i \  1}}}+{{u_{2, \: 2}}\ {|_{\  i \  i}}}+{{u_{2, \: 3}}\ {|_{\  i \  j}}}+{{u_{2, \: 4}}\ {|_{\  i \  k}}}+{{u_{3, \: 1}}\ {|_{\  j \  1}}}+ 
\
\
\displaystyle
{{u_{3, \: 2}}\ {|_{\  j \  i}}}+{{u_{3, \: 3}}\ {|_{\  j \  j}}}+{{u_{3, \: 4}}\ {|_{\  j \  k}}}+{{u_{4, \: 1}}\ {|_{\  k \  1}}}+ 
\
\
\displaystyle
{{u_{4, \: 2}}\ {|_{\  k \  i}}}+{{u_{4, \: 3}}\ {|_{\  k \  j}}}+{{u_{4, \: 4}}\ {|_{\  k \  k}}}
(47)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
ΩX:=Ω/X;
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
UXΩ:=(I*ΩX)/(Ų*I);
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
ΩXU:=(ΩX*I)/(I*Ų);
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
eq1:=equate(UXΩ=I);
Type: List(Equation(Expression(Integer)))
axiom
eq2:=equate(ΩXU=I);
Type: List(Equation(Expression(Integer)))
axiom
snake:=solve(concat(eq1,eq2),concat Ξ(Ξ(script('u,[[i,j]]), i,1..dim), j,1..dim));
Type: List(List(Equation(Expression(Integer))))
axiom
if #snake ~= 1 then error "no solution"
Type: Void
axiom
Ω:=eval(Ω,snake(1))

\label{eq48}\begin{array}{@{}l}
\displaystyle
{{1 \over �� k}\ {|_{\  1 \  k}}}+{{1 \over �� k}\ {|_{\  i \  j}}}-{{�� j \over{�� k^2}}\ {|_{\  i \  k}}}-{{1 \over �� k}\ {|_{\  j \  i}}}+{{�� i \over{�� k^2}}\ {|_{\  j \  k}}}+ 
\
\
\displaystyle
{{1 \over �� k}\ {|_{\  k \  1}}}+{{�� j \over{�� k^2}}\ {|_{\  k \  i}}}-{{�� i \over{�� k^2}}\ {|_{\  k \  j}}}-{{�� 1 \over{�� k^2}}\ {|_{\  k \  k}}}
(48)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
ΩX:=Ω/X;
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

axiom
matrix Ξ(Ξ(retract(Ω/(𝐝.i*𝐝.j)), i,1..dim), j,1..dim)

\label{eq49}\left[ 
\begin{array}{cccc}
0 & 0 & 0 &{1 \over �� k}
\
0 & 0 & -{1 \over �� k}&{�� j \over{�� k^2}}
\
0 &{1 \over �� k}& 0 & -{�� i \over{�� k^2}}
\
{1 \over �� k}& -{�� j \over{�� k^2}}&{�� i \over{�� k^2}}& -{�� 1 \over{�� k^2}}
(49)
Type: Matrix(Expression(Integer))

Check "dimension" and the snake relations.

axiom
O:𝐋:=
       Ω    /
       Ų

\label{eq50}4(50)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
test
    (    I ΩX     )  /
    (     Ų I     )  =  I

\label{eq51} \mbox{\rm true} (51)
Type: Boolean
axiom
test
    (     ΩX I    )  /
    (    I Ų      )  =  I

\label{eq52} \mbox{\rm true} (52)
Type: Boolean

Definition 4

Co-algebra

Compute the "three-point" function and use it to define co-multiplication.

axiom
W:=
  (Y I) /
    Ų

\label{eq53}\begin{array}{@{}l}
\displaystyle
{�� 1 \ {|^{\  1 \  1 \  1}}}+{�� i \ {|^{\  1 \  1 \  i}}}+{�� j \ {|^{\  1 \  1 \  j}}}+{�� k \ {|^{\  1 \  1 \  k}}}+{�� i \ {|^{\  1 \  i \  1}}}+ 
\
\
\displaystyle
{�� k \ {|^{\  1 \  i \  j}}}+{�� j \ {|^{\  1 \  j \  1}}}-{�� k \ {|^{\  1 \  j \  i}}}+{�� k \ {|^{\  1 \  k \  1}}}+{�� i \ {|^{\  i \  1 \  1}}}+ 
\
\
\displaystyle
{�� k \ {|^{\  i \  1 \  j}}}+{�� k \ {|^{\  i \  j \  1}}}+{�� j \ {|^{\  j \  1 \  1}}}-{�� k \ {|^{\  j \  1 \  i}}}-{�� k \ {|^{\  j \  i \  1}}}+ 
\
\
\displaystyle
{�� k \ {|^{\  k \  1 \  1}}}
(53)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
λ:=
  (  ΩX I ΩX  ) /
  (  I  W  I  )

\label{eq54}\begin{array}{@{}l}
\displaystyle
{{1 \over �� k}\ {|_{\  1 \  k}^{\  1}}}-{{1 \over �� k}\ {|_{\  i \  j}^{\  1}}}+{{�� j \over{�� k^2}}\ {|_{\  i \  k}^{\  1}}}+{{1 \over �� k}\ {|_{\  j \  i}^{\  1}}}- 
\
\
\displaystyle
{{�� i \over{�� k^2}}\ {|_{\  j \  k}^{\  1}}}+{{1 \over �� k}\ {|_{\  k \  1}^{\  1}}}-{{�� j \over{�� k^2}}\ {|_{\  k \  i}^{\  1}}}+{{�� i \over{�� k^2}}\ {|_{\  k \  j}^{\  1}}}- 
\
\
\displaystyle
{{�� 1 \over{�� k^2}}\ {|_{\  k \  k}^{\  1}}}+{{1 \over �� k}\ {|_{\  i \  k}^{\  i}}}+{{1 \over �� k}\ {|_{\  k \  i}^{\  i}}}-{{�� i \over{�� k^2}}\ {|_{\  k \  k}^{\  i}}}+ 
\
\
\displaystyle
{{1 \over �� k}\ {|_{\  j \  k}^{\  j}}}+{{1 \over �� k}\ {|_{\  k \  j}^{\  j}}}-{{�� j \over{�� k^2}}\ {|_{\  k \  k}^{\  j}}}+{{1 \over �� k}\ {|_{\  k \  k}^{\  k}}}
(54)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

axiom
test
     (    I ΩX     )  /
     (     Y I     )  =  λ

\label{eq55} \mbox{\rm true} (55)
Type: Boolean
axiom
test
     (     ΩX I    )  /
     (    I  Y     )  =  λ

\label{eq56} \mbox{\rm true} (56)
Type: Boolean

Co-associativity

axiom
test(
  (  λ  ) / _
  ( I λ ) = _
  (  λ  ) / _
  ( λ I ) )

\label{eq57} \mbox{\rm true} (57)
Type: Boolean

axiom
test
         e     /
         λ     =    ΩX

\label{eq58} \mbox{\rm true} (58)
Type: Boolean

Frobenius Condition (fork)

axiom
H :=
         Y    /
         λ

\label{eq59}\begin{array}{@{}l}
\displaystyle
{{1 \over �� k}\ {|_{\  1 \  k}^{\  1 \  1}}}-{{1 \over �� k}\ {|_{\  i \  j}^{\  1 \  1}}}+{{�� j \over{�� k^2}}\ {|_{\  i \  k}^{\  1 \  1}}}+{{1 \over �� k}\ {|_{\  j \  i}^{\  1 \  1}}}- 
\
\
\displaystyle
{{�� i \over{�� k^2}}\ {|_{\  j \  k}^{\  1 \  1}}}+{{1 \over �� k}\ {|_{\  k \  1}^{\  1 \  1}}}-{{�� j \over{�� k^2}}\ {|_{\  k \  i}^{\  1 \  1}}}+{{�� i \over{�� k^2}}\ {|_{\  k \  j}^{\  1 \  1}}}- 
\
\
\displaystyle
{{�� 1 \over{�� k^2}}\ {|_{\  k \  k}^{\  1 \  1}}}+{{1 \over �� k}\ {|_{\  i \  k}^{\  1 \  i}}}+{{1 \over �� k}\ {|_{\  k \  i}^{\  1 \  i}}}-{{�� i \over{�� k^2}}\ {|_{\  k \  k}^{\  1 \  i}}}+ 
\
\
\displaystyle
{{1 \over �� k}\ {|_{\  j \  k}^{\  1 \  j}}}+{{1 \over �� k}\ {|_{\  k \  j}^{\  1 \  j}}}-{{�� j \over{�� k^2}}\ {|_{\  k \  k}^{\  1 \  j}}}+{{1 \over �� k}\ {|_{\  k \  k}^{\  1 \  k}}}+ 
\
\
\displaystyle
{{1 \over �� k}\ {|_{\  i \  k}^{\  i \  1}}}+{{1 \over �� k}\ {|_{\  k \  i}^{\  i \  1}}}-{{�� i \over{�� k^2}}\ {|_{\  k \  k}^{\  i \  1}}}+{{1 \over �� k}\ {|_{\  k \  k}^{\  i \  j}}}+ 
\
\
\displaystyle
{{1 \over �� k}\ {|_{\  j \  k}^{\  j \  1}}}+{{1 \over �� k}\ {|_{\  k \  j}^{\  j \  1}}}-{{�� j \over{�� k^2}}\ {|_{\  k \  k}^{\  j \  1}}}-{{1 \over �� k}\ {|_{\  k \  k}^{\  j \  i}}}+ 
\
\
\displaystyle
{{1 \over �� k}\ {|_{\  k \  k}^{\  k \  1}}}
(59)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
test
     (   λ I   )  /
     (  I Y    )  =  H

\label{eq60} \mbox{\rm true} (60)
Type: Boolean
axiom
test
     (   I λ   )  /
     (    Y I  )  =  H

\label{eq61} \mbox{\rm true} (61)
Type: Boolean

Handle

axiom
Φ :=
         λ     /
         Y

\label{eq62}0(62)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

Figure 12

axiom
φφ:=          _
  ( Ω  Ω  ) / _
  ( X I I ) / _
  ( I X I ) / _
  ( I I X ) / _
  (  Y  Y )

\label{eq63}{4 \over{�� k^2}}\ {|_{\  k \  k}}(63)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))

Bi-algebra conditions

axiom
ΦΦ:=          _
  (  λ λ  ) / _
  ( I I X ) / _
  ( I X I ) / _
  ( I I X ) / _
  (  Y  Y )

\label{eq64}{4 \over{�� k^2}}\ {|_{\  k \  k}^{\  1 \  1}}(64)
Type: ClosedLinearOperator?(OrderedVariableList?([1,i,j,k]),Expression(Integer))
axiom
test((e,e)/ΦΦ=φφ)

\label{eq65} \mbox{\rm true} (65)
Type: Boolean