Grassmann Algebra Is Frobenius In Many Ways
A -dimensional vector space represents Grassmann algebra with generators
Linear operators over a 4-dimensional vector space representing Grassmann
algebra with two generators.
Ref:
We need the Axiom LinearOperator library.
fricas
)library CARTEN ARITY CMONAL CPROP CLOP CALEY
CartesianTensor is now explicitly exposed in frame initial
CartesianTensor will be automatically loaded when needed from
/var/aw/var/LatexWiki/CARTEN.NRLIB/CARTEN
Arity is now explicitly exposed in frame initial
Arity will be automatically loaded when needed from
/var/aw/var/LatexWiki/ARITY.NRLIB/ARITY
ClosedMonoidal is now explicitly exposed in frame initial
ClosedMonoidal will be automatically loaded when needed from
/var/aw/var/LatexWiki/CMONAL.NRLIB/CMONAL
ClosedProp is now explicitly exposed in frame initial
ClosedProp will be automatically loaded when needed from
/var/aw/var/LatexWiki/CPROP.NRLIB/CPROP
ClosedLinearOperator is now explicitly exposed in frame initial
ClosedLinearOperator will be automatically loaded when needed from
/var/aw/var/LatexWiki/CLOP.NRLIB/CLOP
CaleyDickson is now explicitly exposed in frame initial
CaleyDickson will be automatically loaded when needed from
/var/aw/var/LatexWiki/CALEY.NRLIB/CALEY
Use the following macros for convenient notation
fricas
-- summation
macro Σ(x,i,n)==reduce(+,[x for i in n])
Type: Void
fricas
-- list
macro Ξ(f,i,n)==[f for i in n]
Type: Void
fricas
-- subscript and superscripts
macro sb == subscript
Type: Void
fricas
macro sp == superscript
Type: Void
𝐋 is the domain of 4-dimensional linear operators over the
rational functions ℚ (Expression Integer), i.e. ratio of
polynomials with integer coefficients.
fricas
dim:=4
fricas
macro ℒ == List
Type: Void
fricas
macro ℂ == CaleyDickson
Type: Void
fricas
macro ℚ == Expression Integer
Type: Void
fricas
𝐋 := ClosedLinearOperator(OVAR ['1,'i,'j,'k], ℚ)
Type: Type
fricas
𝐞:ℒ 𝐋 := basisOut()
fricas
𝐝:ℒ 𝐋 := basisIn()
fricas
I:𝐋:=[1] -- identity for composition
fricas
X:𝐋:=[2,1] -- twist
fricas
V:𝐋:=ev(1) -- evaluation
fricas
Λ:𝐋:=co(1) -- co-evaluation
fricas
equate(eq)==map((x,y)+->(x=y),ravel lhs eq, ravel rhs eq);
Type: Void
Generate structure constants for Grassmann Algebra
The structure constants can be obtained by dividing each matrix entry by the list of basis vectors.
Grassmann algebra will be specified by setting the Caley-Dickson parameters (i2, j2) to zero.
fricas
i2:=sp('i,[2])
Type: Symbol
fricas
j2:=sp('j,[2])
Type: Symbol
fricas
QQ:=CliffordAlgebra(2,ℚ,matrix [[i2,0],[0,j2]])
Type: Type
fricas
B:ℒ QQ := [monomial(1,[]),monomial(1,[1]),monomial(1,[2]),monomial(1,[1,2])]
Type: List(CliffordAlgebra
?(2,
Expression(Integer),
[[i[;2],
0],
[0,
j[;2]]]))
fricas
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)
Type: Matrix(CliffordAlgebra
?(2,
Expression(Integer),
[[i[;2],
0],
[0,
j[;2]]]))
fricas
S(y) == map(x +-> coefficient(recip(y)*x,[]),M)
Type: Void
fricas
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ
fricas
Compiling function S with type CliffordAlgebra(2,Expression(Integer)
,[[i[;2],0],[0,j[;2]]]) -> Matrix(Expression(Integer))
Type: List(List(List(Expression(Integer))))
fricas
-- structure constants form a tensor operator
--Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim)
Y := eval(Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim),[i2=0,j2=0])
fricas
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)
Units
fricas
e:=𝐞.1; i:=𝐞.2; j:=𝐞.3; k:=𝐞.4;
Multiplication of arbitrary Grassmann numbers and
fricas
a:=Σ(sb('a,[i])*𝐞.i, i,1..dim)
fricas
b:=Σ(sb('b,[i])*𝐞.i, i,1..dim)
fricas
(a*b)/Y
Multiplication is Associative
fricas
test(
( I Y ) / _
( Y ) = _
( Y I ) / _
( Y ) )
Type: Boolean
A scalar product is denoted by the (2,0)-tensor
fricas
U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim)
Definition 1
We say that the scalar product is associative if the tensor
equation holds:
Y = Y
U U
In other words, if the (3,0)-tensor:
(three-point function) is zero.
Using the LinearOperator domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.
fricas
ω:𝐋 :=
( Y I ) /
U -
( I Y ) /
U
Definition 2
An algebra with a non-degenerate associative scalar product
is called a [Frobenius Algebra]?.
The Cartan-Killing Trace
fricas
Ú:=
( Y Λ ) / _
( Y I ) / _
V
fricas
Ù:=
( Λ Y ) / _
( I Y ) / _
V
fricas
test(Ù=Ú)
Type: Boolean
forms is degenerate
fricas
Ũ := Ù
fricas
test
( Y I ) /
Ũ =
( I Y ) /
Ũ
Type: Boolean
fricas
determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ũ), j,1..dim), i,1..dim)
Type: Expression(Integer)
General Solution
We may consider the problem where multiplication Y is given,
and look for all associative scalar products
This problem can be solved using linear algebra.
fricas
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame
initial
J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);
Type: Matrix(Expression(Integer))
fricas
nrows(J),ncols(J)
Type: Tuple(PositiveInteger
?)
The matrix J
transforms the coefficients of the tensor
into coefficients of the tensor . We are looking for
the general linear family of tensors such that
J
transforms into for any such .
If the null space of the J
matrix is not empty we can use
the basis to find all non-trivial solutions for U:
fricas
Ñ:=nullSpace(J)
Type: List(Vector(Expression(Integer)))
fricas
ℰ:=map((x,y)+->x=y, concat
map(variables,ravel U), entries Σ(sb('p,[i])*Ñ.i, i,1..#Ñ) )
Type: List(Equation(Expression(Integer)))
This defines a family of pre-Frobenius algebras:
fricas
zero? eval(ω,ℰ)
Type: Boolean
fricas
Ų:𝐋 := eval(U,ℰ)
Frobenius Form (co-unit)
fricas
d:=ε1*𝐝.1+εi*𝐝.2+εj*𝐝.3+εk*𝐝.4
fricas
𝔇:=equate(d=
( e I ) / _
Ų )
fricas
Compiling function equate with type Equation(ClosedLinearOperator(
OrderedVariableList([1,i,j,k]),Expression(Integer))) -> List(
Equation(Expression(Integer)))
Type: List(Equation(Expression(Integer)))
Express scalar product in terms of Frobenius form
fricas
𝔓:=solve(𝔇,Ξ(sb('p,[i]), i,1..#Ñ)).1
Type: List(Equation(Expression(Integer)))
fricas
Ų:=eval(Ų,𝔓)
fricas
test
Y /
d = Ų
Type: Boolean
In general the pairing is not symmetric!
fricas
u1:=matrix Ξ(Ξ(retract((𝐞.i 𝐞.j)/Ų), i,1..dim), j,1..dim)
Type: Matrix(Expression(Integer))
fricas
)set output algebra on
fricas
)set output tex off
fricas
eigenvectors(u1::Matrix FRAC POLY INT)
(51)
[
4 2 2 2 2 2 3 4
[eigval = (%B | - εk - %B ε1 εk - %B εj - %B εi - %B ε1 + %B ),
eigmult = 1,
eigvec
=
[
%B
[[--],
εk
[
3 2 2 3
- εi εk - %B εj εk + (- %B ε1 + %B )εi εk - %B εj
+
2 2 3
(- %B εi - %B ε1 + %B )εj
/
2 2 2
(εj + εi )εk
]
,
[
3 2 2 2 3
- εj εk + %B εi εk + (- %B ε1 + %B )εj εk + %B εi εj + %B εi
+
2 3
(%B ε1 - %B )εi
/
2 2 2
(εj + εi )εk
]
,
[1]]
]
]
]
Type: List(Record(eigval: Union(Fraction(Polynomial(Integer)),
SuchThat
?(Symbol,
Polynomial(Integer))),
eigmult: NonNegativeInteger
?,
eigvec: List(Matrix(Fraction(Polynomial(Integer))))))
fricas
)set output algebra off
fricas
)set output tex on
The scalar product must be non-degenerate:
fricas
Ů:=determinant u1
Type: Expression(Integer)
fricas
factor(numer Ů)/factor(denom Ů)
Type: Fraction(Factored(SparseMultivariatePolynomial
?(Integer,
Kernel(Expression(Integer)))))
Frobenius scalar product of "vectors" and
fricas
a:=sb('a,[1])*i+sb('a,[2])*j
fricas
b:=sb('b,[1])*i+sb('b,[2])*j
fricas
(a,a)/Ų
fricas
(a,b)/Ų
Definition 3
Co-scalar product
Solve the Snake Relation as a system of linear equations.
fricas
Ω:𝐋:=Σ(Σ(script('u,[[i,j]])*𝐞.i*𝐞.j, i,1..dim), j,1..dim)
fricas
ΩX:=Ω/X;
fricas
UXΩ:=(I*ΩX)/(Ų*I);
fricas
ΩXU:=(ΩX*I)/(I*Ų);
fricas
eq1:=equate(UXΩ=I);
Type: List(Equation(Expression(Integer)))
fricas
eq2:=equate(ΩXU=I);
Type: List(Equation(Expression(Integer)))
fricas
snake:=solve(concat(eq1,eq2),concat Ξ(Ξ(script('u,[[i,j]]), i,1..dim), j,1..dim));
Type: List(List(Equation(Expression(Integer))))
fricas
if #snake ~= 1 then error "no solution"
Type: Void
fricas
Ω:=eval(Ω,snake(1))
fricas
ΩX:=Ω/X;
fricas
matrix Ξ(Ξ(retract(Ω/(𝐝.i*𝐝.j)), i,1..dim), j,1..dim)
Type: Matrix(Expression(Integer))
Check "dimension" and the snake relations.
fricas
O:𝐋:=
Ω /
Ų
fricas
test
( I ΩX ) /
( Ų I ) = I
Type: Boolean
fricas
test
( ΩX I ) /
( I Ų ) = I
Type: Boolean
Definition 4
Co-algebra
Compute the "three-point" function and use it to define co-multiplication.
fricas
W:=
(Y I) /
Ų
fricas
λ:=
( ΩX I ΩX ) /
( I W I )
fricas
test
( I ΩX ) /
( Y I ) = λ
Type: Boolean
fricas
test
( ΩX I ) /
( I Y ) = λ
Type: Boolean
Co-associativity
fricas
test(
( λ ) / _
( I λ ) = _
( λ ) / _
( λ I ) )
Type: Boolean
fricas
test
e /
λ = ΩX
Type: Boolean
Frobenius Condition (fork)
fricas
H :=
Y /
λ
fricas
test
( λ I ) /
( I Y ) = H
Type: Boolean
fricas
test
( I λ ) /
( Y I ) = H
Type: Boolean
Handle
fricas
Φ :=
λ /
Y
Figure 12
fricas
φφ:= _
( Ω Ω ) / _
( X I I ) / _
( I X I ) / _
( I I X ) / _
( Y Y )
Bi-algebra conditions
fricas
ΦΦ:= _
( λ λ ) / _
( I I X ) / _
( I X I ) / _
( I I X ) / _
( Y Y )
fricas
test((e,e)/ΦΦ=φφ)
Type: Boolean
Bi-algebra conditions
fricas
ΦΦ:= _
( λ λ ) / _
( I X I ) / _
( Y Y )
fricas
test((e,e)/ΦΦ=φφ)
Type: Boolean
Y-forms
Three traces of two graftings of an algebra gives six
(2,0)-forms.
Left snail and right snail:
LS RS
Y /\ /\ Y
Y ) ( Y
\/ \/
i j j i
\/ \/
\ /\ /\ /
e f \ / f e
\/ \ / \/
\ / \ /
f / \ f
\/ \/
fricas
LS:=
( Y Λ )/ _
( Y I )/ _
V
fricas
RS:=
( Λ Y )/ _
( I Y )/ _
V
fricas
test(LS=RS)
Type: Boolean
Left and right deer:
RD LD
\ /\/ \/\ /
Y /\ /\ Y
Y ) ( Y
\/ \/
i j i j
\ /\ / \ /\ /
\ f \ / \ / f /
\/ \/ \/ \/
\ /\ /\ /
e / \ / \ e
\/ \ / \/
\ / \ /
f / \ f
\/ \/
Left and right deer forms are identical but different from snails.
fricas
RD:=
( I Λ I ) / _
( Y X ) / _
( Y I ) / _
V
fricas
LD:=
( I Λ I ) / _
( X Y ) / _
( I Y ) / _
V
fricas
test(LD=RD)
Type: Boolean
fricas
test(RD=RS)
Type: Boolean
fricas
test(RD=LS)
Type: Boolean
Left and right turtles:
RT LT
/\ / / \ \ /\
( Y / \ Y )
\ Y Y /
\/ \/
i j i j
/\ / / \ \ /\
/ f / / \ \ f \
/ \/ / \ \/ \
\ \ / \ / /
\ e / \ e /
\ \/ \/ /
\ / \ /
\ f f /
\/ \/
fricas
RT:=
( Λ I I ) / _
( I Y I ) / _
( I Y ) / _
V
fricas
LT:=
( I I Λ ) / _
( I Y I ) / _
( Y I ) / _
V
fricas
test(LT=RT)
Type: Boolean
The turles are symmetric
fricas
test(RT = X/RT)
Type: Boolean
fricas
test(LT = X/LT)
Type: Boolean
Five of the six forms are independent.
fricas
test(RT=RS)
Type: Boolean
fricas
test(RT=LS)
Type: Boolean
fricas
test(RT=RD)
Type: Boolean
fricas
test(LT=RS)
Type: Boolean
fricas
test(LT=LS)
Type: Boolean
fricas
test(LT=RD)
Type: Boolean